
Sensor Fusion and Tracking Toolbox™
User’s Guide

R2021b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Sensor Fusion and Tracking Toolbox™ User’s Guide
© COPYRIGHT 2018 – 2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2018 Online only New for Version 1.0 (Release 2018b)
March 2019 Online only Revised for Version 1.1 (Release 2019a)
September 2019 Online only Revised for Version 1.2 (Release 2019b)
March 2020 Online only Revised for Version 1.3 (Release 2020a)
September 2020 Online only Revised for Version 2.0 (Release 2020b)
March 2021 Online only Revised for Version 2.1 (Release 2021a)
September 2021 Online only Revised for Version 2.2 (Release 2021b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Tracking Scenarios
1

Tracking Simulation Overview . 1-2

Creating a Tracking Scenario . 1-4

Create Tracking Scenario with Two Platforms . 1-6

Model Platform Motion Using Trajectory Objects . 1-9
Introduction . 1-9
waypointTrajectory . 1-9
geoTrajectory . 1-12
kinematicTrajectory . 1-14
Summary . 1-20

Radar Detections
2

Simulate Radar Detections . 2-2
Create Radar Sensor . 2-2
Detector Input . 2-8
Radar Sensor Coordinate Systems . 2-10
INS . 2-12
Detections . 2-12

Introduction to Statistical Radar Models for Object Tracking 2-15
Sensor Overview . 2-15
Radar Detection Mode . 2-15
Mounting Radar on Platform . 2-16
Detection Ability and Quality . 2-16
Measurement and Detection Format . 2-18

Inertial Sensor and Sensor Fusion
3

Choose Inertial Sensor Fusion Filters . 3-2

iii

Contents

Multi-Object Tracking
4

Tracking and Tracking Filters . 4-2
Multi-Object Tracking . 4-2
Multi-Object Tracker Properties . 4-3

Introduction to Estimation Filters . 4-9
Background . 4-9
Filter Design . 4-11
Estimation Filters in Sensor Fusion and Tracking Toolbox 4-13
How to Choose a Tracking Filter . 4-19

Introduction to Out-of-Sequence Measurement Handling 4-21
Introduction . 4-21
Report an Error for OOSM . 4-21
Neglect OOSM . 4-22
Process OOSM Using Retrodiction . 4-22

Linear Kalman Filters . 4-24
State Equations . 4-24
Measurement Models . 4-25
Linear Kalman Filter Equations . 4-26
Filter Loop . 4-26
Constant Velocity Model . 4-27
Constant Acceleration Model . 4-28

Extended Kalman Filters . 4-29
State Update Model . 4-29
Measurement Model . 4-29
Extended Kalman Filter Loop . 4-30
Predefined Extended Kalman Filter Functions . 4-31

Introduction to Multiple Target Tracking . 4-32
Background . 4-32
Elements of an MTT System . 4-32
Tracking Metrics . 4-35
Non-Assignment-Based Trackers . 4-36

Introduction to Assignment Methods in Tracking Systems 4-37
Background . 4-37
2-D Assignment in Multiple Target Tracking . 4-37
S-D Assignment in Multiple Target Tracking . 4-45

Introduction to Track-To-Track Fusion . 4-49
Track-To-Track Fusion Versus Central-Level Tracking 4-49
Benefits and Challenges of Track-To-Track Fusion 4-49
Track Fuser and Tracking Architecture . 4-50

Multiple Extended Object Tracking . 4-52

Configure Time Scope MATLAB Object . 4-54
Signal Display . 4-54
Multiple Signal Names and Colors . 4-55

iv Contents

Configure Scope Settings . 4-55
Use timescope Measurements and Triggers . 4-56
Share or Save the Time Scope . 4-72
Scale Axes . 4-73

Code Generation
5

Generate Code with Strict Single-Precision and Non-Dynamic Memory
Allocation from Sensor Fusion and Tracking Toolbox 5-2

Introduction to Strict Single-Precision and Non-Dynamic Memory Allocation
. 5-2

Supported Trackers and Tracking Filters . 5-3
Supported Assignment Functions . 5-4
Supported Motion Model Functions . 5-4
Supported Filter Initialization Functions . 5-4

Featured Examples
6

Air Traffic Control . 6-2

IMU and GPS Fusion for Inertial Navigation . 6-17

Estimate Position and Orientation of a Ground Vehicle 6-25

Rotations, Orientation, and Quaternions . 6-33

Lowpass Filter Orientation Using Quaternion SLERP 6-48

Introduction to Simulating IMU Measurements . 6-52

Introduction to Using the Global Nearest Neighbor Tracker 6-64

Introduction to Track Logic . 6-77

Introduction to Tracking Scenario and Simulating Sensor Detections . 6-87

Inertial Sensor Noise Analysis Using Allan Variance 6-96

Estimate Orientation Through Inertial Sensor Fusion 6-107

Estimate Orientation and Height Using IMU, Magnetometer, and
Altimeter . 6-117

Scanning Radar Mode Configuration . 6-121

v

Extended Object Tracking of Highway Vehicles with Radar and Camera
. 6-147

Tracking Closely Spaced Targets Under Ambiguity 6-167

Visual-Inertial Odometry Using Synthetic Data 6-183

Tracking Maneuvering Targets . 6-192

Multiplatform Radar Detection Fusion . 6-202

Multiplatform Radar Detection Generation . 6-214

Tracking Using Distributed Synchronous Passive Sensors 6-226

Passive Ranging Using a Single Maneuvering Sensor 6-240

Benchmark Trajectories for Multi-Object Tracking 6-258

Tracking with Range-Only Measurements . 6-268

Adaptive Tracking of Maneuvering Targets with Managed Radar 6-278

How to Generate C Code for a Tracker . 6-295

How to Efficiently Track Large Numbers of Objects 6-302

Tracking a Flock of Birds . 6-316

Tracking Using Bistatic Range Detections . 6-323

Pose Estimation From Asynchronous Sensors . 6-337

Magnetometer Calibration . 6-342

Track Vehicles Using Lidar: From Point Cloud to Track List 6-351

Extended Object Tracking With Radar For Marine Surveillance 6-370

Track Vehicles Using Lidar Data in Simulink . 6-385

Track Closely Spaced Targets Under Ambiguity in Simulink 6-394

Design and Simulate Tracking Scenario with Tracking Scenario Designer
. 6-407

Estimate Orientation with a Complementary Filter and IMU Data 6-420

Logged Sensor Data Alignment for Orientation Estimation 6-428

Remove Bias from Angular Velocity Measurement 6-435

Convert Detections to objectDetection Format . 6-439

vi Contents

Estimating Orientation Using Inertial Sensor Fusion and MPU-9250 . 6-448

Track Simulated Vehicles Using GNN and JPDA Trackers in Simulink 6-458

Track-to-Track Fusion for Automotive Safety Applications in Simulink 6-465

Track Point Targets in Dense Clutter Using GM-PHD Tracker 6-468

Introduction to Tracking Metrics . 6-480

Track-Level Fusion of Radar and Lidar Data . 6-497

Tuning a Multi-Object Tracker . 6-517

Generate Off-Centered IMU Readings . 6-541

Detect Multipath GPS Reading Errors Using Residual Filtering in Inertial
Sensor Fusion . 6-546

IMU Sensor Fusion with Simulink . 6-552

Track Space Debris Using a Keplerian Motion Model 6-554

Simulate and Track En-Route Aircraft in Earth-Centered Scenarios . . 6-565

Simulate, Detect, and Track Anomalies in a Landing Approach 6-579

Generate Code for a Track Fuser with Heterogeneous Source Tracks . 6-588

Extended Object Tracking with Lidar for Airport Ground Surveillance 6-598

Track Multiple Lane Boundaries with a Global Nearest Neighbor Tracker
. 6-611

Grid-Based Tracking in Urban Environments Using Multiple Lidars . . 6-619

Automatic Tuning of the insfilterAsync Filter . 6-632

Detect, Classify, and Track Vehicles Using Lidar 6-640

Use theaterPlot to Visualize Tracking Scenario 6-655

Custom Tuning of Fusion Filters . 6-659

Wireless Data Streaming and Sensor Fusion Using BNO055 6-669

Binaural Audio Rendering Using Head Tracking 6-675

Motion Planning in Urban Environments Using Dynamic Occupancy Grid
Map . 6-680

Track-to-Track Fusion for Automotive Safety Applications 6-694

Detect and Track LEO Satellite Constellation with Ground Radars . . . 6-709

vii

Highway Vehicle Tracking with Multipath Radar Reflections 6-720

Track-Level Fusion of Radar and Lidar Data in Simulink 6-731

Track Point Targets in Dense Clutter Using GM-PHD Tracker in Simulink
. 6-741

Define and Test Tracking Architectures for System-of-Systems 6-746

Estimate Phone Orientation Using Sensor Fusion 6-756

Handle Out-of-Sequence Measurements in Multisensor Tracking Systems
. 6-762

Handle Out-of-Sequence Measurements with Filter Retrodiction 6-772

Extended Object Tracking of Highway Vehicles with Radar and Camera in
Simulink . 6-779

Grid-based Tracking in Urban Environments Using Multiple Lidars in
Simulink . 6-792

Simulate INS Block . 6-797

Reconstruct Ground Truth Trajectory from Sampled Data Using Filtering,
Smoothing, and Interpolation . 6-799

Event-Based Sensor Fusion and Tracking with Retrodiction 6-812

Object Tracking and Motion Planning Using Frenet Reference Path . . 6-815

Extended Target Tracking with Multipath Radar Reflections in Simulink
. 6-826

Lidar and Radar Fusion in an Urban Air Mobility Scenario 6-836

Smooth Trajectory Estimation of trackingIMM Filter 6-853

viii Contents

Tracking Scenarios

1

Tracking Simulation Overview
You can build a complete tracking simulation using the functions and objects supplied in this toolbox.
The workflow for sensor fusion and tracking simulation consists of three (and optionally four)
components. These components are

1 Use the tracking scenario generator to create ground truth for all moving and stationary radar
platforms and all target platforms (planes, ships, cars, drones). The trackingScenario class
models the motion of all platforms in a global coordinate system called scenario coordinates.
These objects can represent ships, ground vehicles, airframes, or any object that the radar
detects. See “Orientation, Position, and Coordinate Convention” for a discussion of coordinate
systems.

2 Optionally, simulate an inertial navigation system (INS) that provides radar sensor platform
position, velocity, and orientation relative to scenario coordinates.

3 Create models for each radar sensor with specifications and parameters using the
fusionRadarSensor or radarEmitter objects. Using target platform pose and profile
information, generate synthetic radar detections for each radar-target combination. Methods
belonging to trackingScenario retrieve the pose and profile of any target platform. The
trackingScenario generator does not have knowledge of scenario coordinates. It knows the
relative positions of the target platforms with respect to the body platform of the radar.
Therefore, the detector can only generate detections relative to the radar location and
orientation.

If there is an INS attached to a radar platform, then the radar can transform detections to the
scenario coordinate system. The INS allows multiple radars to report detections in a common
coordinate system.

4 Process radar detections with a multi-object tracker to associate detections to existing tracks or
create tracks. Multi-object tracks include trackerGNN, trackerTOMHT, trackerJPDA and
trackerPHD. If there is no INS, the tracker can only generate tracks specific to one radar. If an
INS is present, the tracker can create tracks using measurements from all radars.

The flow diagram shows the progression of information in a tracking simulation.

1 Tracking Scenarios

1-2

 Tracking Simulation Overview

1-3

Creating a Tracking Scenario
You can define a tracking simulation by using the trackingScenario object. By default, the object
creates an empty scenario. You can then populate the scenario with platforms by calling the
platform method as many times as needed. A platform is an object (moving or stationary), which
can either be a sensor, a target, or any other entity. A platform can be modeled as a point or a cuboid
by specifying the Dimensions property of Platform. After creating a platform, you can specify the
motion of the platform by using its Trajectory property. To configure a trajectory, you can use
waypointTrajectory, which allows you to specify the 3-D waypoints that the platform follows and
the associated arrival time for each waypoint. Alternately, you can use kinematicTrajectory,
which allows you to specify the 3-D acceleration and angular velocity of the platform with initial pose
and translational velocity. You can also specify the orientation of a platform using the Orientation
property of kinematicTrajectory or waypointTrajectory.

Run the simulation by calling the advance method on the trackingScenario object in a loop, or by
calling the record method to run the simulation all at once. You can set the simulation update
interval using the UpdateRate property in the trackingScenario object. You can set the
properties of a platform or leave them to their default value. You can set them all except for
PlatformID. The complete list of Platform properties is shown here.

Platform Properties
PlatformID Scenario-defined platform ID.
ClassID User-specified platform classification ID.
Dimensions 3-D dimensions of a cuboid that approximates the

size of a platform and offset of the origin of the
platform body frame from the center of the
cuboid. The default value of Dimensions has all
fields equal to zero, which corresponds to a point
model.

Trajectory Platform motion, specified by
kinematicTrajecotry or
waypointTrajectory.

Signatures Platform signatures, specified as a cell array of
irSignature, rcsSignature, and
tsSignature objects. A signature represents
the reflection or emission pattern of a platform.

PoseEstimator A pose estimator, specified as a pose-estimator
object such as insSensor (default).

Emitter Emitters mounted on platform, specified as a cell
array of emitter objects, such as radarEmitter
or sonarEmitter.

Sensors Sensors mounted on platform, specified as a cell
array of sensor objects such as irSensor or
sonarSensor.

At any time during the simulation, you can retrieve the current values of platform properties using
the platformPoses and platformProfiles methods of the trackingScenario object. Both the
platformPoses and platformProfiles methods return properties of all platforms with respect to
the scenario's NED frame. You can also use the pose method of the Platform to return the

1 Tracking Scenarios

1-4

properties of one specific platform. In addition, the Platform.targetPoses method, while similar,
returns properties of other platforms with respect to a specified platform.

 Creating a Tracking Scenario

1-5

Create Tracking Scenario with Two Platforms
Construct a tracking scenario with two platforms that follow different trajectories.

sc = trackingScenario('UpdateRate',100.0,'StopTime',1.2);

Create two platforms.

platfm1 = platform(sc);
platfm2 = platform(sc);

Platform 1 follows a circular path of radius 10 m for one second. This is accomplished by placing
waypoints in a circular shape, ensuring that the first and last waypoint are the same.

wpts1 = [0 10 0; 10 0 0; 0 -10 0; -10 0 0; 0 10 0];
time1 = [0; 0.25; .5; .75; 1.0];
platfm1.Trajectory = waypointTrajectory(wpts1, time1);

Platform 2 follows a straight path for one second.

wpts2 = [-8 -8 0; 10 10 0];
time2 = [0; 1.0];
platfm2.Trajectory = waypointTrajectory(wpts2,time2);

Verify the number of platforms in the scenario.

disp(sc.Platforms)

 {1×1 fusion.scenario.Platform} {1×1 fusion.scenario.Platform}

Run the simulation and plot the current position of each platform. Use an animated line to plot the
position of each platform.

figure
grid
axis equal
axis([-12 12 -12 12])
line1 = animatedline('DisplayName','Trajectory 1','Color','b','Marker','.');
line2 = animatedline('DisplayName','Trajectory 2','Color','r','Marker','.');
title('Trajectories')
p1 = pose(platfm1);
p2 = pose(platfm2);
addpoints(line1,p1.Position(1),p1.Position(2));
addpoints(line2,p2.Position(2),p2.Position(2));

while advance(sc)
 p1 = pose(platfm1);
 p2 = pose(platfm2);
 addpoints(line1,p1.Position(1),p1.Position(2));
 addpoints(line2,p2.Position(2),p2.Position(2));
 pause(0.1)
end

1 Tracking Scenarios

1-6

Plot the waypoints for both platforms.

hold on
plot(wpts1(:,1),wpts1(:,2),' ob')
text(wpts1(:,1),wpts1(:,2),"t = " + string(time1),'HorizontalAlignment','left','VerticalAlignment','bottom')
plot(wpts2(:,1),wpts2(:,2),' or')
text(wpts2(:,1),wpts2(:,2),"t = " + string(time2),'HorizontalAlignment','left','VerticalAlignment','bottom')
hold off

 Create Tracking Scenario with Two Platforms

1-7

1 Tracking Scenarios

1-8

Model Platform Motion Using Trajectory Objects
This topic introduces how to use three different trajectory objects to model platform trajectories, and
how to choose between them.

Introduction
Sensor Fusion and Tracking Toolbox provides three System objects that you can use to model
trajectories of platforms including ground vehicles, ships, aircraft, and spacecraft. You can choose
between these trajectory objects based on the available trajectory information and the distance span
of the trajectory.

• waypointTrajectory — Defines a trajectory using a few waypoints in Cartesian coordinates
that the trajectory must pass through. The trajectory assumes the reference frame is a fixed
North-East-Down (NED) or East-North-Up (ENU) frame. Since the trajectory interpolation
assumes that the gravitational acceleration expressed in the trajectory reference frame is
constant, waypointTrajectory is typically used for a trajectory defined within an area that
spans only tens or hundreds of kilometers.

• geoTrajectory — Defines a trajectory using a few waypoints in geodetic coordinates (latitude,
longitude, and altitude) that the trajectory must pass through. Since the waypoints are expressed
in geodetic coordinates, geoTrajectory is typically used for a trajectory from hundreds to
thousands of kilometers of distance span.

• kinematicTrajectory — Defines a trajectory using kinematic properties, such as acceleration
and angular acceleration, expressed in the platform body frame. You can use
kinematicTrajectory to generate a trajectory of any distance span as long as the kinematic
information of the trajectory is available. The object assumes a Cartesian coordinate reference
frame.

The two waypoint-based trajectory objects (waypointTrajectory and geoTrajectory) can
automatically calculate the linear velocity information of the platform, but you can also explicitly
specify the linear velocity using the Velocity property or a combination of the Course,
GroundSpeed, and ClimbRate properties.

The trajectory of a platform is composed of rotational motion and translational motion. By default, the
two waypoint-based trajectory objects (waypointTrajectory and geoTrajectory) automatically
generate the orientation of the platform at each waypoint by aligning the yaw angle with the path of
the trajectory, but you can explicitly specify the orientation using the Orientation property.
Alternately, you can use the AutoPitch and AutoBank properties to enable automatic pitch and roll
angles, respectively. For kinematicTrajectory, you need to use the Orientation property and
the angular velocity input to specify the rotational motion of the trajectory.

waypointTrajectory
The waypointTrajectory System object defines a trajectory that smoothly passes through
waypoints expressed in Cartesian coordinates. Generally, you can use waypointTrajectory to
model vehicles travelling within hundreds of kilometers. These vehicles include automobiles, surface
marine craft, and commercial aircraft (helicopters, planes, and quadcopters). You can choose the
reference frame as a fixed ENU or NED frame using the ReferenceFrame property. For more details
on how the object generates the trajectory, see the “Algorithms” section of waypointTrajectory.

 Model Platform Motion Using Trajectory Objects

1-9

waypointTrajectory Example for Aircraft Landing

Define the trajectory of a landing aircraft using a waypointTrajectory object.

waypoints = [-421 -384 2000;
 47 -294 1600;
 1368 174 1300;
 995 1037 900;
 -285 293 600;
 -1274 84 350;
 -2328 101 150;
 -3209 83 0];
timeOfArrival = [0; 16.71; 76.00; 121.8; 204.3; 280.31; 404.33; 624.6];
aircraftTraj = waypointTrajectory(waypoints,timeOfArrival);

Create a theaterPlot object to visualize the trajectory and the aircraft.

minCoords = min(waypoints);
maxCoords = max(waypoints);
tp = theaterPlot('XLimits',1.2*[minCoords(1) maxCoords(1)], ...
 'YLimits',1.2*[minCoords(2) maxCoords(2)], ...
 'ZLimits',1.2*[minCoords(3) maxCoords(3)]);

% Create a trajectory plotter and a platform plotter
tPlotter = trajectoryPlotter(tp,'DisplayName','Trajectory');
pPlotter = platformPlotter(tp,'DisplayName','Aircraft');

Obtain the Cartesian waypoints of the trajectory using the lookupPose object function.

sampleTimes = timeOfArrival(1):timeOfArrival(end);
numSteps = length(sampleTimes);
[positions,orientations] = lookupPose(aircraftTraj,sampleTimes);
plotTrajectory(tPlotter,{positions})
axis equal

Plot the platform motion using an airplane mesh object.

mesh = scale(rotate(tracking.scenario.airplaneMesh,[0 0 180]),15); % Exaggerated scale for better visualization
view(20.545,-20.6978)
for i = 1:numSteps
 plotPlatform(pPlotter,positions(i,:),mesh,orientations(i))
 % Uncomment the next line to slow the aircraft motion animation
 % pause(1e-7)
end

In the animation, the yaw angle of the aircraft aligns with the trajectory by default.

Create a second aircraft trajectory with the same waypoints as the first aircraft trajectory, but set its
AutoPitch and AutoBank properties to true. This generates a trajectory more representative of
the possible aircraft maneuvers.

aircraftTraj2 = waypointTrajectory(waypoints,timeOfArrival, ...
 'AutoPitch',true, ...
 'AutoBank',true);

Plot the second trajectory and observe the change in aircraft orientation.

[positions2,orientations2] = lookupPose(aircraftTraj2,sampleTimes);
for i = 1:numSteps

1 Tracking Scenarios

1-10

 plotPlatform(pPlotter,positions2(i,:),mesh,orientations2(i));
 % Uncomment the next line to slow the aircraft motion animation
 % pause(1e-7)
end

Visualize the orientation differences between the two trajectories in angles.

distance = dist(orientations2,orientations);
figure
plot(sampleTimes,distance*180/pi)
xlabel('Time (sec)')
ylabel('Angular Ditance (dge)')
title('Orientation Difference Between Two Waypoint Trajectories')

 Model Platform Motion Using Trajectory Objects

1-11

geoTrajectory
The geoTrajectory System object generates a trajectory using waypoints in a similar fashion as the
waypointTrajectory object, but it has two major differences in how to specify waypoints and
velocity inputs.

• When specifying waypoints for geoTrajectory, express each waypoint in the geodetic
coordinates of latitude, longitude, and altitude above the WG84 ellipsoid model. Using geodetic
coordinates, you can conveniently specify long-range trajectories, such as airplane flight trajectory
on a realistic Earth model.

• When specifying the orientation and velocity information for each waypoint, the reference frame
for orientation and velocity is the local NED or ENU frame defined under the current trajectory
waypoint. For example, the N1-E1-D1 frame shown in the figure is a local NED reference frame.

1 Tracking Scenarios

1-12

In the figure,

• Ex, Ey, and Ez are the three axes of the Earth-centered Earth-fixed (ECEF) frame, which is fixed on
the Earth.

• (λ1, ϕ1, h1) and (λ2, ϕ2, h2) are the geodetic coordinates of the plane at the two waypoints.
• (N1, E1, D1) and (N2, E2, D2) are the two local NED frames corresponding to the two trajectory

waypoints.
• Bx, By, and Bz are the three axes of the platform body frame, which is fixed on the platform.

geoTrajectory Example For Flight Trajectory

Load the flight data of a flight trajectory from Los Angeles to Boston. The data contains flight
information including flight time, geodetic coordinates for each waypoint, course, and ground speed.

load flightData.mat

Create a geoTrajectory object based on the flight data.

planeTraj = geoTrajectory([latitudes longitudes heights],timeOfArrival, ...
 'Course',courses,'GroundSpeed',speeds);

 Model Platform Motion Using Trajectory Objects

1-13

Look up the Cartesian coordinates of the waypoints in the ECEF frame.

sampleTimes = 0:1000:3600*10;
positionsCart = lookupPose(planeTraj,sampleTimes,'ECEF');

Show the trajectory using the helperGlobeView class, which approximates the Earth sphere.

viewer = helperGlobeView;
plot3(positionsCart(:,1),positionsCart(:,2),positionsCart(:,3),'r')

You can further explore the trajectory by querying other outputs of the trajectory.

kinematicTrajectory
Unlike the two waypoint trajectory objects, the kinematicTrajectory System object uses
kinematic attributes to specify a trajectory. Think of the trajectory as a numerical integration of the
pose (position and orientation) and linear velocity of the platform, based on the linear acceleration
and angular acceleration information. The pose and linear velocity are specified with respected to a
chosen, fixed scenario frame, whereas the linear acceleration and angular velocity are specified with
respected to the platform body frame.

kinematicTrajectory Example For UAV Path

Create a kinematicTrajectory object for simulating a UAV path. Specify the time span of the
trajectory as 120 seconds.

1 Tracking Scenarios

1-14

traj = kinematicTrajectory('SampleRate',1, ...
 'AngularVelocitySource','Property');

tStart = 0;
tFinal = 120;
tspan = tStart:tFinal;

numSteps = length(tspan);
positions = NaN(3,numSteps);
velocities = NaN(3,numSteps);
vel = NaN(1,numSteps);

To form a square path covering a small region, separate the UAV trajectory into six segments:

• Taking off and ascending in the z-direction
• Moving in the positive x-direction
• Moving in the positive y-direction
• Moving in the negative x-direction
• Moving in the negative y-direction
• Descending in the z-direction and landing

In each segment, the UAV accelerates in one direction and then decelerates in that direction with the
same acceleration magnitude. As a result, at the end of each segment, the velocity of the UAV is zero.

segSteps = floor(numSteps/12);
accelerations = zeros(3,numSteps);
acc = 1;
% Acceleration for taking off and ascending in the z-direction
accelerations(3,1:segSteps) = acc;
accelerations(3,segSteps+1:2*segSteps) = -acc;

% Acceleration for moving in the positive x-direction
accelerations(1,2*segSteps+1:3*segSteps) = acc;
accelerations(1,3*segSteps+1:4*segSteps) = -acc;

% Acceleration for moving in the positive y-direction
accelerations(2,4*segSteps+1:5*segSteps) = acc;
accelerations(2,5*segSteps+1:6*segSteps) = -acc;

% Acceleration for moving in the negative x-direction
accelerations(1,6*segSteps+1:7*segSteps) = -acc;
accelerations(1,7*segSteps+1:8*segSteps) = acc;

% Acceleration for moving in the negative y-direction
accelerations(2,8*segSteps+1:9*segSteps) = -acc;
accelerations(2,9*segSteps+1:10*segSteps) = acc;

% Descending in the z-direction and landing
accelerations(3,10*segSteps+1:11*segSteps) =-acc;
accelerations(3,11*segSteps+1:end) = acc;

Simulate the trajectory by calling the kinematicTrajectory object with the specified acceleration.

for i = 1:numSteps
 [positions(:,i),~,velocities(:,i)] = traj(accelerations(:,i)');

 Model Platform Motion Using Trajectory Objects

1-15

 vel(i) = norm(velocities(:,i));
end

Visualize the trajectory using theaterPlot.

% Create a theaterPlot object and create plotters for the trajectory and the
% UAV Platform.
figure
tp = theaterPlot('XLimits',[-30 130],'YLimits',[-30 130],'ZLimits',[-30 130]);
tPlotter = trajectoryPlotter(tp,'DisplayName','UAV trajectory');
pPlotter = platformPlotter(tp,'DisplayName','UAV','MarkerFaceColor','g');

% Plot the trajectory.
plotTrajectory(tPlotter,{positions'})
view(-43.18,56.49)

% Use a cube to represent the UAV platform.
dims = struct('Length',10, ...
 'Width',5, ...
 'Height',3, ...
 'OriginOffset',[0 0 0]);

% Animate the UAV platform position.
for i = 1:numSteps
 plotPlatform(pPlotter,positions(:,i)',dims,eye(3))
 pause(0.01)
end

1 Tracking Scenarios

1-16

Show the velocity magnitude of the UAV platform.

figure
plot(tspan,vel)
xlabel('Time (s)')
ylabel('Velocity (m/s)')
title('Magnitude of the UAV Velocity')

kinematicTrajectory Example For Spacecraft Trajectory

Use kinematicTrajetory to specify a circular spacecraft trajectory. The orbit has these elements:

• Orbital radius (r) — 7000 km
• Inclination (i) — 60 degrees
• Argument of ascending node (Ω) — 90 degrees. The ascending node direction is aligned with the

Y-direction.
• True anomaly (ν) — –90 degrees

In the figure, X-Y-Z is the Earth-centered inertial (ECI) frame, which has a fixed position and
orientation in space. x-y-z is the spacecraft body frame, fixed on the spacecraft. r and v are the
initial position and velocity of the spacecraft.

 Model Platform Motion Using Trajectory Objects

1-17

To specify the circular orbit using kinematicTrajectory, you need to provide the initial position,
initial velocity, and initial orientation of the spacecraft with respect to the ECI frame. For the chosen
true anomaly (v = –90∘), the spacecraft velocity is aligned with the Y-direction.

inclination = 60; % degrees
mu = 3.986e14; % standard earth gravitational parameter
radius = 7000e3;% meters
v = sqrt(mu/radius); % speed
initialPosition = [radius*cosd(inclination),0,-radius*sind(inclination)]';
initialVelocity = [0 v 0]';

Assume the x-direction of the spacecraft body frame is the radial direction, the z-direction is the
normal direction of the orbital plane, and the y-direction completes the right-hand rule. Use the
assumptions to specify the orientation of the body frame at the initial position.

orientation = quaternion([0 inclination 0],'eulerd','zyx','frame');

Express the angular velocity and the angular acceleration of the trajectory in the platform body
frame.

omega = v/radius;
angularVelocity = [0 0 omega]';

1 Tracking Scenarios

1-18

a = v^2/radius;
acceleration = [-a 0 0]';

Set a simulation time of one orbital period. Specify a simulation step as 2 seconds.

tFinal = 2*pi/omega;
dt = 2;
sampleRate = 1/dt;
tspan = 0:dt:tFinal;
numSteps = length(tspan);

Create the spacecraft trajectory. Since the acceleration and angular velocity of the spacecraft remain
constant with respect to the spacecraft body frame, specify them as constants. Generate position and
orientation outputs along the trajectory by using the kinematicTrajectory object.

traj = kinematicTrajectory('SampleRate',sampleRate, ...
 'Position',initialPosition, ...
 'Velocity',initialVelocity, ...
 'Orientation',orientation, ...
 'AngularVelocity',angularVelocity, ...
 'Acceleration',acceleration, ...
 'AccelerationSource','Property', ...
 'AngularVelocitySource','Property');

% Generate position and orientation outputs.
positions = NaN(3,numSteps);
orientations = zeros(numSteps,1,'quaternion');
for i = 1:numSteps
 [positions(:,i),orientations(i)] = traj();
end

Use the helperGlobeView class and theaterPlot to show the trajectory.

viewer = helperGlobeView(0,[60 0]);
tp = theaterPlot('Parent',gca,...
 'XLimits',1.2*[-radius radius],...
 'YLimits',1.2*[-radius radius],...
 'ZLimits',1.2*[-radius radius]);
tPlotter = trajectoryPlotter(tp,'LineWidth',2);
pPlotter = platformPlotter(tp,'MarkerFaceColor','m');
legend(gca,'off')

plotTrajectory(tPlotter,{positions'})
% Use a cube with exaggerated dimensions to represent the spacecraft.
dims = struct('Length',8e5,'Width',4e5,'Height',2e5,'OriginOffset',[0 0 0]);

for i = 1:numSteps
 plotPlatform(pPlotter,positions(:,i)',dims,orientations(i))
 % Since the reference frame is the ECI frame, earth rotates with respect to it.
 rotate(viewer,dt)
end

 Model Platform Motion Using Trajectory Objects

1-19

Summary
In this topic, you learned how to use three trajectory objects to customize your own trajectories based
on the available information. In addition, you learned the fundamental differences in applying them.
This table highlights the main attributes of these trajectory objects.

1 Tracking Scenarios

1-20

Trajectory
Object

Position
Inputs

Linear
Velocity
Inputs

Orientation Acceleration
and Angular
Velocity
Inputs

Recommended
Distance Span

waypointTraj
ectory

Cartesian
waypoints
expressed in a
fixed frame
(NED or ENU)

One of these
options:

• Automaticall
y generate
velocity for a
smooth
trajectory,
by default

• Specify
velocity in
the fixed
frame at
each
waypoint

• Specify
course,
ground
speed, and
climb rate in
the fixed
frame at
each
waypoint

One of these
options:

• Auto yaw by
default, auto
pitch by
selection,
and auto
bank by
selection

• Specify
orientation
in the fixed
frame

Cannot specify From within
tens to
hundreds of
kilometers

 Model Platform Motion Using Trajectory Objects

1-21

Trajectory
Object

Position
Inputs

Linear
Velocity
Inputs

Orientation Acceleration
and Angular
Velocity
Inputs

Recommended
Distance Span

geoTrajector
y

Geodetic
waypoints in
the ECEF frame

One of the
these options:

• Automaticall
y generate
velocity for a
smooth
trajectory,
by default

• Specify
velocity in
the local
frame (NED
or ENU) for
each
waypoint

• Specify
course,
ground
speed, and
climb rate in
the local
frame (NED
or ENU) for
each
waypoint

One of these
options:

• Auto yaw by
default, auto
pitch by
selection,
and auto
bank by
selection

• Specify
orientation
in the local
frame

Cannot specify From hundreds
to thousands of
kilometers

kinematicTra
jectory

Initial position
expressed in a
chosen, fixed
frame

Only initial
velocity in the
fixed frame

Only initial
orientation in
the fixed frame

Specify
acceleration
and angular
velocity in the
platform body
frame

Unlimited
distance span

1 Tracking Scenarios

1-22

Radar Detections

The radar detectors monostaticRadarSensor and radarSensor generate measurements from
target poses.

2

Simulate Radar Detections
The fusionRadarSensor object simulates the detection of targets by a radar. You can use the object
to model many properties of real radar sensors. For example, you can

• simulate real detections with added random noise
• generate false alarms
• simulate mechanically scanned antennas and electronically scanned phased arrays
• specify angular, range, and range-rate resolution and limits

The radar sensor is assumed to be mounted on a platform and carried by the platform as it
maneuvers. A platform can carry multiple sensors. When you create a sensor, you specify sensor
positions and orientations with respect to the body coordinate system of a platform. Each call to
fusionRadarSensor creates a sensor. The output of fusionRadarSensor generates the detection
that can be used as input to multi-object trackers, such as trackerGNN, or any tracking filters, such
as trackingKF.

The radar platform does not maintain any information about the radar sensors that are mounted on it.
(The sensor itself contains its position and orientation with respect to the platform on which it is
mounted but not which platform). You must create the association between radar sensors and
platforms. A way to do this association is to put the platform and its associated sensors into a cell
array. When you call a particular sensor, pass in the platform-centric target pose and target profile
information. The sensor converts this information to sensor-centric poses. Target poses are outputs of
trackingScenario methods.

Create Radar Sensor
You can create a radar sensor using the fusionRadarSensor object. Set the radar properties using
name-value pairs and then execute the simulator. For example,

radar1 = fusionRadarSensor(...
 'SensorIndex',1,...
 'UpdateRate',10, ... % Hz
 'ReferenceRange', 111.0e3, ... % m
 'ReferenceRCS', 0.0, ... % dBsm
 'FieldOfView',[70,10], ... % [az;el] deg
 'HasElevation',false, ...
 'HasRangeRate',false, ...
 'AzimuthResolution',1.4, ... % deg
 'RangeResolution', 135.0) % m

Convenience Syntaxes

There are several syntaxes of fusionRadarSensor that make it easier to specify the properties of
commonly implemented radar scan modes.

• sensor = fusionRadarSensor('Rotator') creates a fusionRadarSensor object that
mechanically scans 360° in azimuth. Setting HasElevation to true points the radar antenna
towards the center of the elevation field of view.

• sensor = fusionRadarSensor('Sector') creates a fusionRadarSensor object that
mechanically scans a 90° azimuth sector. Setting HasElevation to true, points the radar
antenna towards the center of the elevation field of view. You can change the ScanMode to

2 Radar Detections

2-2

'Electronic' to electronically scan the same azimuth sector. In this case, the antenna is not
mechanically tilted in an electronic sector scan. Instead, beams are stacked electronically to
process the entire elevation spanned by the scan limits in a single dwell.

• sensor = fusionRadarSensor('Raster') returns a fusionRadarSensor object that
mechanically scans a raster pattern spanning 90° in azimuth and 10° in elevation upwards from
the horizon. You can change the ScanMode property to 'Electronic' to perform an electronic
raster scan in the same volume.

• sensor = fusionRadarSensor('No scanning') returns a fusionRadarSensor object that
stares along the radar antenna boresight direction. No mechanical or electronic scanning is
performed.

You can set other radar properties when you use these syntaxes. For example,

sensor = fusionRadarSensor(1,'Raster','ScanMode','Electronic')

Radar Sensor Parameters

The properties specific to the fusionRadarSensor object are listed here. For more detailed
information, type

help fusionRadarSensor

at the command line.

Sensor location parameters.

 Simulate Radar Detections

2-3

Sensor Location

SensorIndex A unique identifier for each sensor.
UpdateRate Rate at which sensor updates are generated,

specified as a positive scalar. The reciprocal of
this property must be an integer multiple of the
simulation time interval. Updates requested
between sensor update intervals do not return
detections.

MountingLocation Sensor (x,y,z) defining the offset of the sensor
origin from the origin of its platform. The default
value positions the sensor origin at the platform
origin.

MountingAngles Yaw, pitch, and roll angles of the sensor mounting
frame with respect to the platform frame.

DetectionCoordinates Specifies the coordinate system for detections
reported in the “Detections” on page 2-12
output struct. The coordinate system can be
one of:

• 'Scenario' –- detections are reported in the
scenario coordinate frame in rectangular
coordinates. This option can only be selected
when the sensor HasINS property is set to
true.

• 'Body' –- detections are reported in the body
frame of the sensor platform in rectangular
coordinates.

• 'Sensor rectangular' –- detections are
reported in the radar sensor coordinate frame
in rectangular coordinates aligned with the
sensor frame axes.

• 'Sensor spherical' –- detections are
reported in the radar sensor coordinate frame
in spherical coordinates based on the sensor
frame axes.

Sensitivity parameters.

2 Radar Detections

2-4

Sensitivity Parameters

DetectionProbability Probability of detecting a target with radar cross
section, ReferenceRCS, at the range of
ReferenceRange.

FalseAlarmRate The probability of a false detection within each
resolution cell of the radar. Resolution cells are
determined from the AzimuthResolution and
RangeResolution properties and when enabled
the ElevationResolution and
RangeRateResolution properties.

ReferenceRange Range at which a target with radar cross section,
ReferenceRCS, is detected with the probability
specified in DetectionProbability.

ReferenceRCS The target radar cross section (RCS) in dB at
which the target is detected at the range
specified by ReferenceRange with a detection
probability specified by
DetectionProbability.

Sensor resolution and bias parameters.

 Simulate Radar Detections

2-5

Resolution Parameters

AzimuthResolution The radar azimuthal resolution defines the
minimum separation in azimuth angle at which
the radar can distinguish two targets.

ElevationResolution The radar elevation resolution defines the
minimum separation in elevation angle at which
the radar can distinguish two targets. This
property only applies when the HasElevation
property is set to true.

RangeResolution The radar range resolution defines the minimum
separation in range at which the radar can
distinguish two targets.

RangeRateResolution The radar range rate resolution defines the
minimum separation in range rate at which the
radar can distinguish two targets. This property
only applies when the HasRangeRate property is
set to true.

AzimuthBiasFraction This property defines the azimuthal bias
component of the radar as a fraction of the radar
azimuthal resolution specified by the
AzimuthResolution property. This property
sets a lower bound on the azimuthal accuracy of
the radar.

ElevationBiasFraction This property defines the elevation bias
component of the radar as a fraction of the radar
elevation resolution specified by the
ElevationResolution property. This property
sets a lower bound on the elevation accuracy of
the radar. This property only applies when the
HasElevation property is set to true.

RangeBiasFraction This property defines the range bias component
of the radar as a fraction of the radar range
resolution specified by the RangeResolution
property. This property sets a lower bound on the
range accuracy of the radar.

RangeRateBiasFraction This property defines the range rate bias
component of the radar as a fraction of the radar
range resolution specified by the
RangeRateResolution property. This property
sets a lower bound on the range rate accuracy of
the radar. This property only applies when you set
the HasRangeRate property to true.

Enabling parameters.

2 Radar Detections

2-6

Enabling Parameters

HasElevation This property allows the radar sensor to scan in
elevation and estimate elevation from target
detections.

HasRangeRate This property allows the radar sensor to estimate
range rate.

HasFalseAlarms This property allows the radar sensor to generate
false alarm detection reports.

HasRangeAmbiguities When true, the radar does not resolve range
ambiguities. When a radar sensor cannot resolve
range ambiguities, targets at ranges beyond the
MaxUnambiguousRange property value are
wrapped into the interval [0
MaxUnambiguousRange]. When false, targets
are reported at their unwrapped range.

HasRangeRateAmbiguites When true, the radar does not resolve range rate
ambiguities. When a radar sensor cannot resolve
range rate ambiguities, targets at range rates
above the MaxUnambiguousRadialSpeed
property value are wrapped into the interval [0
MaxUnambiguousRadialSpeed]. When false,
targets are reported at their unwrapped range
rates. This property only applies when the
HasRangeRate property is set to true.

HasNoise Specifies if noise is added to the sensor
measurements. Set this property to true to
report measurements with noise. Set this
property to false to report measurements
without noise. The reported measurement noise
covariance matrix contained in the output
objectDetection struct is always computed
regardless of the setting of this property.

HasOcclusion Enable occlusion from extended objects, specified
as true or false. Set this property to true to
model occlusion from extended objects. Note that
both extended objects and point targets can be
occluded by extended objects, but a point target
cannot occlude another point target or an
extended object. Set this property to false to
disable occlusion of extended objects.

HasINS Set this property to true to enable an optional
input argument to pass the current estimate of
the sensor platform pose to the sensor. This pose
information is added to the
MeasurementParameters field of the reported
detections. Then, the tracking and fusion
algorithms can estimate the state of the target
detections in scenario coordinates.

 Simulate Radar Detections

2-7

Range and range rate parameters.

Range and Range Rate Parameters

MaxUnambiguousRange This property specifies the range at which the
radar can unambiguously resolve the range of a
target. Targets detected at ranges beyond the
unambiguous range are wrapped into the range
interval [0 MaxUnambiguousRange]. This
property only applies to true target detections
when you set HasRangeAmbiguities property
to true.

This property also defines the maximum range at
which false alarms are generated. This property
only applies to false target detections when you
set HasFalseAlarms property to true.

MaxUnambiguousRadialSpeed This property specifies the maximum magnitude
value of the radial speed at which the radar can
unambiguously resolve the range rate of a target.
Targets detected at range rates whose magnitude
is greater than the maximum unambiguous radial
speed are wrapped into the range rate interval [-
MaxUnambiguousRadialSpeed
MaxUnambiguousRadialSpeed]. This property
only applies to true target detections when you
set both the HasRangeRate and
HasRangeRateAmbiguities properties to
true.

This property also defines the range rate interval
over which false target detections are generated.
This property only applies to false target
detections when you set both the
HasFalseAlarms and HasRangeRate properties
to true.

Detector Input
Each sensor created by fusionRadarSensor accepts as input an array of target structures. This
structure serves as the interface between the trackingScenario and the sensors. You create the
target struct from target poses and profile information produced by trackingScenario or
equivalent software.

The structure contains these fields.

Field Description
PlatformID Unique identifier for the platform, specified as a

positive integer. This is a required field with no
default value.

2 Radar Detections

2-8

Field Description
ClassID User-defined integer used to classify the type of

target, specified as a nonnegative integer. 0 is
reserved for unclassified platform types and is
the default value.

Position Position of target in platform coordinates,
specified as a real-valued, 1-by-3 vector. This is a
required field with no default value. Units are in
meters.

Velocity Velocity of target in platform coordinates,
specified as a real-valued, 1-by-3 vector. Units are
in meters per second. The default is [0 0 0].

Acceleration Acceleration of target in platform coordinates,
specified as a 1-by-3 row vector. Units are in
meters per second-squared. The default is [0 0
0].

Orientation Orientation of the target with respect to platform
coordinates, specified as a scalar quaternion or a
3-by-3 rotation matrix. Orientation defines the
frame rotation from the platform coordinate
system to the current target body coordinate
system. Units are dimensionless. The default is
quaternion(1,0,0,0).

AngularVelocity Angular velocity of the target in platform
coordinates, specified as a real-valued, 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. Units are in degrees per
second. The default is [0 0 0].

You can create a target pose structure by merging information from the platform information output
from the targetProfiles method of trackingScenario and target pose information output from
the targetPoses method on the platform carrying the sensors. You can merge them by extracting
for each PlatformID in the target poses array, the profile information in platform profiles array for
the same PlatformID.

The platform targetPoses method returns this structure for each target other than the platform.

 Simulate Radar Detections

2-9

Target Poses

platformID
ClassID
Position
Velocity
Yaw
Pitch
Roll
AngularVelocity

The platformProfiles method returns this structure for all platforms in the scenario.

Platform Profiles

PlatformID
ClassID
RCSPattern
RCSAzimuthAngles
RCSElevationAngles

Radar Sensor Coordinate Systems
Detections consist of measurements of positions and velocities of targets and their covariance
matrices. Detections are constructed with respect to sensor coordinates but can be output in one of
several coordinates. Multiple coordinate frames are used to represent the positions and orientations
of the various platforms and sensors in a scenario.

In a radar simulation, there is always a top-level global coordinate system which is usually the North-
East-Down (NED) Cartesian coordinate system defined by a tangent plane at any point on the surface
of the Earth. The trackingScenario object models the motion of platforms in the global coordinate
system. When you create a platform, you specify its location and orientation relative to the global
frame. These quantities define the body axes of the platform. Each radar sensor is mounted on the
body of a platform. When you create a sensor, you specify its location and orientation with respect to
the platform body coordinates. These quantities define the sensor axes. The body and radar axes can

2 Radar Detections

2-10

change over time, however, global axes do not change.

Additional coordinate frames can be required. For example, often tracks are not maintained in NED
(or ENU) coordinates, as this coordinate frame changes based on the latitude and longitude where it
is defined. For scenarios that cover large areas (over 100 kilometers in each dimension), earth-
centered earth-fixed (ECEF) can be a more appropriate global frame to use.

A radar sensor generates measurements in spherical coordinates relative to its sensor frame.
However, the locations of the objects in the radar scenario are maintained in a top-level frame. A
radar sensor is mounted on a platform and will, by default, only be aware of its position and
orientation relative to the platform on which it is mounted. In other words, the radar expects all
target objects to be reported relative to the platform body axes. The radar reports the required
transformations (position and orientation) to relate the reported detections to the platform body axes.
These transformations are used by consumers of the radar detections (e.g. trackers) to maintain
tracks in the platform body axes. Maintaining tracks in the platform body axes enables the fusion of
measurement or track information across multiple sensors mounted on the same platform.

If the platform is equipped with an inertial navigation system (INS) sensor, then the location and
orientation of the platform relative to the top-level frame can be determined. This INS information
can be used by the radar to reference all detections to scenario coordinates.

 Simulate Radar Detections

2-11

INS
When you specify HasINS as true, you must pass in an INS struct into the step method. This
structure consists of the position, velocity, and orientation of the platform in scenario coordinates.
These parameters let you express target poses in scenario coordinates by setting the
DetectionCoordinates property.

Detections
Radar sensor detections are returned as a cell array of objectDetection objects. A detection
contains these properties.

objectDetection Structure

Field Definition
Time Measurement time
Measurement Measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
MeasurementParameters Parameters used by initialization functions of any

nonlinear Kalman tracking filters
ObjectAttributes Additional information passed to tracker

Measurement and MeasurementNoise are reported in the coordinate system specified by the
DetectionCoordinates property of the fusionRadarSensor are reported in sensor Cartesian
coordinates.

Measurement Coordinates

DetectionCoordinates Measurement and Measurement Noise
Coordinates

'Scenario' Coordinate Dependence on HasRangeRate
HasRangeRate Coordinates
true [x;y;z;vx;vy;vz]
false [x;y;z]

'Body'
'Sensor rectangular'

'Sensor spherical' Coordinate Dependence on HasRangeRate
and HasElevation

HasRangeRat
e

HasElevatio
n

Coordinates

true true [az;el;rng;
rr]

true false [az;rng;rr]
false true [az;el;rng]
false false [az;rng]

2 Radar Detections

2-12

The MeasurementParameters field consists of an array of structs describing a sequence of
coordinate transformations from a child frame to a parent frame or the inverse transformations (see
“Frame Rotation”). The longest possible sequence of transformations is: Sensor → Platform →
Scenario. For example, if the detections are reported in sensor spherical coordinates and HasINS is
set to false, then the sequence consists of one transformation from sensor to platform. If HasINS is
true, the sequence of transformations consists of two transformations – first to platform coordinates
then to scenario coordinates. Trivially, if the detections are reported in platform rectangular
coordinates and HasINS is set to false, the transformation consists only of the identity.

Each struct takes the form:

MeasurementParameters

Parameter Definition
Frame Enumerated type indicating the frame used to

report measurements. When detections are
reported using a rectangular coordinate system,
Frame is set to 'rectangular'. When
detections are reported in spherical coordinates,
Frame is set 'spherical' for the first struct.

OriginPosition Position offset of the origin of frame(k) from the
origin of frame(k+1) represented as a 3-by-1
vector.

OriginVelocity Velocity offset of the origin of frame(k) from the
origin of frame(k+1) represented as a 3-by-1
vector.

Orientation A 3-by-3 real-valued orthonormal frame rotation
matrix which rotates the axes of frame(k+1) into
alignment with the axes of frame(k).

IsParentToChild A logical scalar indicating if Orientation
performs a frame rotation from the parent
coordinate frame to the child coordinate frame. If
false, Orientation performs a frame rotation
from the child's coordinate frame to the parent's
coordinate frame.

HasElevation A logical scalar indicating if the frame has three-
dimensional position. Only set to false for the first
struct when detections are reported in
spherical coordinates and HasElevation is
false, otherwise it is true.

HasVelocity A logical scalar indicating if the reported
detections include velocity measurements. true
when HasRangeRate is enabled, otherwise
false.

 Simulate Radar Detections

2-13

ObjectAttributes

Attribute Definition
TargetIndex Identifier of the platform, PlatformID, that

generated the detection. For false alarms, this
value is negative.

SNR Detection signal-to-noise ratio in dB.

2 Radar Detections

2-14

Introduction to Statistical Radar Models for Object Tracking

Sensor Overview
In a tracking system, sensors are used to generate measurements or detections from targets in an
environment. Sensors generally have an aperture by which they intercept the energy that targets
either emit or reflect. Sensors primarily use the intercepted energy to obtain information about the
state and attributes of targets.

A sensor is an active sensor if the intercepted energy originates from itself, such as a monostatic
radar or a monostatic sonar. A sensor is a passive sensor if the intercepted energy originates from an
outside source, such as an infrared (IR) sensor, which receives radiated energy from a target.

Other than receiving targets’ energy, the aperture inevitably also collects interfering energy created
either by nature (such as background clutter) or by man (such as jamming signal). Therefore, the
detection quality of sensors involves many factors such as accuracy, resolution, bias, and false alarms.
Also, it is also essential to consider the detectability of sensors, which relies on factors such as
scanning limits, field of view, and sensor mounting in tracking system design.

This introduction mainly discusses radar (including the fusionRadarSensor and radarEmitter
objects), but some of the following descriptions also apply to other types of sensors (including the
irSensor, sonarSensor, and sonarEmitter objects).

Radar Detection Mode
Radar uses radio wave signals reflected or emitted from a target to detect the target. Given different
transmitter and receiver configurations, a radar can have one of three detection modes: monostatic,
bistatic, or electronic support measures (ESM).

For the monostatic detection mode, the transmitter and the receiver are collocated, as shown in
figure (a). In this mode, the range measurement R can be expressed as R = RT = RR, where RT and RR
are the ranges from the transmitter to the target and from the target to the receiver, respectively. In
this mode, the range measurement is R = ct/2, where c is the speed of light and t is the total elapsed
time of the signal transmission. In addition to the range measurement, a monostatic sensor can also
optionally report range rate, azimuth, and elevation measurements of the target.

For the bistatic detection mode, the transmitter and the receiver are separated by a distance L. As
shown in figure (b), the signal is emitted from the transmitter, reflected from the target, and
eventually received by the receiver. The bistatic range measurement Rb is defined as Rb = RT + RR −

 Introduction to Statistical Radar Models for Object Tracking

2-15

L. The radar sensor obtains the bistatic range measurement as Rb = cΔt, where Δt is the time
difference between the receiver intercepting the direct signal from the transmitter and intercepting
the reflected signal from the target. In addition to the bistatic range measurement, a bistatic radar
can optionally report the bistatic range rate, azimuth, and elevation measurements of the target.
Since the bistatic range and the two bearing angles (azimuth and elevation) do not correspond to the
same position vector, they cannot be combined into a position vector and reported in a Cartesian
coordinate system. Without additional information, a bistatic sensor can only report the
measurements in a spherical coordinate system.

For the ESM detection mode, the receiver can only intercept a signal reflected from the target or
emitted directly from the transmitter, as shown in figure (c). Therefore, the only available
measurements are the azimuth and elevation of the target or transmitter. The ESM sensor reports
these measurements in a spherical coordinate system.

Mounting Radar on Platform
To interpret the detection generated by the radar, you need to understand how the radar is mounted
on the platform. The radar mounting frame (M) origin can be displaced from the platform frame
origin (P). This displacement is usually specified by the MountingLocation property of a sensor
object, such as fusionRadarSensor. The radar mounting frame can also angularly displaced from
the platform frame. You can specify this angle displacement represented by three rotation angles in
the z-y-x sequence using the MountingAngles property. Initially, the radar scanning frame (S) is
aligned with its mounting frame (M). However, when the radar starts scanning, the radar can scan
around the z- and y-axes of the mounting frame. The x-direction of the radar scanning frame is
aligned with the current boresight direction of the radar.

Detection Ability and Quality
Sensor Coverage

In most cases, a radar is working in a scanning mode in which the sensor beams sweep back and
forth, with width equal to its field of view (FOV), through a space region defined by the radar
scanning limit. The FOV is typically 3 decibels (dB) of the radar beam width. The speed of the
sweeping is specified by the UpdateRate property of the sensor object. You can obtain the scanning
speed of the sensor using its field of view and update rate. For example, if the update rate is 20 Hz
and the field of view is 2 degrees, then the radar scanning speed is 40 degrees per second. For more
details on radar sensor coverage, see the “Scanning Radar Mode Configuration” on page 6-121
example.

2 Radar Detections

2-16

Resolution and Accuracy

Sensor resolution defines the ability of a sensor to distinguish between two targets. In a 3-D space,
the resolution bin of a radar is formed by the azimuth boundary, elevation boundary, and range
boundary. If two targets fall within the same resolution bin, then the radar cannot distinguish
between them and reports them as one target in the detection.

Sensor accuracy can be described by the standard deviation of the measurement error. The accuracy
is mainly affected by two factors: the signal to noise ratio (SNR) of the sensor and the detection bias
of the sensor. SNR is defined as the ratio of reflected signal power to the noise power in decibels
(dB). A ratio higher than 1:1 (greater than 0 dB) indicates more signal than noise. A larger SNR
results in a smaller measurement error and higher accuracy. For radar, SNR is usually a function of
the radar cross section (RCS) of the target. The bias of a sensor is mainly due to imperfect alignment
or calibration, and is often assumed to be a constant value. In each radar object, you can specify its
bias as a fraction of the sensor resolution bin size using properties such as AzimuthBiasFraction.
The larger the bias is, the more errors the detection incorporates.

Detection Statistics

Radar can also make an incorrect assessment of the surveillance region. The probability of false
alarm (pFA) represents the probability that the radar reports a detection on a resolution bin even
though the resolution bin is not occupied by a target. The probability of detection (PD) represents the
probability that the radar reports a detection on a resolution bin if the resolution bin is actually
occupied by a target. Therefore, 1 – PD represents the probability that the target is not detected by
the radar. PD is mainly a function of the SNR of the target and the pFA of the radar.

When a radar operates in an environment where other undesirable radio frequency (RF) emissions
interfere with the waveforms emitted by the radar, the radar can experience a degradation in
detection performance in the direction of the interfering signals.

 Introduction to Statistical Radar Models for Object Tracking

2-17

Reported Target Range and Range-Rate

In many cases, a radar has the maximum unambiguous range and range-rate limits. If the distance
between a target and the sensor is greater than the maximum unambiguous range, then the sensor
wraps the detected range in the range of [0, Rmax], where Rmax is the maximum unambiguous range.
For example, assume the target’s range Rt is larger than Rmax, then the reported range of the target is
mod(Rt,Rmax), where mod is the remainder after division function in MATLAB. In a radar object, you
can disable this limitation by setting the HasMaxUnabmiguousRange property to false.

Measurement and Detection Format
In terms of tracking systems, there are two basic classes of measurements: kinematic and attribute.
Kinematic measurements provide the tracking systems with information about the existence and
location of the target. Typical kinematic measurements include range, range rate, azimuth, and
elevation. Attribute measurements usually contain identification and characteristics of the target,
such as shape and reflectivity. The kinematic measurements for radar are described here.

In general, radar can report kinematic measurements in either spherical or Cartesian coordinate
frames. For spherical coordinates, the radar can report the azimuth, elevation, range, and range rate
measurements. For Cartesian coordinates, the radar can report the 2-D or 3-D position and velocity
measurements based on the setup. Each radar detection mode can only output certain types of
measurements. The available detection coordinates for each detection mode are:

• For the monostatic detection mode, detections can be reported in the spherical or Cartesian
coordinate frames.

• For the bistatic detection mode, detections can only be reported in the spherical coordinate frame,
and the reported range is the bistatic range to the target.

• For the ESM detection mode, detections can only be reported in the spherical coordinate frame.

In the Sensor Fusion and Tracking Toolbox, sensor objects output detections in the form of
objectDetection objects. An objectDetection object contains these properties:

Property Definition
Time Detection time
Measurement Object measurements
Measurement Noise Measure noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Unique ID for object classification
MeasurementParameters Parameters used to interpret the measurement,

such as sensor configuration and detection frame
information

ObjectAttributes Additional information about the target, such as
target ID and target RCS

Note that the MeasurementParameters property contains essential information used to interpret
the measurements, such as sensor pose (position, velocity, and orientation) and coordinate frame
information for measurements at the time of detection. For more details, see “Measurement
Parameters” and the “Convert Detections to objectDetection Format” on page 6-439 example.

2 Radar Detections

2-18

Inertial Sensor and Sensor Fusion

3

Choose Inertial Sensor Fusion Filters
The toolbox provides multiple filters to estimate the pose and velocity of platforms by using on-board
inertial sensors (including accelerometer, gyroscope, and altimeter), magnetometer, GPS, and visual
odometry measurements. Each filter can process certain types of measurements from certain sensors.
Each filter also makes assumptions and may have limitations that you should consider carefully
before applying it. For example, many filters assume no sustained linear or angular acceleration other
than the gravitational acceleration. Therefore, you should avoid using them during strong and
constant acceleration, but these filters can perform reasonably well during short linear acceleration
bursts. Also, some filters allow piecewise constant linear acceleration and angular velocity since they
allow acceleration and angular velocity inputs during the prediction step.

The internal algorithms of these filters also vary greatly. For example, the ecompass object uses the
TRIAD method to determine the orientation of the platform with very low computation cost. Many
filters (such as ahrsfilter and imufilter) adopt the error-state Kalman filter, in which the state
deviation from the reference state is estimated. Meanwhile, other filters (such as insfilterMARG
and insfilterAsync) use the extended Kalman filter approach, in which the state is estimated
directly.

To achieve high estimation accuracy, it is important to tune the filter properties and parameters
properly. The toolbox offers the built-in tune function to tune parameters and sensor noise for most
of the inertial sensor filters (marked as tunable in the table below).

The table lists the inputs, outputs, assumptions, and algorithms for all the inertial sensor fusion
filters.

Object Sensors and
Inputs

States and
Outputs

Assumptions or
Limitations

Algorithm Used Tunable

ecompass • Acceleromete
r

• Magnetomete
r

Orientation The filter
assumes no
sustained linear
and angular
acceleration
other than
gravitational
acceleration.

TRIAD method No

ahrsfilt
er

• Acceleromete
r

• Gyroscope
• Magnetomete

r

Orientation and
angular velocity

The filter
assumes no
sustained linear
and angular
acceleration
other than
gravitational
acceleration.

Error-state
Kalman filter

Yes

3 Inertial Sensor and Sensor Fusion

3-2

Object Sensors and
Inputs

States and
Outputs

Assumptions or
Limitations

Algorithm Used Tunable

ahrs10fi
lter

• Acceleromete
r

• Gyroscope
• Magnetomete

r
• Altimeter

Orientation,
altitude, vertical
velocity, delta
angle bias, delta
velocity bias,
geomagnetic
field vector,
magnetometer
bias

The filter
assumes
piecewise
constant linear
acceleration in
the vertical
direction, and no
sustained linear
and angular
acceleration
other than
gravitational
acceleration in
other directions.

Discrete
extended Kalman
filter

Yes

imufilte
r

• Acceleromete
r

• Gyroscope

Orientation and
angular velocity

The filter
assumes no
sustained linear
and angular
acceleration
other than
gravitational
acceleration.

Error-state
Kalman filter

Yes

compleme
ntaryFil
ter

• Acceleromete
r

• Gyroscope
• Magnetomete

r(optional)

Orientation and
angular velocity

The filter
assumes no
sustained linear
and angular
acceleration
other than
gravitational
acceleration.

Non-Kalman
filter based
approach:

• Use high and
low pass
filters to
reduce noise
in various
sensor
readings.

• Fuse the
filtered
sensor
readings
based on
their
assigned
weights.

No

 Choose Inertial Sensor Fusion Filters

3-3

Object Sensors and
Inputs

States and
Outputs

Assumptions or
Limitations

Algorithm Used Tunable

insfilte
rMARG

• Acceleromete
r

• Gyroscope
• Magnetomete

r
• GPS

Orientation,
position, velocity,
delta angle bias,
delta velocity
bias,
geomagnetic
field vector,
magnetometer
bias

The prediction
step takes the
accelerometer
and gyroscope
inputs.
Therefore, the
filter assumes:

• Piecewise
constant
linear
acceleration.

• Piecewise
constant
angular
velocity.

• Acceleromete
r and
gyroscope
run at the
same rate
with no
sample
dropping.

Discrete
extended Kalman
filter

Yes

insfilte
rAsync

• Acceleromete
r

• Gyroscope
• Magnetomete

r
• GPS

Orientation,
angular velocity,
position, velocity,
acceleration,
accelerometer
bias, gyroscope
bias,
geomagnetic
field vector,
magnetometer
bias

The filter
assumes:

• Constant
angular
velocity

• Constant
acceleration

The filter does
not require the
sensors to be
synchronous and
each sensor can
have sample
dropping.

Continuous
discrete
extended Kalman
Filter

Yes

3 Inertial Sensor and Sensor Fusion

3-4

Object Sensors and
Inputs

States and
Outputs

Assumptions or
Limitations

Algorithm Used Tunable

insfilte
rNonholo
nomic

• Acceleromete
r

• Gyroscope
• GPS

Orientation,
position, velocity,
gyroscope bias,
accelerometer
bias

The prediction
step takes the
accelerometer
and gyroscope
inputs.
Therefore, the
filter assumes:

• Piece-wise
constant
linear
acceleration.

• Piece-wise
constant
angular
velocity.

• Acceleromete
r and
gyroscope
run at the
same rate
with no
sample
dropping.

Also, the filter
assumes the
platform moves
forward without
side slip.

Discrete
extended Kalman
Filter

Yes

 Choose Inertial Sensor Fusion Filters

3-5

Object Sensors and
Inputs

States and
Outputs

Assumptions or
Limitations

Algorithm Used Tunable

insfilte
rErrorSt
ate

• Acceleromete
r

• Gyroscope
• Magnetomete

r
• GPS
• Visual

odometry
scale

Orientation,
position, velocity,
gyroscope bias,
accelerometer
bias, and visual
odometry scale

The prediction
step takes the
accelerometer
and gyroscope
inputs.
Therefore, the
filter assumes:

• Piece-wise
constant
linear
acceleration.

• Piece-wise
constant
angular
velocity.

• Acceleromete
r and
gyroscope
run at the
same rate
with no
sample
dropping.

Error-state
Kalman filter

Yes

See Also
tunerconfig

3 Inertial Sensor and Sensor Fusion

3-6

Multi-Object Tracking

• “Tracking and Tracking Filters” on page 4-2
• “Introduction to Estimation Filters” on page 4-9
• “Introduction to Out-of-Sequence Measurement Handling” on page 4-21
• “Linear Kalman Filters” on page 4-24
• “Extended Kalman Filters” on page 4-29
• “Introduction to Multiple Target Tracking” on page 4-32
• “Introduction to Assignment Methods in Tracking Systems” on page 4-37
• “Introduction to Track-To-Track Fusion” on page 4-49
• “Multiple Extended Object Tracking” on page 4-52
• “Configure Time Scope MATLAB Object” on page 4-54

Tracking is the process of estimating the state of motion of an object based on measurements taken
off the object. For an object moving in space, the state usually consists of position, velocity, and any
other state parameters of objects at any given time. A state is the necessary information needed to
predict future states of the system given the specified equations of motion. The estimates are derived
from observations on the objects and are updated as new observations are taken. Observations are
made using one or more sensors. Observations can only be used to update a track if it is likely that
the observation is that of the object having that track. Observations need to be either associated with
an existing track or used to create a new track. When several tracks are present, there are several
ways observations are associated with one and only one track. The chosen track is based on the
"closest" track to the observation.

4

Tracking and Tracking Filters
Multi-Object Tracking
You can use multi-sensor, multi-target trackers, trackerGNN, trackerJPDA, and trackerTOMHT, to
track multiple targets. These trackers implement the multi-object tracking problem using the
measurement-to-track association approach. Tracks are initiated and updated using sensor detections
of targets. Trackers take several steps when new detections are made:

• The tracker tries to assign a detection to an existing track.
• The tracker creates a track for each detection it cannot assign. When starting the tracker, all

detections are used to create tracks.
• The tracker evaluates the status of each track. For new tracks, the status is tentative until enough

detections are made to confirm the track. For existing tracks, newly assigned detections are used
by the tracking filter to update the track state. When a track has no new added detections, the
track is coasted (predicted) until new detections are assigned to it. If no new detections are added
after a specified number of updates, the track is deleted.

When tracking multiple objects using these trackers, there are several things to consider:

• Decide which tracker to use.

• trackerGNN uses a global nearest-neighbor assignment algorithm, which maintains a single
hypothesis about the tracked object. The tracker offers low computation cost but is not robust
during ambiguous association events.

• trackerTOMHT assigns detections based on a track-oriented, multi-hypothesis approach,
which maintains multiple hypotheses about the tracked object. The tracker is robust during
ambiguous data association events but is computationally more expensive.

• trackerJPDA uses a joint probabilistic data association approach, which applies a soft
assignment where multiple detections can contribute to each track. The tracker balances the
robustness and computation cost between trackerGNN and trackerTOMHT.

See the “Tracking Closely Spaced Targets Under Ambiguity” on page 6-167 example for a
comparison between these three trackers.

• Decide which type of tracking filter to use.

The choice of tracking filter depends on the expected dynamics of the object you want to track.
The toolbox provides multiple Kalman filters including the Linear Kalman filter, trackingKF, the
Extended Kalman filter, trackingEKF, the Unscented Kalman filter, trackingUKF, and the
Cubature Kalman filter, trackingCKF. The linear Kalman filter is used when the dynamics of the
object follow a linear model and the measurements are linear functions of the state vector. The
extended, unscented, and cubature Kalman filters are used when the dynamics are nonlinear, the
measurement model is nonlinear, or both. The toolbox also provides non-Gaussian filters such as
the particle filter, trackingPF, Gaussian-sum filter, trackingGSF, and the Interacting Multiple
Model (IMM) filter, trackingIMM. See the “Tracking with Range-Only Measurements” on page 6-
268 and “Tracking Maneuvering Targets” on page 6-192 examples for more information about
these filters.

You can set the type of filter by specifying the FilterInitializationFcn property of a tracker.
For example, if you set the FilterInitializationFcn property to @initcaekf, then the
tracker uses the initcaekf function to create a constant-acceleration extended Kalman filter for
a new track generated from detections.

4 Multi-Object Tracking

4-2

• Decide which track logic to use.

You can specify the conditions under which a track is confirmed or deleted by setting the
TrackLogic property. Three algorithms are supported:

• 'History' — Track confirmation and deletion are based on the number of times the track has
been assigned to a detection in the last several tracker updates. You can use this logic with
trackerGNN and trackerJPDA.

• 'Score' — Track confirmation and deletion are based on a log-likelihood computation. A high
score means that the track is more likely to be valid. A low score means that the track is more
likely to be false. You can use this logic with trackerGNN and trackerTOMHT.

• 'Integrated' — Track confirmation and deletion are based on the probability of track
existence. You can use this logic with trackerJPDA.

For more details, see the “Introduction to Track Logic” on page 6-77 example.

You can also use a multi-sensor, multi-target tracker, trackerPHD, to track multiple targets
simultaneously. trackerPHD approaches the multi-object tracking problem using the random finite
set (RFS) method and tracks the probability hypothesis density (PHD) of a scenario. trackerPHD
extracts peaks from the PHD-intensity to represent potential targets and maintain identities of
targets by assigning a label to each component. The toolbox offers one realization of PHD, ggiwphd,
which represents the PHD of extended targets using a Gamma Gaussian Inverse-Wishart (GGIW)
target-state model. You can represent the configurations of sensors for trackerPHD using
trackingSensorConfiguration.

Multi-Object Tracker Properties
trackerGNN Properties

The trackerGNN object is a multi-sensor, multi-object tracker that uses global nearest neighbor
association. Each detection can be assigned to only one track (single-hypothesis tracker) which can
also be a new track that the detection initiates. At each step of the simulation, the tracker updates
the track state. You can specify the behavior of the tracker by setting the following properties.

 Tracking and Tracking Filters

4-3

trackerGNN Properties

FilterInitializationFcn A handle to a function that initializes a tracking
filter based on a single detection. This function is
called when a detection cannot be assigned to an
existing track. For example, initcaekf creates
an extended Kalman filter for an accelerating
target. All tracks are initialized with the same
type of filter.

Assignment The name of the assignment algorithm. The
tracker provides three built-in algorithms:
'Munkres', 'Jonker-Volgenant', and
'Auction' algorithms. You can also create your
own custom assignment algorithm by specifying
'Custom'.

CustomAssignmentFcn The name of the custom assignment algorithm
function. This property is available on when the
Assignment property is set to 'Custom'.

AssignmentThreshold Specify the threshold that controls the
assignment of a detection to a track. Detections
can only be assigned to a track if their normalized
distance from the track is less than the
assignment threshold. Each tracking filter has a
different method of computing the normalized
distance. Increase the threshold if there are
detections that can be assigned to tracks but are
not. Decrease the threshold if there are
detections that are erroneously assigned to
tracks.

TrackLogic Specify the track confirmation logic –-'History'
or 'Score'. For descriptions of these options,
type

help trackHistoryLogic

or

help trackScoreLogic

at the command line.

4 Multi-Object Tracking

4-4

ConfirmationThreshold Specify the threshold for track confirmation. The
threshold depends on the setting for
TrackLogic

• 'History' –- specify the confirmation
threshold as [M N]. If the track is detected at
least M times in the last N updates, the track is
confirmed.

• 'Score' –-- specify the confirmation
threshold as a single number. If the score is
greater than or equal to the threshold, this
track is confirmed.

.
DeletionThreshold Specify the threshold for track deletion. The

threshold depends on the setting of TrackLogic

• 'History' –- specify the deletion threshold
as a pair of integers [P R]. A track is deleted
if it is not assigned to a track at least P times
in the last R updates.

• 'Score' –-- specify the deletion threshold as
a single number. The track is deleted if its
score decreases by at least this threshold from
its maximum track score.

.
DetectionProbability Specify the probability of detection as a number

in the range (0,1). The probability of detection is
used to calculate the track score when initializing
and updating a track. This property is used only
when TrackLogic is set to 'Score'.

FalseAlarmRate Specify the rate of false detection as a number in
the range (0,1). The false alarm rate is used to
calculate the track score when initializing and
updating a track. This property is used only when
TrackLogic is set to 'Score'.

Beta Specify the rate of new tracks per unit volume as
a positive number. This property is used only
when TrackLogic is set to 'Score'. The rate of
new tracks is used in calculating the track score
during track initialization. This property is used
only when TrackLogic is set to 'Score'.

 Tracking and Tracking Filters

4-5

Volume Specify the volume of the sensor measurement
bin as a positive scalar. For example, a radar
sensor that produces a 4-D measurement of
azimuth, elevation, range, and range-rate creates
a 4-D volume. The volume is a product of the
radar angular beamwidth, the range bin width,
and the range-rate bin width. The volume is used
in calculating the track score when initializing
and updating a track. This property is used only
when TrackLogic is set to 'Score'.

MaxNumTracks Specify the maximum number of tracks the
tracker can maintain.

MaxNumSensors Specify the maximum number of sensors sending
detections to the tracker as a positive integer.
This number must be greater than or equal to the
largest SensorIndex value used in the
objectDetection input to the step method.
This property determines how many sets of
ObjectAttributes each track can have.

HasDetectableTrackIDsInput Set this property to true if you want to provide a
list of detectable track IDs as input to the step
method. This list contains all tracks that the
sensors expect to detect and, optionally, the
probability of detection for each track ID.

HasCostMatrixInput Set this property to true if you want to provide
an assignment cost matrix as input to the step
method.

trackerGNN Input

The input to the trackerGNN consists of a list of detections, the update time, cost matrix, and other
data. Detections are specified as a cell array of objectDetection objects (see “Detections” on page
2-12). The input arguments are listed here.

4 Multi-Object Tracking

4-6

trackerGNN Input

tracker A trackerGNN object.
detections Cell array of objectDetection objects (see

“Detections” on page 2-12).
time Time to which all the tracks are to be updated

and predicted. The time at this execution step
must be greater than the value in the previous
call.

costmatrix Cost matrix for assigning detections to tracks. A
real T-by-D matrix, where T is the number of
tracks listed in the allTracks argument
returned from the previous call to step. D is the
number of detections that are input in the current
call. A larger cost matrix entry means a lower
likelihood of assignment.

detectableTrackIDs IDs of tracks that the sensors expect to detect,
specified as an M-by-1 or M-by-2 matrix. The first
column consists of track IDs, as reported in the
TrackID field of the tracker output. The second
column is optional and allows you to add the
detection probability for each track.

trackerGNN Output

The output of the tracker can consist of up to three struct arrays with track state information. You
can retrieve just the confirmed tracks, the confirmed and tentative tracks, or these tracks plus a
combined list of all tracks.

confirmedTracks = step(...)

[confirmedTracks, tentativeTracks] = step(...)

[confirmedTracks, tentativeTracks, allTracks] = step(...)

The fields contained in the struct are:

 Tracking and Tracking Filters

4-7

trackerGNN Output struct

TrackID Unique integer that identifies the track.
UpdateTime Time to which the track is updated.
Age Number of updates since track initialization.
State State vector at update time.
StateCovariance State covariance matrix at update time.
IsConfirmed True if the track is confirmed.
TrackLogic The track logic used in confirming the track –

'History' or 'Score'.
TrackLogicState The current state of the track logic.

• For 'History' track logic, a 1-by-Q logical
array, where Q is the larger of N specified in
the confirmation threshold property,
ConfirmationThreshold, and R specified in
the deletion threshold property,
DeletionThreshold.

• For 'Score' track logic, a 1-by-2 numerical
array in the form: [currentScore,
maxScore].

IsCoasted True if the track has been updated without a
detection. In this case, tracks are predicted to the
current time.

ObjectClassID An integer value representing the target
classification. Zero is reserved for an "unknown"
class.

ObjectAttributes A cell array of cells. Each cell captures the object
attributes reported by the corresponding sensor.

4 Multi-Object Tracking

4-8

Introduction to Estimation Filters

Background
Estimation Systems

For many autonomous systems, the knowledge of the system state is a prerequisite for designing any
applications. In reality, however, the state is often not directly obtainable. The system state is usually
inferred or estimated based on the system outputs measured by certain instruments (such as sensors)
and the flow of the state governed by a dynamic or motion model. Some simple techniques, such as
least square estimation or batch estimation, are sufficient in solving static or offline estimation
problems. For online and real time (sequential) estimation problems, more sophisticated estimation
filters are usually applied.

An estimation system is composed of a dynamic or motion model that describes the flow of the state
and a measurement model that describes how the measurements are obtained. Mathematically, these
two models can be represented by an equation of motion and a measurement equation. For example,
the equation of motion and measurement equation for a general nonlinear discrete estimation system
can be written as:

xk + 1 = f (xk)
yk = h(xk)

where k is the time step, xk is the system state at time step k, f(xk) is the state-dependent equation of
motion, h(xk) is the state dependent measurement equation, and yk is the output.

Noise Distribution

In most cases, building a perfect model to capture all the dynamic phenomenon is not possible. For
example, including all frictions in the motion model of an autonomous vehicle is impossible. To
compensate for these unmodeled dynamics, process noise (w) is often added to the dynamic model.
Moreover, when measurements are taken, multiple sources of errors, such as calibration errors, are
inevitably included in the measurements. To account for these errors, proper measurement noise
must be added to the measurement model. An estimation system including these random noises and
errors is called a stochastic estimation system, which can be represented by:

 Introduction to Estimation Filters

4-9

xk + 1 = f (xk, wk)
yk = h(xk, vk)

where wk and vk represent process noise and measurement noise, respectively.

For most engineering applications, the process noise and measurement noise are assumed to follow
zero-mean Gaussian or normal distributions, or are at least be approximated by Gaussian
distributions. Also, because the exact state is unknown, the state estimate is a random variable,
usually assumed to follow Gaussian distributions. Assuming Gaussian distributions for these variables
greatly simplifies the design of an estimation filter, and form the basis of the Kalman filter family.

A Gaussian distribution for a random variable (x) is parametrized by a mean value μ and a covariance
matrix P, which is written as x∼N(μ,P). Given a Gaussian distribution, the mean, which is also the
most likely value of x, is defined by expectation (E) as:

μ = E[x]
The mean is also called the first moment of x about the origin. The covariance that describes of the
uncertainty of x is defined by expectation (E) as:

P = E x− μ x− μ T

The covariance is also called the second moment of x about its mean.

If the dimension of x is one, P is only a scalar. In this case, the value of P is usually denoted by σ2 and
called variance. The square root, σ, is called the standard deviation of x. The standard deviation has

4 Multi-Object Tracking

4-10

important physical meaning. For example, the following figure shows the probability density function
(which describes the likelihood that x takes a certain value) for a one-dimensional Gaussian
distribution with mean equal to μ and standard deviation equal to σ. About 68% of the data fall within
the 1σ boundary of x, 95% of the data fall within the 2σ boundary, and 99.7% of the data fall within
the 3σ boundary.

Even though the Gaussian distribution assumption is the dominant assumption in engineering
applications, there exist systems whose state cannot be approximated by Gaussian distributions. In
this case, non-Kalman filters (such as a particle filter) is required to accurately estimate the system
state.

Filter Design
The goal of designing a filter is to estimate the state of a system using measurements and system
dynamics. Since the measurements are usually taken at discrete time steps, the filtering process is
usually separated into two steps:

1 Prediction: Propagate state and covariance between discrete measurement time steps (k = 1, 2,
3, …, N) using dynamic models. This step is also called flow update.

2 Correction: Correct the state estimate and covariance at discrete time steps using
measurements. This step is also called measurement update.

For representing state estimate and covariance status in different steps, xk|k and Pk|k denote the state
estimate and covariance after correction at time step k, whereas xk+1|k and Pk+1|k denote the state
estimate and covariance predicted from the previous time step k to the current time step k+1.

 Introduction to Estimation Filters

4-11

Prediction

In the prediction step, the state propagation is straightforward. The filter only needs to substitute the
state estimate into the dynamic model and propagate it forward in time as xk+1|k = f(xk|k).

The covariance propagation is more complicated. If the estimation system is linear, then the
covariance can be propagated (Pk|k→Pk+1|k) exactly in a standard equation based on the system
properties. For nonlinear systems, accurate covariance propagation is challenging. A major difference
between different filters is how they propagate the system covariance. For example:

• A linear Kalman filter uses a linear equation to exactly propagate the covariance.
• An extended Kalman filter propagates the covariance based on linear approximation, which

renders large errors when the system is highly nonlinear.
• An unscented Kalman filter uses unscented transformation to sample the covariance distribution

and propagate it in time.

How the state and covariance are propagated also greatly affects the computation complexity of a
filter. For example:

• A linear Kalman filter uses a linear equation to exactly propagate the covariance, which is usually
computationally efficient.

• An extended Kalman filter uses linear approximations, which require calculation of Jacobian
matrices and demand more computation resources.

• An unscented Kalman filter needs to sample the covariance distribution and therefore requires the
propagation of multiple sample points, which is costly for high-dimensional systems.

Correction

In the correction step, the filter uses measurements to correct the state estimate through
measurement feedback. Basically, the difference between the true measurement and the predicted
measurement is added to the state estimate after it is multiplied by a feedback gain matrix. For
example, in an extended Kalman filter, the correction for the state estimate is given by:

xk + 1 k + 1 = xk + 1 k + Kk(yk + 1− h(xk + 1 k))
As mentioned, xk+1|k is the state estimate before (priori) correction and xk+1|k+1 is the state estimate
after (posteriori) correction. Kk is the Kalman gain governed by an optimal criterion, yk is the true
measurement, and h(xk+1|k) is the predicted measurement.

In the correction step, the filter also corrects the estimate error covariance. The basic idea is to
correct the probabilistic distribution of x using the distribution information of yk+1. This is called the
posterior probability density of x given y. In a filter, the prediction and correction steps are processed
recursively. The flowchart shows the general algorithms for Kalman filters.

4 Multi-Object Tracking

4-12

Estimation Filters in Sensor Fusion and Tracking Toolbox
Sensor Fusion and Tracking Toolbox offers multiple estimation filters you can use to estimate and
track the state of a dynamic system.

Kalman Filter

The classical Kalman filter (trackingKF) is the optimal filter for linear systems with Gaussian
process and measurement noise. A linear estimation system can be given as:

xk + 1 = Akxk + wk
yk = Hkxk + vk

Both the process and measurement noise are assumed to be Gaussian, that is:

 Introduction to Estimation Filters

4-13

wk N(0, Qk)
vk N(0, Rk)

Therefore, the covariance matrix can be directly propagated between measurement steps using a
linear algebraic equation as:

Pk + 1 k = AkPk kAk
T + Qk

The correction equations for the measurement update are:

xk + 1 k + 1 = xk + 1 k + Kk(yk− Hkxk + 1 k)
Pk + 1 k + 1 = (I − KkHk)Pk + 1 k

To calculate the Kalman gain matrix (Kk) in each update, the filter needs to calculate the inverse of a
matrix:

Kk = Pk k− 1Hk
T HkPk k− 1Hk

T + Rk
−1

Since the dimension of the inverted matrix is equal to that of the estimated state, this calculation
requires some computation efforts for a high dimensional system. For more details, see “Linear
Kalman Filters” on page 4-24.

4 Multi-Object Tracking

4-14

Alpha-Beta Filter

The alpha-beta filter (trackingABF) is a suboptimal filter applied to linear systems. The filter can be
regarded as a simplified Kalman filter. In a Kalman filter, the Kalman gain and covariance matrices
are calculated dynamically and updated in each step. However, in an alpha-beta filter, these matrices
are constant. This treatment sacrifices the optimality of a Kalman filter but improves the computation
efficiency. For this reason, an alpha-beta filter might be preferred when the computation resources
are limited.

Extended Kalman Filter

The most popular extended Kalman filter (trackingEKF) is modified from the classical Kalman filter
to adapt to the nonlinear models. It works by linearizing the nonlinear system about the state
estimate and neglecting the second and higher order nonlinear terms. Its formulations are basically
the same as those of a linear Kalman filter except that the Ak and Hk matrices in the Kalman filter are
replaced by the Jacobian matrices of f(xk) and h(xk):

Ak =
∂ f (xk)
∂xk xk k− 1

Hk =
∂h(xk)
∂xk xk k− 1

If the true dynamics of the estimation system are close to the linearized dynamics, then using this
linear approximation does not yield significant errors for a short period of time. For this reason, an
EKF can produce relatively accurate state estimates for a mildly nonlinear estimation system with
short update intervals. However, since an EKF neglects higher order terms, it can diverge for highly
nonlinear systems (quadrotors, for example), especially with large update intervals.

Compared to a KF, an EKF needs to derive the Jacobian matrices, which requires the system
dynamics to be differentiable, and to calculate the Jacobian matrices to linearize the system, which
demands more computation assets.

Note that for estimation systems with state expressed in spherical coordinates, you can use
trackingMSCEKF.

 Introduction to Estimation Filters

4-15

Unscented Kalman Filter

The unscented Kalman filter (trackingUKF) uses an unscented transformation (UT) to approximately
propagate the covariance distribution for a nonlinear model. The UT approach samples the
covariance Gaussian distribution at the current time, propagates the sample points (called sigma
points) using the nonlinear model, and approximates the resulting covariance distribution assumed to
be Gaussian by evaluating these propagated sigma points. The figure illustrates the difference
between the actual propagation, the linearized propagation, and the UT propagation of the
uncertainty covariance.

Compared to the linearization approach taken by an EKF, the UT approach results in more accurate
propagation of covariance and leads to more accurate state estimation, especially for highly nonlinear
systems. UKF does not require the derivation and calculation of Jacobian matrices. However, UKF
requires the propagation of 2n+1 sigma points through the nonlinear model, where n is the
dimension of the estimated state. This can be computationally expensive for high dimensional
systems.

Cubature Kalman Filter

The cubature Kalman filter (trackingCKF) takes a slightly different approach than UKF to generate
2n sample points used to propagate the covariance distribution, where n is the dimension of the
estimated state. This alternate sample point set often results in better statistical stability and avoids
divergence which might occur in UKF, especially when running in a single-precision platform. Note
that a CKF is essentially equivalent to a UKF when the UKF parameters are set to α = 1, β = 0, and κ
= 0. See trackingUKF for the definition of these parameters.

Gaussian-Sum Filter

The Gaussian-Sum filter (trackingGSF) uses the weighted sum of multiple Gaussian distributions to
approximate the distribution of the estimated state. The estimated state is given by a weighted sum of
Gaussian states:

4 Multi-Object Tracking

4-16

xk = ∑
i = 1

N
ck

i xk
i

where N is the number of Gaussian states maintained in the filter, and ck
i is the weight for the

corresponding Gaussian state, which is modified in each update based on the measurements. The
multiple Gaussian states follow the same dynamic model as:

xk + 1
i = f (xk

i , wk
i), for i = 1, 2, …, N .

The filter is effective in estimating the states of an incompletely observable estimation system. For
example, the filter can use multiple angle-parametrized extended Kalman filters to estimate the
system state when only range measurements are available. See “Tracking with Range-Only
Measurements” on page 6-268 for an example.

Interactive Multiple Model Filter

The interactive multiple model filter (trackingIMM) uses multiple Gaussian filters to track the
position of a target. In highly maneuverable systems, the system dynamics can switch between
multiple models (constant velocity, constant acceleration, and constant turn for example). Modelling
the motion of a target using only one motion model is difficult. A multiple model estimation system
can be described as:

 Introduction to Estimation Filters

4-17

xk + 1
i = f i(xk

i , wk
i)

yk
i = hi(xk

i , vk
i)

where i = 1, 2, …, M, and M is the total number of dynamic models. The IMM filter resolves the
target motion uncertainty by using multiple models for a maneuvering target. The filter processes all
the models simultaneously and represents the overall estimate as the weighted sum of the estimates
from these models, where the weights are the probability of each model. See “Tracking Maneuvering
Targets” on page 6-192 for an example.

Particle Filter

The particle filter (trackingPF) is different from the Kalman family of filters (EKF and UKF, for
example) as it does not rely on the Gaussian distribution assumption, which corresponds to a
parametric description of uncertainties using mean and variance. Instead, the particle filter creates
multiple simulations of weighted samples (particles) of a system's operation through time, and then
analyzes these particles as a proxy for the unknown true distribution. A brief introduction of the
particle filter algorithm is shown in the figure.

4 Multi-Object Tracking

4-18

The motivation behind this approach is a law-of-large-numbers argument — as the number of
particles gets large, their empirical distribution gets close to the true distribution. The main
advantage of a particle filter over various Kalman filters is that it can be applied to non-Gaussian
distributions. Also, the filter has no restriction on the system dynamics and can be used with highly
nonlinear system. Another benefit is the filter’s inherent ability to represent multiple hypotheses
about the current state. Since each particle represents a hypothesis of the state with a certain
associated likelihood, a particle filter is useful in cases where there exists ambiguity about the state.

Along with these appealing properties is the high computation complexity of a particle filter. For
example, a UKF requires propagating 13 sample points to estimate the 3-D position and velocity of an
object. However, a particle filter may require thousands of particles to obtain a reasonable estimate.
Also, the number of particles needed to achieve good estimation grows very quickly with the state
dimension and can lead to particle deprivation problems in high dimensional spaces. Therefore,
particle filters have been mostly applied to systems with a reasonably low number of dimensions (for
example robots).

How to Choose a Tracking Filter
The following table lists all the tracking filters available in Sensor Fusion and Tracking Toolbox and
how to choose them given constraints on system nonlinearity, state distribution, and computational
complexity.

Filter Name Supports
Nonlinear
Models

Gaussian State Computational
Complexity

Comments

Alpha-Beta Low Suboptimal filter.
Kalman ✓ Medium Low Optimal for linear

systems.
Extended Kalman ✓ ✓ Medium Uses linearized

models to
propagate
uncertainty
covariance.

Unscented Kalman ✓ ✓ Medium High Samples the
uncertainty
covariance to
propagate the
sample points. May
become
numerically
unstable in a
single-precision
platform.

 Introduction to Estimation Filters

4-19

Cubature Kalman ✓ ✓ Medium High Samples the
uncertainty
covariance to
propagate the
sample points.
Numerically
stable.

Gaussian-Sum ✓ ✓

(Assumes a
weighted sum of
distributions)

High Good for partially
observable cases
(angle-only
tracking for
example).

Interacting
Multiple Models
(IMM)

✓

Multiple models

✓

(Assumes a
weighted sum of
distributions)

High Maneuvering
objects (which
accelerate or turn,
for example)

Particle ✓ Very High Samples the
uncertainty
distribution using
weighted particles.

References
[1] Wang, E.A., and R. Van Der Merwe. "The Unscented Kalman Filter for Nonlinear Estimation."

IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control
Symposium. No. 00EX373, 2000, pp. 153–158.

[2] Fang, H., N. Tian, Y. Wang, M. Zhou, and M.A. Haile. "Nonlinear Bayesian Estimation: From
Kalman Filtering to a Broader Horizon." IEEE/CAA Journal of Automatica Sinica. Vol. 5,
Number 2, 2018, pp. 401–417.

[3] Arasaratnam, I., and S. Haykin. "Cubature Kalman Filters." IEEE Transactions on automatic
control. Vol. 54, Number 6, 2009, pp. 1254–1269.

[4] Konatowski, S., P. Kaniewski, and J. Matuszewski. "Comparison of Estimation Accuracy of EKF,
UKF and PF Filters." Annual of Navigation. Vol. 23, Number 1, 2016, pp. 69–87.

[5] Darko, J. "Object Tracking: Particle Filter with Ease." https://www.codeproject.com/Articles/
865934/Object-Tracking-Particle-Filter-with-Ease.

4 Multi-Object Tracking

4-20

Introduction to Out-of-Sequence Measurement Handling
In this section...
“Introduction” on page 4-21
“Report an Error for OOSM” on page 4-21
“Neglect OOSM” on page 4-22
“Process OOSM Using Retrodiction” on page 4-22

Introduction
In a multi-sensor tracking system, time lag can result in the time at which a sensor generates a
measurement differing from the time at which the tracker or filter receives the measurement for
processing. If, before receiving a measurement, the filter or tracker is updated by another
measurement with a later timestamp, the delayed measurement is known as a out-of-sequence
measurement (OOSM). For example, assume a measurement is taken at time β, but is not available
until time step k, where β < k, then the measurement taken at time β is an OOSM at the processing
time k.

Regular sequential filters and object trackers do not have the ability to process OOSMs correctly,
because they only maintain the current state estimates and covariances. At the filter level, neglecting
OOSMs can increase the state estimate error covariances and thus increase the uncertainty of the
state estimate. On the other hand, directly applying an OOSM without considering the measurement
time can destabilize the state estimates. At the tracker level, incorrect or insufficient use of OOSMs
can additionally result in false associations and false tracks, while valuable information, such as
object classification, can be missed entirely.

Sensor Fusion and Tracking Toolbox provides these options to handle OOSMs.

Report an Error for OOSM
In Sensor Fusion and Tracking Toolbox, as the default behavior, these multi-object trackers and
tracker blocks report an error when encountering an OOSM:

• trackerGNN
• trackerJPDA
• trackerTOMHT
• Global Nearest Neighbor Multi Object Tracker

 Introduction to Out-of-Sequence Measurement Handling

4-21

• Joint Probabilistic Data Association Multi Object Tracker
• Track-Oriented Multi-Hypothesis Tracker

Reporting an error for an OOSM stops the execution of a tracker. Use this option when you do not
expect OOSMs, and consider them to be errors in your tracking system.

Neglect OOSM
You can specify for the tracker to neglect OOSMs by specifying the OOSMHandling property of these
multi-object trackers to 'Neglect':

• trackerGNN
• trackerJPDA
• trackerTOMHT

With this setting, the tracker neglects any OOSM it encounters and continues to run. Similarly, you
can set the Out-of-sequence measurement handling parameter in these tracker blocks to
Neglect:

• Global Nearest Neighbor Multi Object Tracker
• Joint Probabilistic Data Association Multi Object Tracker
• Track-Oriented Multi-Hypothesis Tracker

In most cases, neglecting an OOSM is a good choice when the tracking system is updated with high
frequency, such that the loss of a measurement is not very costly. Also, this option does not require
extra processing operations and storage. For tracking systems with low update rates, however, this
option can affect the state estimate quality, and may result in incorrect detection-track association.

Process OOSM Using Retrodiction
Retrodiction is an effective and efficient approach for handling OOSMs. For details on the algorithm,
see “Retrodiction and Retro-Correction” and [1]. This diagram illustrates the retrodiction and retro-
correction steps.

Assume that, at time k, the filter obtains the posteriori state estimate x(k|k) and state estimate error
covariance P(k|k), based on all the measurements that have arrived at the filter up to that time. Also,
assume an OOSM taken at time β, where β < k, is now available at time k. To process the OOSM

4 Multi-Object Tracking

4-22

using retrodiction, the filter first retrodicts (predicts backward in time) the state and state covariance
to obtain the retrodicted state x(β|k) and state covariance P(β|k). Then, using the OOSM z(β) and its
covariance R(β), the filter corrects the state estimate and obtains the retro-corrected state x(k|β) and
state covariance P(k|β) for the current time step k, including the OOSM. Note that, to successfully
apply the algorithm, the filter needs to store the state estimate covariance matrices from timestamps
prior to the OOSM time β to time k.

Retrodiction in Kalman Filters

Sensor Fusion and Tracking Toolbox currently provides retrodiction capability for the trackingKF
and trackingEKF filter objects. To enable retrodiction in a filter, specify its MaxNumOOSMSteps
property as a positive integer, which represents the number of previous state covariances preserved
in the filter. Then, use the retrodict object function to retrodict the state to the OOSM time, and
use the retroCorrect object function to update the current state using the OOSM.

Retrodiction in Multi-Object Trackers

Sensor Fusion and Tracking Toolbox currently provides retrodiction capability for only the
trackerGNN System object™ and the Global Nearest Neighbor Multi Object Tracker block. To enable
retrodiction in trackerGNN, specify its OOSMHandling property as 'Retrodiction', and specify
the MaxNumOOSMSteps property as a positive integer. Similarly, you can enable retrodiction in the
Global Nearest Neighbor Multi Object Tracker block via the Out-of-sequence measurements
handling and the Maximum number of OOSM steps parameters. In the tracker object or the
tracker block, you must specify a filter initialization function that returns a trackingKF or
trackingEKF object.

The tracker follows these steps to handle the OOSM:

• If the OOSM timestamp is beyond the track history maintained by the tracker, the tracker neglects
the OOSM.

• If the OOSM timestamp is within the track history maintained by the tracker, the tracker first
retrodicts all the existing tracks to the time of the OOSM. Then, the tracker applies the global
nearest neighbor algorithm to try to associate the OOSM to any of the retrodicted tracks.

• If the tracker successfully associates the OOSM to a retrodicted track, the tracker updates the
retrodicted track using the OOSM by applying the retro-correction algorithm to obtain a
current, corrected track.

• If the tracker cannot associate the OOSM to any retrodicted track, the tracker creates a new
track based on the OOSM and predicts the track to the current time.

See Also
trackingKF | trackingEKF | retrodict | retroCorrect | trackerGNN | trackerJPDA |
trackerTOMHT | Global Nearest Neighbor Multi Object Tracker | Joint Probabilistic Data Association
Multi Object Tracker | Track-Oriented Multi-Hypothesis Tracker

References
[1] Bar-Shalom, Y., Huimin Chen, and M. Mallick. “One-Step Solution for the Multistep out-of-

Sequence-Measurement Problem in Tracking.” IEEE Transactions on Aerospace and
Electronic Systems 40, no. 1 (January 2004): 27–37. https://doi.org/10.1109/
TAES.2004.1292140.

 Introduction to Out-of-Sequence Measurement Handling

4-23

Linear Kalman Filters
In this section...
“State Equations” on page 4-24
“Measurement Models” on page 4-25
“Linear Kalman Filter Equations” on page 4-26
“Filter Loop” on page 4-26
“Constant Velocity Model” on page 4-27
“Constant Acceleration Model” on page 4-28

When you use a Kalman filter to track objects, you use a sequence of detections or measurements to
construct a model of the object motion. Object motion is defined by the evolution of the state of the
object. The Kalman filter is an optimal, recursive algorithm for estimating the track of an object. The
filter is recursive because it updates the current state using the previous state, using measurements
that may have been made in the interval. A Kalman filter incorporates these new measurements to
keep the state estimate as accurate as possible. The filter is optimal because it minimizes the mean-
square error of the state. You can use the filter to predict future states or estimate the current state
or past state.

State Equations
For most types of objects tracked in the toolbox, the state vector consists of one-, two- or three-
dimensional positions and velocities.

Start with Newton equations for an object moving in the x-direction at constant acceleration and
convert these equations to space-state form.

mẍ = f

ẍ = f
m = a

If you define the state as

x1 = x
x2 = ẋ,

you can write Newton’s law in state-space form.

d
dt

x1
x2

=
0 1
0 0

x1
x2

+
0
1

a

You use a linear dynamic model when you have confidence that the object follows this type of motion.
Sometimes the model includes process noise to reflect uncertainty in the motion model. In this case,
Newton’s equations have an additional term.

d
dt

x1
x2

=
0 1
0 0

x1
x2

+
0
1

a +
0
1

vk

vk is the unknown noise perturbations of the acceleration. Only the statistics of the noise are known.
It is assumed to be zero-mean Gaussian white noise.

4 Multi-Object Tracking

4-24

You can extend this type of equation to more than one dimension. In two dimensions, the equation has
the form

d
dt

x1
x2
y1
y2

=

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

x1
x2
y1
y2

+

0
ax
0
ay

+

0
vx
0
vy

The 4-by-4 matrix on the right side is the state transition model matrix. For independent x- and y-
motions, this matrix is block diagonal.

When you transition to discrete time, you integrate the equations of motion over the length of the
time interval. In discrete form, for a sample interval of T, the state-representation becomes

x1, k + 1
x2, k + 1

=
1 T
0 1

x1, k
x2, k

+
0
T

a +
0
1

v

The quantity xk+1 is the state at discrete time k+1, and xk is the state at the earlier discrete time, k. If
you include noise, the equation becomes more complicated, because the integration of noise is not
straightforward.

The state equation can be generalized to

xk + 1 = Fkxk + Gkuk + vk

Fk is the state transition matrix and Gk is the control matrix. The control matrix takes into account
any known forces acting on the object. Both of these matrices are given. The last term represents
noise-like random perturbations of the dynamic model. The noise is assumed to be zero-mean
Gaussian white noise.

Continuous-time systems with input noise are described by linear stochastic differential equations.
Discrete-time systems with input noise are described by linear stochastic differential equations. A
state-space representation is a mathematical model of a physical system where the inputs, outputs,
and state variables are related by first-order coupled equations.

Measurement Models
Measurements are what you observe about your system. Measurements depend on the state vector
but are not always the same as the state vector. For instance, in a radar system, the measurements
can be spherical coordinates such as range, azimuth, and elevation, while the state vector is the
Cartesian position and velocity. For the linear Kalman filter, the measurements are always linear
functions of the state vector, ruling out spherical coordinates. To use spherical coordinates, use the
extended Kalman filter.

The measurement model assumes that the actual measurement at any time is related to the current
state by

zk = Hkxk + wk

wk represents measurement noise at the current time step. The measurement noise is also zero-mean
white Gaussian noise with covariance matrix Q described by Qk = E[nknk

T].

 Linear Kalman Filters

4-25

Linear Kalman Filter Equations
Without noise, the dynamic equations are

xk + 1 = Fkxk + Gkuk .

Likewise, the measurement model has no measurement noise contribution. At each instance, the
process and measurement noises are not known. Only the noise statistics are known. The

zk = Hkxk

You can put these equations into a recursive loop to estimate how the state evolves and also how the
uncertainties in the state components evolve.

Filter Loop
Start with a best estimate of the state, x0/0, and the state covariance, P0/0. The filter performs these
steps in a continual loop.

1 Propagate the state to the next step using the motion equations.

xk + 1 k = Fkxk k + Gkuk .

Propagate the covariance matrix as well.

Pk + 1 k = FkPk kFk
T + Qk .

The subscript notation k+1|k indicates that the quantity is the optimum estimate at the k+1 step
propagated from step k. This estimate is often called the a priori estimate.

Then predict the measurement at the updated time.

zk + 1 k = Hk + 1xk + 1 k
2 Use the difference between the actual measurement and predicted measurement to correct the

state at the updated time. The correction requires computing the Kalman gain. To do this, first
compute the measurement prediction covariance (innovation)

Sk + 1 = Hk + 1Pk + 1 kHk + 1
T + Rk + 1

Then the Kalman gain is

Kk + 1 = Pk + 1 kHk + 1
T Sk + 1

−1

and is derived from using an optimality condition.
3 Correct the predicted estimate with the measurement. Assume that the estimate is a linear

combination of the predicted state and the measurement. The estimate after correction uses the
subscript notation, k+1|k+1. is computed from

xk + 1 k + 1 = xk + 1 k + Kk + 1(zk + 1− zk + 1 k)

where Kk+1 is the Kalman gain. The corrected state is often called the a posteriori estimate of the
state because it is derived after the measurement is included.

Correct the state covariance matrix

4 Multi-Object Tracking

4-26

Pk + 1 k + 1 = Pk + 1 k− Kk + 1Sk + 1K′k + 1

Finally, you can compute a measurement based upon the corrected state. This is not a correction
to the measurement but is a best estimate of what the measurement would be based upon the
best estimate of the state. Comparing this to the actual measurement gives you an indication of
the performance of the filter.

This figure summarizes the Kalman loop operations.

Constant Velocity Model
The linear Kalman filter contains a built-in linear constant-velocity motion model. Alternatively, you
can specify the transition matrix for linear motion. The state update at the next time step is a linear
function of the state at the present time. In this filter, the measurements are also linear functions of
the state described by a measurement matrix. For an object moving in 3-D space, the state is
described by position and velocity in the x-, y-, and z-coordinates. The state transition model for the
constant-velocity motion is

xk + 1
vx, k + 1
yk + 1

vy, k + 1
zk + 1

vz, k + 1

=

1 T 0 0 0 0
0 1 0 0 0 0
0 0 1 T 0 0
0 0 0 1 0 0
0 0 0 0 1 T
0 0 0 0 0 1

xk
vx, k
yk

vy, k
zk

vz, k

 Linear Kalman Filters

4-27

The measurement model is a linear function of the state vector. The simplest case is one where the
measurements are the position components of the state.

mx, k
my, k
mz, k

=
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

xk
vx, k
yk

vy, k
zk

vz, k

Constant Acceleration Model
The linear Kalman filter contains a built-in linear constant-acceleration motion model. Alternatively,
you can specify the transition matrix for constant-acceleration linear motion. The transition model for
linear acceleration is

xk + 1
vx, k + 1
ax, k + 1
yk + 1

vy, k + 1
ay, k + 1
zk + 1

vz, k + 1
az, k + 1

=

1 T 1
2T2 0 0 0 0 0 0

0 1 T 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 0 0 1 T 1
2T2 0 0 0

0 0 0 0 1 T 0 0 0
0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 T 1
2T2

0 0 0 0 0 0 0 1 T
0 0 0 0 0 0 0 0 1

xk
vx, k
ax, k
yk

vy, k
ay, k
zk

vz, k
az, k

The simplest case is one where the measurements are the position components of the state.

mx, k
my, k
mz, k

=
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

xk
vx, k
ax, k
yk

vy, k
ay, k
zk

vz, k
ay, k

See Also
Objects
trackingKF

4 Multi-Object Tracking

4-28

Extended Kalman Filters
In this section...
“State Update Model” on page 4-29
“Measurement Model” on page 4-29
“Extended Kalman Filter Loop” on page 4-30
“Predefined Extended Kalman Filter Functions” on page 4-31

Use an extended Kalman filter when object motion follows a nonlinear state equation or when the
measurements are nonlinear functions of the state. A simple example is when the state or
measurements of the object are calculated in spherical coordinates, such as azimuth, elevation, and
range.

State Update Model
The extended Kalman filter formulation linearizes the state equations. The updated state and
covariance matrix remain linear functions of the previous state and covariance matrix. However, the
state transition matrix in the linear Kalman filter is replaced by the Jacobian of the state equations.
The Jacobian matrix is not constant but can depend on the state itself and time. To use the extended
Kalman filter, you must specify both a state transition function and the Jacobian of the state transition
function.

Assume there is a closed-form expression for the predicted state as a function of the previous state,
controls, noise, and time.

xk + 1 = f (xk, uk, wk, t)

The Jacobian of the predicted state with respect to the previous state is

F(x) = ∂ f
∂x .

The Jacobian of the predicted state with respect to the noise is

F(w) = ∂ f
∂wi

.

These functions take simpler forms when the noise enters linearly into the state update equation:

xk + 1 = f (xk, uk, t) + wk

In this case, F(w) = 1M.

Measurement Model
In the extended Kalman filter, the measurement can be a nonlinear function of the state and the
measurement noise.

zk = h(xk, vk, t)

The Jacobian of the measurement with respect to the state is

 Extended Kalman Filters

4-29

H(x) = ∂h
∂x .

The Jacobian of the measurement with respect to the measurement noise is

H(v) = ∂h
∂v .

These functions take simpler forms when the noise enters linearly into the measurement equation:

zk = h(xk, t) + vk

In this case, H(v) = 1N.

Extended Kalman Filter Loop
This extended Kalman filter loop is almost identical to the linear Kalman filter loop except that:

• The exact nonlinear state update and measurement functions are used whenever possible and the
state transition matrix is replaced by the state Jacobian

• The measurement matrices are replaced by the appropriate Jacobians.

4 Multi-Object Tracking

4-30

Predefined Extended Kalman Filter Functions
The toolbox provides predefined state update and measurement functions to use in the extended
Kalman filter.

Motion Model Function Name Function Purpose
Constant velocity constvel Constant-velocity state update

model
constveljac Constant-velocity state update

Jacobian
cvmeas Constant-velocity measurement

model
cvmeasjac Constant-velocity measurement

Jacobian
Constant acceleration constacc Constant-acceleration state

update model
constaccjac Constant-acceleration state

update Jacobian
cameas Constant-acceleration

measurement model
cameasjac Constant-acceleration

measurement Jacobian
Constant turn rate constturn Constant turn-rate state update

model
constturnjac Constant turn-rate state update

Jacobian
ctmeas Constant turn-rate

measurement model
ctmeasjac Constant-turnrate measurement

Jacobian

See Also
Objects
trackingEKF

 Extended Kalman Filters

4-31

Introduction to Multiple Target Tracking

Background
Tracking is essential for the guidance, navigation, and control of autonomous systems. A tracking
system estimates targets (number of targets and their states) and evaluates the situational
environment in an area of interest by taking detections (kinematic parameters and attributes) and
tracking these targets with time. The simplest tracking system is a single target tracking (STT)
system in a clutterless environment, which assumes one target only in an area of interest. An STT
does not require data assignment or association, because the detection of the standalone target can
be directly fed to an estimator or filter used to estimate the state of the target.

Modern tracking systems usually involve multiple target tracking (MTT) systems, in which one or
more sensors generate multiple detections from multiple targets, and one or more tracks are used to
estimate the states of these targets. An MTT must assign detections to tracks before the detections
can be used to update the tracks. The MTT assignment problem is challenging because of several
factors:

• Target or detection distribution — If targets are sparsely distributed, then associating a target to
its corresponding detection is relatively easy. However, if targets or detections are densely
distributed, the assignment becomes ambiguous because assigning a target to a detection or a
nearby detection rarely makes any differences on the cost.

• Probability of detection (Pd) of the sensor — Pd describes the probability that a target is detected
by the sensor if the target is within the field of view of the sensor. If the Pd of a sensor is small,
then the true target might not generate any detection during a sensor scan. As a result, the track
represented by the true target may steal detections from other tracks.

• Sensor resolution — Sensor resolution determines the sensor’s ability to distinguish between
detections from two targets. If the sensor resolution is low, then two targets in proximity might
only give rise to one detection. This violates the common assumption that each detection can only
be assigned to one track and results in unresolvable assignment conflicts between tracks.

• Clutter or false alarm rate of the sensor — False alarms introduce additional possible assignments
and therefore increase the complexity of data assignment.

• The number of targets and detections — The number of possible assignments increases
exponentially as the number of targets and detections increases. Therefore, obtaining an optimal
assignment requires more computations.

Elements of an MTT System

4 Multi-Object Tracking

4-32

The figure gives a structural representation of the functional elements of a simple recursive MTT
system [1]. In real world applications, the functions of these elements can overlap considerably.
However, this representation provides a convenient partitioning to introduce the typical functions in
an MTT system.

To interpret this diagram, assume a tracker has maintained confirmed or tentative tracks from the
previous scan. Now, the system considers whether to update tracks based on any new detections
received from sensors. To assign detections to the corresponding tracks:

1 The internal filter (such as a Kalman filter) predicts the confirmed or tentative tracks from the
previous step to the current step.

2 The tracker uses the predicted estimate and covariance to form a validation gate around the
predicted track.

3 The detections falling within the gate of a track are considered as candidates for assignment to
the track.

4 An assignment algorithm (based on the specific tracker, such as GNN or TOMHT) determines the
track-to-detection association.

5 Based on the assignment, the tracker executes track maintenance, including initialization,
confirmation, and deletion:

• Unassigned observations can initiate new tentative tracks.
• A tentative track becomes confirmed if the quality of the track satisfies the confirmation

criteria.
• Low-quality tracks are deleted based on the deletion criteria.

6 The new track set (tentative and confirmed) is predicted to the next scan step to form validation
gates.

Detections

Detection is a collective term used to refer to all the observed or measured quantities included in a
report output (see objectDetection for example) from a sensor. In general, an observation may
contain measured kinematic quantities (such as range, line of sight, and range-rate) and measured
attributes (such as target type, identification number, and shape). A detection should also contain the
time at which measurements are obtained.

For point target tracking, detections received from a single sensor scan can contain at most one
observation from each target. This assumption greatly simplifies the assignment problem. One sensor
can generate zero detections for a target within its field of view, because the probability of detection,
Pd, of each sensor is usually less than 1. Also, each sensor can generate false alarm detections that do
not correspond to true targets.

High-resolution sensors may generate multiple detections per target, which requires partitioning the
detections into one representative detection before feeding to assignment-based trackers (such as
trackerGNN, trackerJPDA, and trackerTOMHT). See “Extended Object Tracking of Highway
Vehicles with Radar and Camera” on page 6-147 for more details.

Gating and Assignment

For details about gating and assignment, see “Introduction to Assignment Methods in Tracking
Systems” on page 4-37, which provides a comprehensive introduction of assignment methods. This
section only covers the basics of gating and assignment used in the three assignment-based trackers,
trackerGNN, trackerJPDA, and trackerTOMHT.

 Introduction to Multiple Target Tracking

4-33

Gating is a screening mechanism used to determine which detections are valid candidates to update
existing tracks. The purpose of gating is to reduce unnecessary computation in track-to-detection
assignment. A validation gate of a predicted track is formed using the predicted state and its
associated covariance, such that the detections with high probability of association fall within the
validation gate of a track. Only the detections within the gate of a track are considered for
assignment with the track.

After gating, the assignment function determines which track-to-detection assignments to make.
Three methods of assignment are used with three trackers in the toolbox:

• trackerGNN — Global nearest data association. Based on likelihood theory, the goal of the GNN
method is to minimize an overall distance function that considers all track-to-detection
assignments.

• trackerJPDA — Joint probability data association. The JPDA method applies a soft assignment,
such that detections within the validation gate of a track can all make weighted contributions to
the track based on their probability of association.

• trackerTOMHT — Track-oriented multiple hypothesis tracking. Unlike GNN and JPDA, MHT is a
deferred decision approach, which allows difficult data association situations to be postponed until
more information is received.

The decision of which tracker to use depends on the type of targets and computational resources
available:

• The GNN algorithm is the simplest to employ. It has low computational cost and can result in
adequate performance for tracking sparsely distributed targets.

• The JPDA algorithm, which requires more computational cost, is also applicable for widely spaced
targets. It usually performs better in a clutter environment than GNN.

• The TOMHT tracker, which requires heavily on computational resources, normally results in the
best performance among all the three trackers, especially for densely distributed targets.

For more details, see the “Tracking Closely Spaced Targets Under Ambiguity” on page 6-167 example
for a comparison of these three trackers.

Track Maintenance

Track maintenance refers to the function of track initiation, confirmation, and deletion.

Track Initiation. When a detection is not assigned to an existing track, a new track might need to be
created:

• The GNN approach starts new tentative tracks on observations that are not assigned to existing
tracks.

• The JPDA approach starts new tentative tracks on observations with probability of assignment
lower than a specified threshold.

• The MHT approach starts new tentative tracks on observations whose distances to existing tracks
are larger than a specified threshold. The tracker uses subsequent data to determine which of
these newly initiated tracks are valid.

Track Confirmation. Once a tentative track is formed, a confirmation logic identifies the status of the
track. Three track confirmation logics are used in the toolbox:

4 Multi-Object Tracking

4-34

• History Logic: A track is confirmed if the track has been assigned to a detection for at least M
updates during the last N updates. You can set the specific values for M and N. trackerGNN and
trackerJPDA use this logic.

• Track Score Logic: A track is confirmed if its score is higher than a specified threshold. A higher
track score means that the track is more likely to be valid. The score is the ratio of the probability
that the track is from a real target to the probability that the track is false. trackerGNN and
trackerTOMHT use this logic.

• Integrated Logic: A track is confirmed if its integrated probability of existence is higher than a
threshold. trackerJPDA uses this logic.

Track Deletion. A track is deleted if it is not updated within some reasonable time. The track deletion
criteria are similar to the track confirmation criteria:

• History Logic: A track is deleted if the track has not been assigned to a detection at least P times
during last R updates.

• Track Score Logic: A track is deleted if its score decreases from the maximum score by a specified
threshold.

• Integrated Logic: A track is deleted if its integrated probability of existence is lower than a
specified threshold.

For more details, see the “Introduction to Track Logic” on page 6-77 example.

Filtering

The main functions of a tracking filter are:

1 Predict tracks to the current time.
2 Calculate distances from the predicted tracks to detections and the associated likelihoods for

gating and assignment.
3 Correct the predicted tracks using assigned detections.

Sensor Fusion and Tracking Toolbox offers multiple tracking filters that can be used with the three
assignment-based trackers (trackerGNN, trackerJPDA, and trackerTOMHT). For a comprehensive
introduction of these filters, see “Introduction to Estimation Filters” on page 4-9.

Tracking Metrics
Sensor Fusion and Tracking Toolbox provides tools to analyze the tracking performance if the truths
are known:

• You can use trackAssignmentMetrics to evaluate the performance of track assignment and
maintenance. trackAssignmentMetrics provides indexes such as number of the track swaps,
number of divergence steps, and number of redundant assignments.

• You can use trackErrorMetrics to evaluate the accuracy of tracking. trackErrorMetrics
provides multiple root mean square (RMS) error values, which numerically illustrate the accuracy
performance of the tracker.

• You can use trackOSPAMetric to compute the optimal subpattern assignment metric.
trackErrorMetrics provides three scalar error components — localization error, labelling error,
and cardinality error to evaluate tracking performance.

 Introduction to Multiple Target Tracking

4-35

Non-Assignment-Based Trackers
trackerGNN, trackerJPDA, and trackerTOMHT are assignment-based trackers, meaning that the
track-to-detection assignment is required. The toolbox also offers a random finite set (RFS) based
tracker, trackerPHD. You can use its supporting features ggiwphd to track extended objects and
gmphd to track both extended objects and point targets.

See Also
trackerGNN | gmphd | trackerJPDA | trackerTOMHT | trackerPHD | ggiwphd |
objectDetection

References
[1] Blackman, S., and R. Popoli. Design and Analysis of Modern Tracking Systems. Artech House

Radar Library, Boston, 1999.

[2] Musicki, D., and R. Evans. "Joint Integrated Probabilistic Data Association: JIPDA." IEEE
transactions on Aerospace and Electronic Systems . Vol. 40, Number 3, 2004, pp. 1093 –1099.

[3] Werthmann, J. R.. "Step-by-Step Description of a Computationally Efficient Version of Multiple
Hypothesis Tracking." In International Society for Optics and Photonics, Vol. 1698, pp. 228 –
301, 1992.

4 Multi-Object Tracking

4-36

Introduction to Assignment Methods in Tracking Systems

Background
In a multiple target tracking (MTT) system, one or more sensors generate multiple detections from
multiple targets in a scan. To track these targets, one essential step is to assign these detections
correctly to the targets or tracks maintained in the tracker so that these detections can be used to
update these tracks. If the number of targets or detections is large, or there are conflicts between
different assignment hypotheses, assigning detections is challenging.

Depending on the dimension of the assignment, assignment problems can be categorized into:

• 2-D assignment problem – assigns n targets to m observations. For example, assign 5 tracks to 6
detections generated from one sensor at one time step.

• S-D assignment problem – assigns n targets to a set (m1, m2, m3, …) of observations. For example,
assign 5 tracks to 6 detections from one sensor, and 4 detections from another sensor at the same
time. This example is a typical 3-D assignment problem.

To illustrate the basic idea of an assignment problem, consider a simple 2-D assignment example. One
company tries to assign 3 jobs to 3 workers. Because of the different experience levels of the workers,
not all workers are able to complete each job with the same effectiveness. The cost (in hours) of each
worker to finish each job is given by the cost matrix shown in the table. An assignment rule is that
each worker can only take one job, and one job can only be taken by one worker. To guarantee
efficiency, the object of this assignment is to minimize the total cost.

Worker Job
1 2 3

1 41 72 39
2 22 29 49
3 27 39 60

Since the numbers of workers and jobs are both small in this example, all the possible assignments
can be obtained by enumeration, and the minimal cost solution is highlighted in the table with
assignment pairs (1, 3), (2, 2) and (3, 1). In practice, as the size of the assignment becomes larger,
the optimal solution is difficult to obtain for 2-D assignment. For an S-D assignment problem, the
optimal solution may not be obtainable in practice.

2-D Assignment in Multiple Target Tracking
In the 2-D MTT assignment problem, a tracker tries to assign multiple tracks to multiple detections.
Other than the dimensionality challenge mentioned above, a few other factors can significantly
change the complexity of the assignment:

• Target or detection distribution — If targets are sparsely distributed, associating a target to its
corresponding detection is relatively easy. However, if targets or detections are densely
distributed, assignments become ambiguous because assigning a target to a detection or another
nearby detection rarely makes any differences on the cost.

• Probability of detection (Pd) of the sensor — Pd describes the probability that a target is detected
by the sensor if the target is within the field of view of the sensor. If the Pd of a sensor is small,

 Introduction to Assignment Methods in Tracking Systems

4-37

then the true target may not give rise to any detection during a sensor scan. As a result, the track
represented by the true target may steal detections from other tracks.

• Sensor resolution — Sensor resolution determines the sensor’s ability to distinguish the detections
from two targets. If the sensor resolution is low, then two targets in proximity may only give rise
to one detection. This violates the common assumption that each detection can only be assigned to
one track and results in unresolvable assignment conflicts between tracks.

• Clutter or false alarm rate of the sensor — False alarms introduce additional possible assignments
and therefore increase the complexity of data assignment.

The complexity of the assignment task can determine which assignment methods to apply. In Sensor
Fusion and Tracking Toolbox toolbox, three 2-D assignment approaches are employed corresponding
to three different trackers:

• trackerGNN — adopts a global nearest data assignment approach
• trackerJPDA — adopts a joint probability data association approach
• trackerTOMHT — adopts a tracker-oriented multiple hypothesis tracking approach

Note that each tracker processes the data from sensors sequentially, meaning that each tracker only
deals with the assignment problem with the detections of one sensor at a time. Even with this
treatment, there may still be too many assignment pairs. To reduce the number of track and detection
pairs considered for assignment, the gating technique is frequently used.

Gating

Gating is a screening mechanism to determine which observations are valid candidates to update
existing tracks and eliminate unlikely detection-to-track pairs using the distribution information of
the predicted tracks. To establish the validation gate for a track at the current scan, the estimated
track for the current step is predicted from the previous step.

For example, a tracker confirms a track at time tk and receives several detections at time tk+1. To form
a validation gate at time tk+1, the tracker first needs to obtain the predicted measurement as:

y k + 1 = h(x k + 1 k)
where is the track estimate predicted from time tk and is the measurement model
that outputs the expected measurement given the track state. The observation residual vector is

y = yk + 1− y k + 1
where yk+1 is the actual measurement. To establish the boundary of the gate, the detection residual
covariance S is used to form an ellipsoidal validation gate. The ellipsoidal gate that establishes a
spatial ellipsoidal region in the measurement space is defined in Mahalanobis distance as:

4 Multi-Object Tracking

4-38

d2(yk + 1) = yTS−1y ≤ G
where G is the gating threshold which you can specify based on the assignment requirement.
Increasing the threshold can incorporate more detections into the gate.

After the assignment gate is established for each track, the gating status of each detection yi (i = 1,
…,n) can be determined by comparing its Mahalanobis distance d2 (yi) with the gating threshold G. If
d2 (yi) < G, then detection yi is inside the gate of the track and will be considered for association.
Otherwise, the possibility of the detection associated with the track is removed. In Figure 1, T1
represents a predicted track estimate, and O1 – O6 are six detections. Based on the gating result, O1,
O2, and O3 are within the validation gate in the figure.

Global Nearest Neighbor (GNN) Method

The GNN method is a single hypothesis assignment method. For each new data set, the goal is to
assign the global nearest observations to existing tracks and to create new track hypotheses for
unassigned detections.

The GNN assignment problem can be easily solved if there are no conflicts of association between
tracks. The tracker only needs to assign a track to its nearest neighbor. However, conflict situations
(see Figure 2) occur when there is more than one observation within a track’s validation gate or an
observation is in the gates of more than one track. To resolve these conflicts, the tracker must
evaluate a cost matrix.

The elements of a cost matrix for the GNN method includes the distance from tracks to detections
and other factors you might want to consider. For example, one approach is to define a generalized
statistical distance between observation j to track i as:

Ci j = di j + ln(Si j)
where dij is the Mahalanobis distance and ln(|Sij|), the logarithm of the determinant of the residual
covariance matrix, is used to penalize tracks with greater prediction uncertainty.

For the assignment problem given in Figure 2, the following table shows a hypothetical cost matrix.
The nonallowed assignments, which failed the gating test, are denoted by X. (In practice, the costs of
nonallowed assignments can be denoted by large values, such as 1000.)

Tracks Observations
O1 O2 O3 O4

T1 9 6 X 6
T2 X 3 10 X

 Introduction to Assignment Methods in Tracking Systems

4-39

T2 8 4 X X

For this problem, the highlighted optimal solution can be found by enumeration. Detection O3 is
unassigned, so the tracker will use it to create a new tentative track. For more complicated GNN
assignment problems, more accurate formulations and more efficient algorithms to obtain the optimal
or suboptimal solution are required.

A general 2-D assignment problem can be formed as following. Given the cost matrix element Cij, find
an assignment Z = {zij} that minimizes

J = ∑
i = 0

n
∑

j = 0

m
Ci jzi j

subject to two constraints:

4 Multi-Object Tracking

4-40

∑
i = 0

m
zi j = 1, ∀ j

∑
j = 0

n
zi j = 1, ∀i

If track i is assigned to observation j, then zij = 1. Otherwise, zij = 0. zi0 = 1 represents the hypothesis
that track i is not assigned to any detection. Similarly, z0j = 1 represents the hypothesis that
observation j is not assigned to any track. The first constraint means each detection can be assigned
to no more than one track. The second constraint means each track can be assigned to no more than
one detection.

Sensor Fusion and Tracking Toolbox provides multiple functions to solve 2-D GNN assignment
problems:

• assignmunkres – Uses the Munkres algorithm, which guarantees an optimal solution but may
require more calculation operations.

• assignauction – Uses the auction algorithm, which requires fewer operations but can possibly
converge on an optimal or suboptimal solution.

 Introduction to Assignment Methods in Tracking Systems

4-41

• assignjv – Uses the Joker-Volgenant algorithm, which also converges on an optimal or
suboptimal solution but usually with a faster converging speed.

In trackerGNN, you can select the assignment algorithm by specifying the Assignment property.

K Best Solutions to the 2-D Assignment Problem

Because of the uncertainty nature of assignment problems, only obtaining a solution (optimal or
suboptimal) may not be sufficient. To account for multiple hypotheses about the assignment between
tracks and detections, multiple suboptimal solutions are required. These suboptimal solutions are
called K best solutions to the assignment problem.

The K best solutions are usually obtained by varying the solution obtained by any of the previously
mentioned assignment functions. Then, at the next step, the K best solution algorithm removes one
track-to-detection pair in the original solution and finds the next best solution. For example, for this
cost matrix:

4 Multi-Object Tracking

4-42

10 5 8 9
7 × 20 ×
×
×

21
15

×
17

×
×

× × 16 22
each row represents the cost associated with a track, and each column represents the cost associated
with a detection. As highlighted, the optimal solution is (7,15,16, 9) with a cost of 47. In the next step,
remove the first pair (corresponding to 7), and the next best solution is (10,15, 20, 22) with a cost of
67. After that, remove the second pair (corresponding to 15), and the next best solution is (7, 5,16, 9)
with a cost of 51. After a few steps, the five best solutions are:

Solution Cost
(7,15,16, 9) 47

 Introduction to Assignment Methods in Tracking Systems

4-43

(7,5,17, 22) 51
(7,15, 8, 22) 52
(7, 21,16, 9) 53
(7, 21,17, 9) 53

See the “Find Five Best Solutions Using Assignkbest” example, which uses the assignkbest
function to find the K best solutions.

Joint Probability Data Association (JPDA) Method

While the GNN method makes a rigid assignment of a detection to a track, the JPDA method applies a
soft assignment so that detections within the validation gate of a track can all make weighted
contributions to the track based on their probability of association.

For example, for the gating results shown in Figure 1, a JPDA tracker calculates the possibility of
association between track T1 and observations O1, O2, and O3. Assume the association probability of

these three observations are p11, p12, and p13, and their residuals relative to track T1 are , , and

, respectively. Then the weighted sum of the residuals associated with track T1 is:

y1 = ∑
j = 1

3
p1 jy1 j

In the tracker, the weighted residual is used to update track T1 in the correction step of the tracking
filter. In the filter, the probability of unassignment, p10, is also required to update track T1. For more
details, see “JPDA Correction Algorithm for Discrete Extended Kalman Filter”.

The JPDA method requires one more step when there are conflicts between assignments in different
tracks. For example, in the following figure, track T2 conflicts with T1 on the assignment of
observation O3. Therefore, to calculate the association probability p13, the joint probability that T2 is
not assigned to O3 (that is T2 is assigned to O6 or unassigned) must be accounted for.

Track-Oriented Multiple Hypothesis Tracking (TOMHT) Method

Unlike the JPDA method, which combines all detections within the validation gate using a weighted
sum, the TOMHT method generates multiple hypotheses or branches of the tracks based on the
detections within the gate and propagates high-likelihood branches between scan steps. After
propagation, these hypotheses can be tested and pruned based on the new set of detections.

4 Multi-Object Tracking

4-44

For example, for the gating scenario shown in Figure 1, a TOMHT tracker considers the following
four hypotheses:

• Assign no detection to T1 resulting in hypothesis T10

• Assign O1 to T1 resulting in hypothesis T11

• Assign O2 to T1 resulting in hypothesis T12

• Assign O3 to T1 resulting in hypothesis T13

Given the assignment threshold, the tracker will calculate the possibility of each hypothesis and
discard hypotheses with probability lower than the threshold. Hypothetically, if only p10 and p11 are
larger than the threshold, then only T10 and T11 are propagated to the next step for detection update.

S-D Assignment in Multiple Target Tracking
In an S-D assignment problem, the dimension of assignment S is larger than 2. Note that all three
trackers (trackerGNN, trackerJPDA, and trackerTOMHT) process detections from each sensor
sequentially, which results in a 2-D assignment problem. However, some applications require a
tracker that processes simultaneous observations from multiple sensor scans all at once, which
requires solving an S-D assignment problem. Meanwhile, the S-D assignment is widely used in
tracking applications such as static data fusion, which preprocesses the detection data before fed to a
tracker.

An S-D assignment problem for static data fusion has S scans of a surveillance region from multiple
sensors simultaneously, and each scan consists of multiple detections. The detection sources can be
real targets or false alarms. The object is to detect an unknown number of targets and estimate their
states. For example, as shown in the Figure 4, three sensor scans produce six detections. The
detections in the same color belong to the same scan. Since each scan generates two detections,
there are probably two targets in the region of surveillance. To choose between different assignment
or association possibilities, evaluate the cost matrix.

The calculation of the cost can depend on many factors, such as the distance between detections and
the covariance distribution of each detection. To illustrate the basic concept, the assignment costs for
a few hypotheses are hypothetically given in the table [1].

Assignment
Hypotheses

First Scan
Observations (O1x)

Second Scan
Observation (O2x)

Third Scan
Observation (O3x)

Cost

1 0 1 1 −10.2
2 1 2 0 −10.9
3 1 1 1 −18.0
4 1 1 2 −14.8
5 1 2 1 −17.0
6 2 0 1 −13.2
7 2 0 2 −10.6
8 2 2 0 −11.1
9 2 1 2 −14.1
10 2 2 2 −16.7

 Introduction to Assignment Methods in Tracking Systems

4-45

In the table, 0 denotes a track is associated with no detection in that scan. Assume the hypotheses
not shown in the table are truncated by gating or neglected because of high costs. To concisely
represent each track, use cijk to represent the cost for association of observation i in scan 1, j in scan
2, and k in scan 3. For example, for the assignment hypothesis 1, c011 = -10.2. Several track
hypotheses conflict with other in the table. For instance, the two most likely assignments, c111 and
c121 are incompatible because they share the same observation in scans 1 and 3.

The goal of solving an S-D assignment problem is to find the most likely compatible assignment
hypothesis accounting for all the detections. When S ≥ 3, however, the problem is known to scale
with the number of tracks and detections at an exponential rate (NP-hard). The Lagrangian relaxation
method is commonly used to obtain the optimal or sub-optimal solution for an S-D assignment
problem efficiently.

Brief Introduce to the Lagrangian Relaxation Method for 3-D Assignment

Three scans of data have a number of M1, M2, and M3 observations, respectively. Denote an
observation of scan 1, 2, and 3 as i, j, and k, respectively. For example, i = 1, 2, …, M1. Use zijk to
represent the track formation hypothesis of O1i, O2j, and O3k. If the hypothesis is valid, then zijk = 1;
otherwise, zijk = 0. As mentioned, cijk is used to represent the cost of zijk association. cijk is 0 for false
alarms and negative for possible associations. The S-D optimization problem can be formulated as:

J(z) = min
i, j, k

∑
i = 0

M1
∑

j = 0

M2
∑

k = 0

M3
ci jkzi jk

subject to three constraints:

4 Multi-Object Tracking

4-46

∑
i = 0

M1
∑

j = 0

M2
zi jk = 1, ∀k = 1, 2, …, M3

∑
i = 0

M1
∑

k = 0

M3
zi jk = 1, ∀ j = 1, 2, …, M2

∑
j = 0

M2
∑

k = 0

M3
zi jk = 1, ∀i = 1, 2, …, M1

The optimization function chooses associations to minimize the total cost. The three constraints
ensure that each detection is accounted for (either included in an assignment or treated as false
alarm).

The Lagrangian relaxation method approaches this 3-D assignment problem by relaxing the first
constraint using Lagrange multipliers. Define a new function L(λ) :

L(λ) = ∑
k = 0

M3
λk ∑

i = 0

M1
∑

j = 0

M2
zi jk− 1

where λk, k = 1, 2, …, M3 are Lagrange multipliers. Subtract L from the original object function J(z) to
get a new object function, and the first constraint in k is relaxed. Therefore, the 3-D assignment
problem reduces to a 2-D assignment problem, which can be solved by any of the 2-D assignment
method. For more details, see [1].

The Lagrangian relaxation method allows the first constraint to be mildly violated, and therefore can
only guarantee a suboptimal solution. For most applications, however, this is sufficient. To specify the
solution accuracy, the method uses the solution gap, which defines the difference between the current

 Introduction to Assignment Methods in Tracking Systems

4-47

solution and the potentially optimistic solution. The gap is nonnegative, and a smaller solution gap
corresponds to a solution closer to the optimal solution.

Sensor Fusion and Tracking Toolbox provides assignsd to solve for S-D assignment using the
Lagrangian relaxation method. Similar to the K best 2-D assignment solver assignkbest, the
toolbox also provides a K best S-D assignment solver, assignkbestsd, which is used to provide
multiple suboptimal solutions for an S-D assignment problem.

See “Tracking Using Distributed Synchronous Passive Sensors” on page 6-226 for the application of
S-D assignment in static detection fusion.

See Also
assignTOMHT | assignauction | assignjv | assignkbest | assignkbestsd | assignmunkres |
assignsd | trackerGNN | trackerJPDA | trackerTOMHT

References
[1] Blackman, S., and R. Popoli. Design and Analysis of Modern Tracking Systems. Artech House

Radar Library, Boston, 1999.

[2] Musicki, D., and R. Evans. "Joint Integrated Probabilistic Data Association: JIPDA." IEEE
Transactions on Aerospace and Electronic Systems . Vol. 40, Number 3, 2004, pp 1093 –1099.

4 Multi-Object Tracking

4-48

Introduction to Track-To-Track Fusion
Track-To-Track Fusion Versus Central-Level Tracking
A multiple sensor tracking system can provide better performance than a single sensor system
because it can provide broader coverage and better visibility. Moreover, fusing detections from
different types of sensors can also improve the quality and accuracy of the target estimates. Two
types of architecture are commonly used in a multiple sensor tracking system. In the first type of
architecture — central-level tracking — the detections from all the sensors are sent directly to a
tracking system that maintains tracks based on all the detections. Theoretically, the central-level
tracking architecture can achieve the best performance because it can fully use all the information
contained in the detections. However, you can also apply a hierarchical structure with sensor-level
tracking combined with track-level fusion for a multiple sensor system. The figure shows a typical
central-level tracking system and a typical track-to-track fusion system based on sensor-level tracking
and track-level fusion.

To represent each element in a track-to-track fusion system, call tracking systems that output tracks
to a fuser as sources, and call the outputted tracks from sources as source tracks or local tracks. Call
the tracks maintained in the fuser as central tracks.

Benefits and Challenges of Track-To-Track Fusion
In some cases, a track-to-track fusion architecture may be preferable to a central-level tracking
architecture. These cases include:

• In many applications, a tracking system not only needs to track targets in its environment for self-
navigation, but also needs to transfer its maintained tracks to surrounding tracking systems for
better overall navigation performance. For example, an autonomous vehicle that tracks its own
situational environment can also share the maintained tracks with other vehicles to facilitate their
navigation.

• In practice, many sensors directly output tracks instead of detections. Therefore, to combine
information from sensors that output tracks, the track-level fusion is required.

• When communication bandwidth is limited, transmitting a track list is often more efficient than
transmitting a set of detections. This can be particularly important for cases in which the track list
is provided at a reduced rate relative to the scan rate.

• When the number of sensors and detections is large, the computation complexity for the
centralized tracking system can be high, especially for detection assignment. The track-to-track

 Introduction to Track-To-Track Fusion

4-49

fusion architecture can distribute some assignment and estimation workloads to the sensor-level
tracking, which reduces the computation complexity of the fuser.

Despite all the advantages favoring the track-to-track fusion architecture, it also poses additional
complexity and challenges to the tracking system. Unlike detections, which can be assumed to be
conditionally independent, the track estimates from each source are correlated with each other
because they share a common prediction error resulting from a common process model. Therefore,
computing a fused track using a standard filtering approach might lead to incorrect results. The
following effects must be considered:

• Common process noise — Since the sensors observe and track the same target, they share some
common dynamics. As a result, target maneuvering can lead to a mean error that is common to all
sensors.

• Time-correlated measurement noise — If the track fusion is repeated over time, the standard
Kalman filter assumption that measurements are not correlated over time is violated, because the
sensor-level track state estimation errors are correlated over time.

Track Fuser and Tracking Architecture
You can use the trackFuser in Sensor Fusion and Tracking Toolbox for the purpose of track-to-track
fusion. The trackFuser System object provides two algorithms to combine source tracks
considering the correction effects between different tracks. You can choose the algorithm by
specifying the StateFusion property of trackFuser as:

• 'Cross' — Uses the cross-covariance fusion algorithm.
• 'Intersection' — Uses the covariance intersection fusion algorithm.

You can also customize your own fusion algorithm.

Other than the standard track-to-track fusion architecture shown in the preceding figure, you can
also use other types of architectures with trackFuser. For example, the following figure illustrates a
two-vehicle tracking system.

On each vehicle, two sensors track the nearby targets with associated trackers. Each vehicle also has
a fuser that fuses source tracks from two trackers. Fuser 6 can transmit its maintained central tracks
to Fuser 3. With this architecture, Vehicle 1 can possibly identify targets (Target 2 in the figure) that
are not within the field of view of its own sensors.

4 Multi-Object Tracking

4-50

To reduce rumor propagation, you can treat the source tracks from Fuser 6 to Fuser 3 as external by
specifying the IsInternalSource property of fuserSourceConfiguration as false when
setting up the SourceConfigurations property of TrackFuser.

Since tracks reported by different trackers can be expressed in different coordinate frames, you need
to specify the coordinate transformation between a source and a fuser by specifying the
fuserSourceConfiguration property.

See Also
trackFuser | fuserSourceConfiguration | trackerGNN | trackerJPDA | trackerTOMHT |
trackerPHD

References
[1] Chong, C. Y., S. Mori, W. H. Barker, and K. C. Chang. "Architectures and Algorithms for Track

Association and Fusion." IEEE Aerospace and Electronic Systems Magazine, Vol. 15, No. 1,
2000, pp. 5 – 13.

 Introduction to Track-To-Track Fusion

4-51

Multiple Extended Object Tracking
In traditional tracking systems, the point target model is commonly used. In a point target model:

• Each object is modeled as a point without any spatial extent.
• Each object gives rise to at most one measurement per sensor scan.

Though the point target model simplifies tracking systems, the assumptions above may not be valid
when modern tracking systems are considered:

• In modern tracking systems, the dimensions of the extended object play a significant role. For
example, in autonomous vehicles, target dimensions must be considered properly to avoid
collision with objects around the autonomous system.

• Modern sensors have a high resolution, and an object can occupy more than one resolution cell.
As a result, the sensor may report multiple detections for that object. In this case, the point model
cannot fully exploit the sensor ability to detect object extent.

In extended object tracking, a sensor can return multiple detections per scan for an extended object.
The differences between extended object tracking and point object tracking are more about the
sensor properties rather than object properties. For example, if the resolution of a sensor is high
enough, even an object with small dimensions can still occupy several resolution cells of the sensor.

Sensor Fusion and Tracking Toolbox offers several methods and examples for multiple extended
object tracking. Depending on the assumptions made in the detection and tracker, these methods can
be separated into the following categories:

• One detection per object.

In this category, the conventional trackers (such as trackerGNN, trackerJPDA, and
trackerTOMHT) are used, which assume one detection per object. This category can further be
divided into two methods:

• A point detection per object.

In this method, even though the sensor returns multiple detections per object, these detections
are first converted into one representative point detection with certain covariance to account
for the distribution of these detections. Then the representative point detection is processed by
a conventional tracker, which models the object as a point target and tracks its kinematic state.
Even though this method is simple to use, it overlooks the ability of the sensor to detect the
object dimension.

The Point Object Tracker approach shown in the first part of “Extended Object Tracking of
Highway Vehicles with Radar and Camera” on page 6-147 example adopts this method.

• An extended object detection per object.

In this method, the multiple detections of an extended object are converted into a single
parameterized shape detection. The shape detection includes the kinematic states of the
object, as well as its extent parameters such as length, width and height. Then the shape
detection is processed by a conventional tracker, which models the object as an extended
object by tracking both the object kinematic state and its dimensions.

In the “Track Vehicles Using Lidar: From Point Cloud to Track List” on page 6-351 example,
the Lidar detections of each vehicle are converted into a cuboid detection with length, width,

4 Multi-Object Tracking

4-52

and height. A JPDA tracker is used to track the position, velocity and dimensions for all the
vehicles with these cuboid detections.

• Multiple detections per object.

In this category, extended object trackers (such as trackerPHD) are used, which assume multiple
detections per object. The detections are fed directly to the tracker, and the tracker models the
extended object using certain default geometric shapes with variable sizes.

In the “Extended Object Tracking of Highway Vehicles with Radar and Camera” on page 6-147
example, the GGIW-PHD Extended Object Tracker approach represents vehicle shapes as ellipses,
and the Prototype Extended Object Tracker approach represents vehicle shapes as rectangles.

In the “Extended Object Tracking With Radar For Marine Surveillance” on page 6-370 example,
the GGIW-PHD tracker models the ship shapes as ellipses.

 Multiple Extended Object Tracking

4-53

Configure Time Scope MATLAB Object
When you use the timescope object in MATLAB®, you can configure many settings and tools from
the window. These sections show you how to use the Time Scope interface and the available tools.

Signal Display
This figure highlights the important aspects of the Time Scope window in MATLAB.

• Min X-Axis — Time scope sets the minimum x-axis limit using the value of the
TimeDisplayOffset property. To change the Time Offset from the Time Scope window, click

Settings () on the Scope tab. Under Data and Axes, set the Time Offset.
• Max X-Axis — Time scope sets the maximum x-axis limit by summing the value of the Time
Offset property with the span of the x-axis values. If Time Span is set to Auto, the span of x-axis
is 10/SampleRate.

The values on the x-axis of the scope display remain the same throughout the simulation.
• Status — Provides the current status of the plot. The status can be:

• Processing — Occurs after you run the object and before you run the release function.
• Stopped — Occurs after you create the scope object and before you first call the object. This

status also occurs after you call release.
• Title, YLabel — You can customize the title and the y-axis label from Settings or by using the

Title and YLabel properties.

4 Multi-Object Tracking

4-54

• Toolstrip

• Scope tab — Customize and share the time scope. For example, showing and hiding the legend
• Measurements tab — Turn on and control different measurement tools.
• Trigger tab — Turn on and modify triggers.

Use the pin button to keep the toolstrip showing or the arrow button to hide the toolstrip.

Multiple Signal Names and Colors
By default, if the input signal has multiple channels, the scope uses an index number to identify each
channel of that signal. For example, the legend for a two-channel signal will display the default names

Channel 1, Channel 2. To show the legend, on the Scope tab, click Settings (). Under Display
and Labels, select Show Legend. If there are a total of seven input channels, the legend displayed
is:

By default, the scope has a black axes background and chooses line colors for each channel in a
manner similar to the Simulink® Scope block. When the scope axes background is black, it assigns
each channel of each input signal a line color in the order shown in the legend. If there are more than
seven channels, then the scope repeats this order to assign line colors to the remaining channels.
When the axes background is not black, the signals are colored in this order:

To choose line colors or background colors, on the Scope tab click Settings.Use the Axes color
pallet to change the background of the plot. Click Line to choose a line to change, and the Color
drop-down to change the line color of the selected line.

Configure Scope Settings
On the Scope tab, the Configuration section allows you to modify the scope.

• The Legend button turns the legend on or off. When you show the legend, you can control which
signals are shown. If you click a signal name in the legend, the signal is hidden from the plot and
shown in grey on the legend. To redisplay the signal, click on the signal name again. This button
corresponds to the ShowLegend property in the object.

 Configure Time Scope MATLAB Object

4-55

• The Settings button opens the settings window which allows you to customize the data, axes,
display settings, labels, and color settings.

On the Scope tab, the Layout section allows you to modify the scope layout dimensions.

The Display Grid button enables you to select the display layout of the scope.

Use timescope Measurements and Triggers
All measurements are made for a specified channel. By default, measurements are applied to the first
channel. To change which channel is being measured, use the Select Channel drop-down on the
Measurements tab.

Data Cursors

Use the Data Cursors button to display screen cursors. Each cursor tracks a vertical line along the
signal. The difference between x- and y-values of the signal at the two cursors is displayed in the box
between the cursors.

Signal Statistics

Use the Signal Statistics button to display various statistics about the selected signal at the bottom
of the time scope window. You can hide or show the Statistics panel using the arrow button in the
bottom right of the panel.

• Max — Maximum value within the displayed portion of the input signal.
• Min — Minimum value within the displayed portion of the input signal.
• Peak to Peak — Difference between the maximum and minimum values within the displayed

portion of the input signal.
• Mean — Average or mean of all the values within the displayed portion of the input signal.
• Median — Median value within the displayed portion of the input signal.
• RMS — Root mean squared of the input signal.

To customize which statistics are shown and computed, use the Signal Statistics drop-down.

4 Multi-Object Tracking

4-56

Peak Finder

Use the Peak Finder button to display peak values for the selected signal. Peaks are defined as a
local maximum where lower values are present on both sides of a peak. End points are not considered
peaks. For more information on the algorithms used, see the findpeaks function.

When you turn on the peak finder measurements, an arrow appears on the plot at each maxima and a
Peaks panel appears at the bottom of the timescope window showing the x and y values at each
peak.

You can customize several peak finder settings:

• Num Peaks — The number of peaks to show. Must be a scalar integer from 1 through 99.
• Min Height — The minimum height difference between a peak and its neighboring samples.
• Min Distance — The minimum number of samples between adjacent peaks.
• Threshold — The level above which peaks are detected.
• Label Peaks — Show labels (P1, P2, …) above the arrows on the plot.

Bilevel Measurements

With bilevel measurements, you can measure transitions, aberrations, and cycles.

Bilevel Settings

When using bilevel measurements, you can set these properties:

• Auto State Level — When this check box is selected, the Bilevel measurements panel detects the
high- and low-state levels of a bilevel waveform. When this check box is cleared, you can enter in
values for the high- and low-state levels manually.

• High — Manually specify the value that denotes a positive polarity or high-state level.

• Low — Manually specify the value that denotes a negative polarity or low-state level.

 Configure Time Scope MATLAB Object

4-57

• State Level Tol. % — Tolerance levels within which the initial and final levels of each transition
must lie to be within their respective state levels. This value is expressed as a percentage of the
difference between the high- and low-state levels.

• Upper Ref Level — Used to compute the end of the rise-time measurement or the start of the fall-
time measurement. This value is expressed as a percentage of the difference between the high-
and low-state levels.

• Mid Ref Level — Used to determine when a transition occurs. This value is expressed as a
percentage of the difference between the high- and low-state levels. In the following figure, the
mid-reference level is shown as a horizontal line, and its corresponding mid-reference level instant
is shown as a vertical line.

• Lower Ref Level — Used to compute the end of the fall-time measurement or the start of the rise-
time measurement. This value is expressed as a percentage of the difference between the high-
and low-state levels.

• Settle Seek — The duration after the mid-reference level instant when each transition occurs is
used for computing a valid settling time. Settling time is displayed in the Aberrations pane.

4 Multi-Object Tracking

4-58

Transitions

Select Transitions to display calculated measurements associated with the input signal changing
between its two possible state level values, high and low. The measurements are displayed in the
Transitions pane at the bottom of the scope window.

The + Edges row measures rising edges or a positive-going transition. A rising edge in a bilevel
waveform is a transition from the low-state level to the high-state level with a slope value greater
than zero.

The - Edges row measures falling edges or a negative-going transition. A falling edge in a bilevel
waveform is a transition from the high-state level to the low-state level with a slope value less than
zero.

The Transition measurements assume that the amplitude of the input signal is in units of volts. For
the transition measurements to be valid, you must convert all input signals to volts.
Aberrations

Select Aberrations to display calculated measurements involving the distortion and damping of the
input signal such as preshoot, overshoot, and undershoot. Overshoot and undershoot, respectively,

 Configure Time Scope MATLAB Object

4-59

refer to the amount that a signal exceeds and falls below its final steady-state value. Preshoot refers
to the amount before a transition that a signal varies from its initial steady-state value. The
measurements are displayed in the Transitions pane at the bottom of the scope window.

This figure shows preshoot, overshoot, and undershoot for a rising-edge transition.

The next figure shows preshoot, overshoot, and undershoot for a falling-edge transition.

Cycles

Select Cycles calculates repetitions or trends in the displayed portion of the input signal. The
measurements are displayed in the Cycles pane at the bottom of the scope window in two rows: +
Pulses for the positive-polarity pulses and - Pulses for the negative-polarity pulses.

4 Multi-Object Tracking

4-60

• Period — Average duration between adjacent edges of identical polarity within the displayed
portion of the input signal. To calculate period, the timescope takes the difference between the
mid-reference level instants of the initial transition of each pulse and the next identical-polarity
transition. These mid-reference level instants for a positive-polarity pulse appear as red dots in the
following figure.

• Frequency — Reciprocal of the average period, measured in hertz.
• Count — Number of positive- or negative-polarity pulses counted.
• Width — Average duration between rising and falling edges of each pulse within the displayed

portion of the input signal.
• Duty Cycle — Average ratio of pulse width to pulse period for each pulse within the displayed

portion of the input signal.

Triggers

Define a trigger event to identify the simulation time of specified input signal characteristics. You can
use trigger events to stabilize periodic signals such as a sine wave or capture non-periodic signals
such as a pulse that occurs intermittently.

To define a trigger:

1 On the Trigger tab of the scope window, select the channel you want to trigger.
2 Specify when the display updates by selecting a triggering Mode.

• Auto — Display data from the last trigger event. If no event occurs after one time span,
display the last available data.

Normal — Display data from the last trigger event. If no event occurs, the display remains
blank.

• Once — Display data from the last trigger event and freeze the display. If no event occurs, the
display remains blank. Click the Rearm button to look for the next trigger event.

3 Select a triggering type, polarity, and any other properties. See the Trigger Properties table.

 Configure Time Scope MATLAB Object

4-61

4 Click Enable Trigger.

You can set the trigger position to specify the position of the time pointer along the y-axis. You can
also drag the time pointer to the left or right to adjust its position.

4 Multi-Object Tracking

4-62

Trigger Properties

Trigger Type Trigger Parameters
Edge — Trigger
when the signal
crosses a
threshold.

Polarity — Select the polarity for an edge-triggered signal.

• Rising — Trigger when the signal is increasing.

• Falling — Trigger when the signal value is decreasing.

 Configure Time Scope MATLAB Object

4-63

Trigger Type Trigger Parameters
• Either — Trigger when the signal is increasing or decreasing.

Level — Enter a threshold value for an edge-triggered signal. Auto level is 50%

Hysteresis — Enter a value for an edge-triggered signal. See “Hysteresis of
Trigger Signals” on page 4-71

Delay — Offset the trigger by a fixed delay in seconds.

Holdoff — Set the minimum possible time between triggers.

Position — Set horizontal position of the trigger on the screen.

4 Multi-Object Tracking

4-64

Trigger Type Trigger Parameters
Pulse Width —
Trigger when the
signal crosses a
low threshold and
a high threshold
twice within a
specified time.

Polarity — Select the polarity for a pulse width-triggered signal.

• Positive — Trigger on a positive-polarity pulse when the pulse crosses the
low threshold for a second time.

• Negative — Trigger on a negative-polarity pulse when the pulse crosses the
high threshold for a second time.

• Either — Trigger on both positive-polarity and negative-polarity pulses.

Note A glitch-trigger is a special type of a pulse width-trigger. A glitch-trigger
occurs for a pulse or spike whose duration is less than a specified amount. You
can implement a glitch-trigger by using a pulse-width-trigger and setting the
Max Width parameter to a small value.

High — Enter a high value for a pulse-width-triggered signal. Auto level is
90%.

Low — Enter a low value for a pulse-width-triggered signal. Auto level is 10%.

Min Width — Enter the minimum pulse width for a pulse-width-triggered
signal. Pulse width is measured between the first and second crossings of the
middle threshold.

Max Width — Enter the maximum pulse width for a pulse-width-triggered
signal.

Delay — Offset the trigger by a fixed delay in seconds.

 Configure Time Scope MATLAB Object

4-65

Trigger Type Trigger Parameters
Holdoff — Set the minimum possible time between triggers.

Position — Set horizontal position of the trigger on the screen.
Transition —
Trigger on the
rising or falling
edge of a signal
that crosses the
high and low levels
within a specified
time range.

Polarity — Select the polarity for a transition-triggered signal.

• Rise Time — Trigger on an increasing signal when the signal crosses the
high threshold.

• Fall Time — Trigger on a decreasing signal when the signal crosses the
low threshold.

• Either — Trigger on an increasing or decreasing signal.

High — Enter a high value for a transition-triggered signal. Auto level is 90%.

Low — Enter a low value for a transition-triggered signal. Auto level is 10%.

Min Time — Enter a minimum time duration for a transition-triggered signal.

Max Time — Enter a maximum time duration for a transition-triggered signal.

Delay — Offset the trigger by a fixed delay in seconds.

Holdoff — Set the minimum possible time between triggers.

Position — Set horizontal position of the trigger on the screen.

4 Multi-Object Tracking

4-66

Trigger Type Trigger Parameters
Runt— Trigger
when a signal
crosses a low
threshold or a high
threshold twice
within a specified
time.

Polarity — Select the polarity for a runt-triggered signal.

• Positive — Trigger on a positive-polarity pulse when the signal crosses the
low threshold a second time without crossing the high threshold.

• Negative — Trigger on a negative-polarity pulse.
• Either — Trigger on both positive-polarity and negative-polarity pulses.

High — Enter a high value for a runt-triggered signal. Auto level is 90%.

Low — Enter a low value for a runt-triggered signal. Auto level is 10%.

Min Width — Enter a minimum width for a runt-triggered signal. Pulse width is
measured between the first and second crossing of a threshold.

Max Width — Enter a maximum pulse width for a runt-triggered signal.

Delay — Offset the trigger by a fixed delay in seconds.

Holdoff — Set the minimum possible time between triggers.

Position — Set horizontal position of the trigger on the screen.

 Configure Time Scope MATLAB Object

4-67

Trigger Type Trigger Parameters
Window — Trigger
when a signal
stays within or
outside a region
defined by the high
and low thresholds
for a specified
time.

Polarity — Select the region for a window-triggered signal.

• Inside — Trigger when a signal leaves a region between the low and high
levels.

• Outside — Trigger when a signal enters a region between the low and high
levels.

4 Multi-Object Tracking

4-68

Trigger Type Trigger Parameters
• Either — Trigger when a signal leaves or enters a region between the low

and high levels.

High — Enter a high value for a window-triggered signal. Auto level is 90%.

Low — Enter a low value for a window-trigger signal. Auto level is 10%.

Min Time — Enter the minimum time duration for a window-triggered signal.

Max Time — Enter the maximum time duration for a window-triggered signal.

Delay — Offset the trigger by a fixed delay in seconds.

Holdoff — Set the minimum possible time between triggers.

Position — Set horizontal position of the trigger on the screen.

 Configure Time Scope MATLAB Object

4-69

Trigger Type Trigger Parameters
Timeout —
Trigger when a
signal stays above
or below a
threshold longer
than a specified
time

Polarity — Select the polarity for a timeout-triggered signal.

• Rising — Trigger when the signal does not cross the threshold from below.
For example, if you set Timeout to 7.50 seconds, the scope triggers 7.50
seconds after the signal crosses the threshold.

• Falling — Trigger when the signal does not cross the threshold from
above.

• Either — Trigger when the signal does not cross the threshold from either
direction

Level — Enter a threshold value for a timeout-triggered signal.

Hysteresis — Enter a value for a timeout-triggered signal. See “Hysteresis of
Trigger Signals” on page 4-71.

Timeout — Enter a time duration for a timeout-triggered signal.

Alternatively, a trigger event can occur when the signal stays within the
boundaries defined by the hysteresis for 7.50 seconds after the signal crosses
the threshold.

4 Multi-Object Tracking

4-70

Trigger Type Trigger Parameters

Delay — Offset the trigger by a fixed delay in seconds.

Holdoff — Set the minimum possible time between triggers.

Position — Set horizontal position of the trigger on the screen.

Hysteresis of Trigger Signals

Hysteresis — Specify the hysteresis or noise-reject value. This parameter is visible when you set
Type to Edge or Timeout. If the signal jitters inside this range and briefly crosses the trigger level,
the scope does not register an event. In the case of an edge trigger with rising polarity, the scope
ignores the times that a signal crosses the trigger level within the hysteresis region.

 Configure Time Scope MATLAB Object

4-71

You can reduce the hysteresis region size by decreasing the hysteresis value. In this example, if you
set the hysteresis value to 0.07, the scope also considers the second rising edge to be a trigger event.

Share or Save the Time Scope
If you want to save the time scope for future use or share it with others, use the buttons in the Share
section of the Scope tab.

• Generate Script — Generate a script to re-create your time scope with the same settings. An
editor window opens with the code required to re-create your timescope object.

4 Multi-Object Tracking

4-72

• Copy Display — Copy the display to your clipboard. You can paste the image in another program
to save or share it.

• Print — Opens a print dialog box from which you can print out the plot image.

Scale Axes
To scale the plot axes, you can use the mouse to pan around the axes and the scroll button on your
mouse to zoom in and out of the plot. Additionally, you can use the buttons that appear when you
hover over the plot window.

•
 — Maximize the axes, hiding all labels and insetting the axes values.

•
 — Zoom in on the plot.

•
 — Pan the plot.

•
 — Autoscale the axes to fit the shown data.

See Also
Objects
timescope

 Configure Time Scope MATLAB Object

4-73

Code Generation

5

Generate Code with Strict Single-Precision and Non-Dynamic
Memory Allocation from Sensor Fusion and Tracking Toolbox

Introduce functions, objects, and blocks that support strict single-precision and non-dynamic memory
allocation code generation in Sensor Fusion and Tracking Toolbox.

Introduction to Strict Single-Precision and Non-Dynamic Memory
Allocation
In Sensor Fusion and Tracking Toolbox (SFTT), many functions, objects, and Simulink blocks support
C/C++ code generation. You can see if a function, object, or block supports code generation, as well
as any limitations in the Extended Capabilities section of its reference page. For details on how to
generate code at the command line, or by using the MATLAB Coder™ App, see “Generate C Code at
the Command Line” (MATLAB Coder) and “Generate C Code by Using the MATLAB Coder App”
(MATLAB Coder), respectively. For generating code for SFTT applications, see the “How to Generate
C Code for a Tracker” on page 6-295 and “Generate Code for a Track Fuser with Heterogeneous
Source Tracks” on page 6-588 examples.

Sensor Fusion and Tracking Toolbox widely supports double-precision code generation, and the
generated code can use dynamic memory allocation if necessary. Though double-precision variables
can provide more accurate calculations, they have increased memory requirements over single-
precision variables. Similarly, though dynamic memory allocation allows for flexible variable
allocation, this process is typically slower than non-dynamic memory allocation. For these and other
reasons, Sensor Fusion and Tracking Toolbox provides strict single-precision and non-dynamic
memory allocation support for some algorithms.

In strict single-precision code generation, the generated C/C++ code, including the input, code body,
and output, does not use double-precision variables. In other words, it can only use single-precision
variables and integer-type variables up to 32 bits. For algorithms that support strict single-precision
code generation in SFTT, you can enable it by passing single-precision input arguments. To enable
strict single-precision code generation:

• For a function that supports single-precision code generation, specify single-precision inputs.
• For an object that supports single-precision code generation, specify the inputs as non-double-

precision variables, and specify any custom setups as non-double precision. For example, to
generate single-precision code from the trackerGNN System object:

• You must specify the inputs, such as the detections, as non-double-precision values.
• You must specify the FilterInitializationFcn property of the tracker to return a single-

precision filter.

In non-dynamic memory allocation code generation, the memory allocation of each variable is
determined during compilation time, before running the code. Non-dynamic memory allocation is
usually faster than dynamic memory allocation. For information on how to disable dynamic memory
allocation, see “Generate Code for Variable-Size Data” (MATLAB Coder) and “Control Memory
Allocation for Variable-Size Arrays” (MATLAB Coder).

The functions, objects, and blocks listed in the table of the following sections are verified to support
strict single-precision and non-dynamic memory allocation code generation. Other unverified
functions, object, and blocks in SFTT can possibly support strict single-precision and non-dynamic
memory allocation.

5 Code Generation

5-2

Supported Trackers and Tracking Filters
These trackers and tracking filters support single-precision and non-dynamic memory allocation code
generation with the specified limitations.

Objects or Blocks Single-Precision Code
Generation Limitations

Non-Dynamic Memory
Allocation Code Generation
Limitations

trackerJPDA or Joint
Probabilistic Data Association
Multi Object Tracker

• Must set the tracker to the K-
best JPDA mode.

• Filter must be one of these,
configured in single-
precision:

• trackingEKF
• trackingUKF
• trackingCKF
• trackingIMM

• Must set the tracker to the K-
best JPDA mode.

• Filter must be one of these:

• trackingEKF
• trackingUKF
• trackingCKF
• trackingIMM

• For trackerJPDA, the
MaxNumDetections
property must be finite.

trackerGNN or Global Nearest
Neighbor Multi Object Tracker

• Filter must be one of these,
configured in single-
precision:

• trackingEKF
• trackingUKF
• trackingCKF
• trackingIMM

• Assignment algorithm must
be Jonker-Volgenant.

• Filter must be one of these:

• trackingEKF
• trackingUKF
• trackingCKF
• trackingIMM

• Assignment algorithm must
be Jonker-Volgenant or
MatchPairs.

• For trackerGNN, the
MaxNumDetections
property must be finite.

trackingEKF The state transition function and
measurement function must
support single-precision.

No limitations

trackingUKF The state transition function and
measurement function must
support single-precision.

No limitations

trackingCKF The state transition function and
measurement function must
support single-precision.

No limitations

trackingIMM The trackingIMM filter must
be configured with either
trackingEKF, trackingUKF,
or trackingCKF objects set in
single-precision.

The trackingIMM filter must
be configured with either
trackingEKF, trackingUKF,
or trackingCKF objects.

 Generate Code with Strict Single-Precision and Non-Dynamic Memory Allocation from Sensor Fusion and Tracking Toolbox

5-3

Supported Assignment Functions
These assignment functions support strict single-precision and non-dynamic memory allocation code
generation with the specified limitations.

Functions Single-Precision Code
Generation Limitations

Non-Dynamic Memory
Allocation Code Generation
Limitations

assignkbest Must use the Jonker-Volgenant
algorithm.

Must use the Jonker-Volgenant
algorithm.

assignjv No limitations No limitations
jpdaEvents Must use K-best joint event. Must use K-best joint event.

Supported Motion Model Functions
These motion model functions support single-precision and non-dynamic memory allocation code
generation without limitations.

• constvel
• constveljac
• cvmeas
• cvmeasjac
• constacc
• constaccjac
• cameas
• cameasjac
• constturn
• constturnjac
• ctmeas
• ctmeasjac
• switchimm

Supported Filter Initialization Functions
These filter initialization functions support single-precision and non-dynamic memory allocation code
generation without limitations.

• initcvekf
• initcaekf
• initctekf
• initcvukf
• initcaukf
• initctukf
• initcvckf

5 Code Generation

5-4

• initctckf
• initcackf
• initekfimm

 Generate Code with Strict Single-Precision and Non-Dynamic Memory Allocation from Sensor Fusion and Tracking Toolbox

5-5

Featured Examples

6

Air Traffic Control
This example shows how to generate an air traffic control scenario, simulate radar detections from an
airport surveillance radar (ASR), and configure a global nearest neighbor (GNN) tracker to track the
simulated targets using the radar detections. This enables you to evaluate different target scenarios,
radar requirements, and tracker configurations without needing access to costly aircraft or
equipment. This example covers the entire synthetic data workflow.

Air Traffic Control Scenario

Simulate an air traffic control (ATC) tower and moving targets in the scenario as platforms.
Simulation of the motion of the platforms in the scenario is managed by trackingScenario.

Create a trackingScenario and add the ATC tower to the scenario.

% Create tracking scenario
scenario = trackingScenario;
% Add a stationary platform to model the ATC tower
tower = platform(scenario);

Airport Surveillance Radar

Add an airport surveillance radar (ASR) to the ATC tower. A typical ATC tower has a radar mounted
15 meters above the ground. This radar scans mechanically in azimuth at a fixed rate to provide 360
degree coverage in the vicinity of the ATC tower. Common specifications for an ASR are listed:

• Sensitivity: 0 dBsm @ 111 km
• Mechanical Scan: Azimuth only
• Mechanical Scan Rate: 12.5 RPM
• Electronic Scan: None
• Field of View: 1.4 deg azimuth, 10 deg elevation
• Azimuth Resolution: 1.4 deg
• Range Resolution: 135 m

Model the ASR with the above specifications using the fusionRadarSensor.

rpm = 12.5;
fov = [1.4;10];
scanrate = rpm*360/60; % deg/s
updaterate = scanrate/fov(1); % Hz

radar = fusionRadarSensor(1,'Rotator', ...
 'UpdateRate', updaterate, ... % Hz
 'FieldOfView', fov, ... % [az;el] deg
 'MaxAzimuthScanRate', scanrate, ... % deg/sec
 'AzimuthResolution', fov(1), ... % deg
 'ReferenceRange', 111e3, ... % m
 'ReferenceRCS', 0, ... % dBsm
 'RangeResolution', 135, ... % m
 'HasINS', true, ...
 'DetectionCoordinates', 'Scenario');

% Mount radar at the top of the tower

6 Featured Examples

6-2

radar.MountingLocation = [0 0 -15];
tower.Sensors = radar;

Tilt the radar so that it surveys a region beginning at 2 degrees above the horizon. To do this, enable
elevation and set the mechanical scan limits to span the radar's elevation field of view beginning at 2
degrees above the horizon. Because trackingScenario uses a North-East-Down (NED) coordinate
frame, negative elevations correspond to points above the horizon.

% Enable elevation scanning
radar.HasElevation = true;

% Set mechanical elevation scan to begin at 2 degrees above the horizon
elFov = fov(2);
tilt = 2; % deg
radar.MechanicalElevationLimits = [-fov(2) 0]-tilt; % deg

Set the elevation field of view to be slightly larger than the elevation spanned by the scan limits. This
prevents raster scanning in elevation and tilts the radar to point in the middle of the elevation scan
limits.

radar.FieldOfView(2) = elFov+1e-3;

The fusionRadarSensor models range and elevation bias due to atmospheric refraction. These
biases become more pronounced at lower altitudes and for targets at long ranges. Because the index
of refraction changes (decreases) with altitude, the radar signals propagate along a curved path. This
results in the radar observing targets at altitudes which are higher than their true altitude and at
ranges beyond their line-of-sight range.

Add three airliners within the ATC control sector. One airliner approaches the ATC from a long range,
another departs, and the third is flying tangential to the tower. Model the motion of these airliners
over a 60 second interval.

trackingScenario uses a North-East-Down (NED) coordinate frame. When defining the waypoints
for the airliners below, the z-coordinate corresponds to down, so heights above the ground are set to
negative values.

% Duration of scenario
sceneDuration = 60; % s

% Inbound airliner
ht = 3e3;
spd = 900*1e3/3600; % m/s
wp = [-5e3 -40e3 -ht;-5e3 -40e3+spd*sceneDuration -ht];
traj = waypointTrajectory('Waypoints',wp,'TimeOfArrival',[0 sceneDuration]);
platform(scenario,'Trajectory', traj);

% Outbound airliner
ht = 4e3;
spd = 700*1e3/3600; % m/s
wp = [20e3 10e3 -ht;20e3+spd*sceneDuration 10e3 -ht];
traj = waypointTrajectory('Waypoints',wp,'TimeOfArrival',[0 sceneDuration]);
platform(scenario,'Trajectory', traj);

% Tangential airliner
ht = 4e3;
spd = 300*1e3/3600; % m/s
wp = [-20e3 -spd*sceneDuration/2 -ht;-20e3 spd*sceneDuration/2 -ht];

 Air Traffic Control

6-3

traj = waypointTrajectory('Waypoints',wp,'TimeOfArrival',[0 sceneDuration]);
platform(scenario,'Trajectory', traj);

GNN Tracker

Create a trackerGNN to form tracks from the radar detections generated from the three airliners.
Update the tracker with the detections generated after the completion of a full 360 degree scan in
azimuth.

The tracker uses the initFilter supporting function to initialize a constant velocity extended
Kalman filter for each new track. initFilter modifies the filter returned by initcvekf to match
the target velocities and tracker update interval.

tracker = trackerGNN(...
 'Assignment', 'Auction', ...
 'AssignmentThreshold',50, ...
 'FilterInitializationFcn',@initFilter);

Visualize on a Map

You use trackingGlobeViewer to visualize the results on top of a map display. You position the
origin of the local North-East-Down (NED) coordinate system used by the tower radar and tracker at
the position of Logan airport in Boston. The origin is located at 42.36306 latitude and -71.00639
longitude and 50 meters above the sea level.

origin = [42.366978, -71.022362, 50];
mapViewer = trackingGlobeViewer('ReferenceLocation',origin,...
 'Basemap','streets-dark');
campos(mapViewer, origin + [0 0 1e5]);
drawnow;
plotScenario(mapViewer,scenario);
snapshot(mapViewer);

6 Featured Examples

6-4

Simulate and Track Airliners

The following loop advances the platform positions until the end of the scenario has been reached.
For each step forward in the scenario, the radar generates detections from targets in its field of view.
The tracker is updated with these detections after the radar has completed a 360 degree scan in
azimuth.

% Set simulation to advance at the update rate of the radar
scenario.UpdateRate = radar.UpdateRate;

% Create a buffer to collect the detections from a full scan of the radar
scanBuffer = {};

% Initialize the track array
tracks = objectTrack.empty;

% Save visualization snapshots for each scan
allsnaps = {};
scanCount = 0;

% Set random seed for repeatable results
s = rng;
rng(2020)

 Air Traffic Control

6-5

while advance(scenario)

 % Update airliner positions
 plotPlatform(mapViewer, scenario.Platforms([2 3 4]), 'TrajectoryMode','Full');

 % Generate detections on targets in the radar's current field of view
 [dets,config] = detect(scenario);
 scanBuffer = [scanBuffer;dets]; %#ok<AGROW>
 % Plot beam and detections
 plotCoverage(mapViewer,coverageConfig(scenario))
 plotDetection(mapViewer,scanBuffer);

 % Update tracks when a 360 degree scan is complete
 simTime = scenario.SimulationTime;
 isScanDone = config.IsScanDone;
 if isScanDone
 scanCount = scanCount+1;
 % Update tracker
 [tracks,~,~,info] = tracker(scanBuffer,simTime);
 % Clear scan buffer for next scan
 scanBuffer = {};
 elseif isLocked(tracker)
 % Predict tracks to the current simulation time
 tracks = predictTracksToTime(tracker,'confirmed',simTime);
 end

 % Update map and take snapshots
 allsnaps = snapPlotTrack(mapViewer,tracks,isScanDone, scanCount, allsnaps);

end
allsnaps = [allsnaps, {snapshot(mapViewer)}];

Show the first snapshot taken at the completion of the radar's second scan.

figure
imshow(allsnaps{1});

6 Featured Examples

6-6

The preceding figure shows the scenario at the end of the radar's second 360 degree scan. Radar
detections, shown as light blue dots, are present for each of the simulated airliners. At this point, the
tracker has already been updated by one complete scan of the radar. Internally, the tracker has
initialized tracks for each of the airliners. These tracks will be shown after the update following this
scan, when the tracks are promoted to confirmed, meeting the tracker's confirmation requirement of
2 hits out of 3 updates.

The next two snapshots show tracking of the outbound airliner.

figure
imshow(allsnaps{2});

 Air Traffic Control

6-7

figure
imshow(allsnaps{3});

6 Featured Examples

6-8

The previous figures show the track picture before and immediately after the tracker updates after
the radar's second scan. The detection in the figure before the tracker update is used to update and
confirm the initialized track from the previous scan's detection for this airliner. The next figure shows
the confirmed track's position and velocity. The uncertainty of the track's position estimate is shown
as the yellow ellipse. After only two detections, the tracker has established an accurate estimate of
the outbound airliner's position and velocity. The airliner's true altitude is 4 km and it is traveling
north at 700 km/hr.

figure
imshow(allsnaps{4});

 Air Traffic Control

6-9

figure
imshow(allsnaps{5});

6 Featured Examples

6-10

The state of the outbound airliner's track is coasted to the end of the third scan and shown in the
figure above along with the most recent detection for the airliner. Notice how the track's uncertainty
has grown since it was updated in the previous figure. The track after it has been updated with the
detection is shown in the next figure. You notice that the uncertainty of the track position is reduced
after the update. The track uncertainty grows between updates and is reduced whenever it is updated
with a new measurement. You also observe that after the third update, the track lies on top of the
airliner's true position.

figure
imshow(allsnaps{6});

 Air Traffic Control

6-11

The final figure shows the state of all three airliners' tracks at the end of the scenario. There is
exactly one track for each of the three airliners. The same track numbers are assigned to each of the
airliners for the entire duration of the scenario, indicating that none of these tracks were dropped
during the scenario. The estimated tracks closely match the true position and velocity of the airliners.

truthTrackTable = tabulateData(scenario, tracks) %#ok<NOPTS>

truthTrackTable=3×4 table
 TrackID Altitude Heading Speed
 True Estimated True Estimated True Estimated
 _______ _________________ _________________ _________________

 "T1" 4000 4051 90 90 700 710
 "T2" 4000 4070 0 359 300 300
 "T3" 3000 3057 0 359 900 908

Visualize tracks in 3D to get a better sense of the estimated altitudes.

% Reposition and orient the camera to show the 3-D nature of the map
camPosition = origin + [0.367, 0.495, 1.5e4];
camOrientation = [235, -17, 0]; % Looking south west, 17 degrees below the horizon
campos(mapViewer, camPosition);

6 Featured Examples

6-12

camorient(mapViewer, camOrientation);
drawnow

The figure below shows a 3-D map of the scenario. You can see the simulated jets in white triangles
with their trajectories depicted as white lines. The radar beam is shown as a blue cone with blue dots
representing radar detections. The tracks are shown in yellow, orange, and blue and their information
is listed in their respective color. Due to the nature of the 3-D display, some of the markers may be
hidden behind others.

You can use the following controls on the map to get different views of the scene:

• To pan the map, you left click on the mouse and drag the map.
• To rotate the map, while holding the ctrl button, you left click on the mouse and drag the map.
• To zoom the map in and out, you use the mouse scroll wheel.

snapshot(mapViewer);

Summary

This example shows how to generate an air traffic control scenario, simulate radar detections from an
airport surveillance radar (ASR), and configure a global nearest neighbor (GNN) tracker to track the
simulated targets using the radar detections. In this example, you learned how the tracker's history

 Air Traffic Control

6-13

based logic promotes tracks. You also learned how the track uncertainty grows when a track is
coasted and is reduced when the track is updated by a new detection.

Supporting Functions

initFilter

This function modifies the function initcvekf to handle higher velocity targets such as the airliners
in the ATC scenario.

function filter = initFilter(detection)
filter = initcvekf(detection);
classToUse = class(filter.StateCovariance);

% Airliners can move at speeds around 900 km/h. The velocity is
% initialized to 0, but will need to be able to quickly adapt to
% aircraft moving at these speeds. Use 900 km/h as 1 standard deviation
% for the initialized track's velocity noise.
spd = 900*1e3/3600; % m/s
velCov = cast(spd^2,classToUse);
cov = filter.StateCovariance;
cov(2,2) = velCov;
cov(4,4) = velCov;
filter.StateCovariance = cov;

% Set filter's process noise to match filter's update rate
scaleAccelHorz = cast(1,classToUse);
scaleAccelVert = cast(1,classToUse);
Q = blkdiag(scaleAccelHorz^2, scaleAccelHorz^2, scaleAccelVert^2);
filter.ProcessNoise = Q;
end

tabulateData

This function returns a table comparing the ground truth and tracks

function truthTrackTable = tabulateData(scenario, tracks)
% Process truth data
platforms = scenario.Platforms(2:end); % Platform 1 is the radar
numPlats = numel(platforms);
trueAlt = zeros(numPlats,1);
trueSpd = zeros(numPlats,1);
trueHea = zeros(numPlats,1);
for i = 1:numPlats
 traj = platforms{i}.Trajectory;
 waypoints = traj.Waypoints;
 times = traj.TimeOfArrival;
 trueAlt(i) = -waypoints(end,3);
 trueVel = (waypoints(end,:) - waypoints(end-1,:)) / (times(end)-times(end-1));
 trueSpd(i) = norm(trueVel) * 3600 / 1000; % Convert to km/h
 trueHea(i) = atan2d(trueVel(1),trueVel(2));
end
trueHea = mod(trueHea,360);

% Associate tracks with targets
atts = [tracks.ObjectAttributes];
tgtInds = [atts.TargetIndex];

6 Featured Examples

6-14

% Process tracks assuming a constant velocity model
numTrks = numel(tracks);
estAlt = zeros(numTrks,1);
estSpd = zeros(numTrks,1);
estHea = zeros(numTrks,1);
truthTrack = zeros(numTrks,7);
for i = 1:numTrks
 estAlt(i) = -round(tracks(i).State(5));
 estSpd(i) = round(norm(tracks(i).State(2:2:6)) * 3600 / 1000); % Convert to km/h;
 estHea(i) = round(atan2d(tracks(i).State(2),tracks(i).State(4)));
 estHea(i) = mod(estHea(i),360);
 platID = tgtInds(i);
 platInd = platID - 1;
 truthTrack(i,:) = [tracks(i).TrackID, trueAlt(platInd), estAlt(i), trueHea(platInd), estHea(i), ...
 trueSpd(platInd), estSpd(i)];
end

% Organize the data in a table
names = {'TrackID','TrueAlt','EstimatedAlt','TrueHea','EstimatedHea','TrueSpd','EstimatedSpd'};
truthTrackTable = array2table(truthTrack,'VariableNames',names);
truthTrackTable = mergevars(truthTrackTable, (6:7), 'NewVariableName', 'Speed', 'MergeAsTable', true);
truthTrackTable.(6).Properties.VariableNames = {'True','Estimated'};
truthTrackTable = mergevars(truthTrackTable, (4:5), 'NewVariableName', 'Heading', 'MergeAsTable', true);
truthTrackTable.(4).Properties.VariableNames = {'True','Estimated'};
truthTrackTable = mergevars(truthTrackTable, (2:3), 'NewVariableName', 'Altitude', 'MergeAsTable', true);
truthTrackTable.(2).Properties.VariableNames = {'True','Estimated'};
truthTrackTable.TrackID = "T" + string(truthTrackTable.TrackID);
end

snapPlotTrack

This function handles moving the camera, taking relevant snapshots and updating track visuals.

function allsnaps = snapPlotTrack(mapViewer,tracks,isScanDone, scanCount,allsnaps)
% Save snapshots during first 4 scans
if isScanDone && any(scanCount == [2 3])
 newsnap = snapshot(mapViewer);
 allsnaps = [allsnaps, {newsnap}];
 %move camera
 if scanCount == 2
 % Show the outbound airliner
 campos(mapViewer, [42.5650 -70.8990 7e3]);
 drawnow
 newsnap = snapshot(mapViewer);
 allsnaps = [allsnaps, {newsnap}];
 end

end

% Update display with current track positions
plotTrack(mapViewer,tracks, 'LabelStyle','ATC');

if isScanDone && any(scanCount == [2 3])
 % Take a snapshot of confirmed track
 drawnow
 newsnap = snapshot(mapViewer);
 allsnaps = [allsnaps, {newsnap}];
 % Reset Camera view to full scene

 Air Traffic Control

6-15

 if scanCount == 3
 origin = [42.366978, -71.022362, 50];
 campos(mapViewer, origin + [0 0 1e5]);
 drawnow
 end
end
end

6 Featured Examples

6-16

IMU and GPS Fusion for Inertial Navigation
This example shows how you might build an IMU + GPS fusion algorithm suitable for unmanned
aerial vehicles (UAVs) or quadcopters.

This example uses accelerometers, gyroscopes, magnetometers, and GPS to determine orientation
and position of a UAV.

Simulation Setup

Set the sampling rates. In a typical system, the accelerometer and gyroscope run at relatively high
sample rates. The complexity of processing data from those sensors in the fusion algorithm is
relatively low. Conversely, the GPS, and in some cases the magnetometer, run at relatively low sample
rates, and the complexity associated with processing them is high. In this fusion algorithm, the
magnetometer and GPS samples are processed together at the same low rate, and the accelerometer
and gyroscope samples are processed together at the same high rate.

To simulate this configuration, the IMU (accelerometer, gyroscope, and magnetometer) are sampled
at 160 Hz, and the GPS is sampled at 1 Hz. Only one out of every 160 samples of the magnetometer is
given to the fusion algorithm, so in a real system the magnetometer could be sampled at a much
lower rate.

imuFs = 160;
gpsFs = 1;

% Define where on the Earth this simulated scenario takes place using the
% latitude, longitude and altitude.
refloc = [42.2825 -72.3430 53.0352];

% Validate that the |gpsFs| divides |imuFs|. This allows the sensor sample
% rates to be simulated using a nested for loop without complex sample rate
% matching.

imuSamplesPerGPS = (imuFs/gpsFs);
assert(imuSamplesPerGPS == fix(imuSamplesPerGPS), ...
 'GPS sampling rate must be an integer factor of IMU sampling rate.');

Fusion Filter

Create the filter to fuse IMU + GPS measurements. The fusion filter uses an extended Kalman filter to
track orientation (as a quaternion), velocity, position, sensor biases, and the geomagnetic vector.

This insfilterMARG has a few methods to process sensor data, including predict, fusemag and
fusegps. The predict method takes the accelerometer and gyroscope samples from the IMU as
inputs. Call the predict method each time the accelerometer and gyroscope are sampled. This
method predicts the states one time step ahead based on the accelerometer and gyroscope. The error
covariance of the extended Kalman filter is updated here.

The fusegps method takes GPS samples as input. This method updates the filter states based on
GPS samples by computing a Kalman gain that weights the various sensor inputs according to their
uncertainty. An error covariance is also updated here, this time using the Kalman gain as well.

The fusemag method is similar but updates the states, Kalman gain, and error covariance based on
the magnetometer samples.

 IMU and GPS Fusion for Inertial Navigation

6-17

Though the insfilterMARG takes accelerometer and gyroscope samples as inputs, these are
integrated to compute delta velocities and delta angles, respectively. The filter tracks the bias of the
magnetometer and these integrated signals.

fusionfilt = insfilterMARG;
fusionfilt.IMUSampleRate = imuFs;
fusionfilt.ReferenceLocation = refloc;

UAV Trajectory

This example uses a saved trajectory recorded from a UAV as the ground truth. This trajectory is fed
to several sensor simulators to compute simulated accelerometer, gyroscope, magnetometer, and GPS
data streams.

% Load the "ground truth" UAV trajectory.
load LoggedQuadcopter.mat trajData;
trajOrient = trajData.Orientation;
trajVel = trajData.Velocity;
trajPos = trajData.Position;
trajAcc = trajData.Acceleration;
trajAngVel = trajData.AngularVelocity;

% Initialize the random number generator used in the simulation of sensor
% noise.
rng(1)

GPS Sensor

Set up the GPS at the specified sample rate and reference location. The other parameters control the
nature of the noise in the output signal.

gps = gpsSensor('UpdateRate', gpsFs);
gps.ReferenceLocation = refloc;
gps.DecayFactor = 0.5; % Random walk noise parameter
gps.HorizontalPositionAccuracy = 1.6;
gps.VerticalPositionAccuracy = 1.6;
gps.VelocityAccuracy = 0.1;

IMU Sensors

Typically, a UAV uses an integrated MARG sensor (Magnetic, Angular Rate, Gravity) for pose
estimation. To model a MARG sensor, define an IMU sensor model containing an accelerometer,
gyroscope, and magnetometer. In a real-world application the three sensors could come from a single
integrated circuit or separate ones. The property values set here are typical for low-cost MEMS
sensors.

imu = imuSensor('accel-gyro-mag', 'SampleRate', imuFs);
imu.MagneticField = [19.5281 -5.0741 48.0067];

% Accelerometer
imu.Accelerometer.MeasurementRange = 19.6133;
imu.Accelerometer.Resolution = 0.0023928;
imu.Accelerometer.ConstantBias = 0.19;
imu.Accelerometer.NoiseDensity = 0.0012356;

% Gyroscope
imu.Gyroscope.MeasurementRange = deg2rad(250);
imu.Gyroscope.Resolution = deg2rad(0.0625);

6 Featured Examples

6-18

imu.Gyroscope.ConstantBias = deg2rad(3.125);
imu.Gyroscope.AxesMisalignment = 1.5;
imu.Gyroscope.NoiseDensity = deg2rad(0.025);

% Magnetometer
imu.Magnetometer.MeasurementRange = 1000;
imu.Magnetometer.Resolution = 0.1;
imu.Magnetometer.ConstantBias = 100;
imu.Magnetometer.NoiseDensity = 0.3/ sqrt(50);

Initialize the State Vector of the insfilterMARG

The insfilterMARG tracks the pose states in a 22-element vector. The states are:

 State Units State Vector Index
 Orientation as a quaternion 1:4
 Position (NED) m 5:7
 Velocity (NED) m/s 8:10
 Delta Angle Bias (XYZ) rad 11:13
 Delta Velocity Bias (XYZ) m/s 14:16
 Geomagnetic Field Vector (NED) uT 17:19
 Magnetometer Bias (XYZ) uT 20:22

Ground truth is used to help initialize the filter states, so the filter converges to good answers quickly.

% Initialize the states of the filter

initstate = zeros(22,1);
initstate(1:4) = compact(meanrot(trajOrient(1:100)));
initstate(5:7) = mean(trajPos(1:100,:), 1);
initstate(8:10) = mean(trajVel(1:100,:), 1);
initstate(11:13) = imu.Gyroscope.ConstantBias./imuFs;
initstate(14:16) = imu.Accelerometer.ConstantBias./imuFs;
initstate(17:19) = imu.MagneticField;
initstate(20:22) = imu.Magnetometer.ConstantBias;

fusionfilt.State = initstate;

Initialize the Variances of the insfilterMARG

The insfilterMARG measurement noises describe how much noise is corrupting the sensor reading.
These values are based on the imuSensor and gpsSensor parameters.

The process noises describe how well the filter equations describe the state evolution. Process noises
are determined empirically using parameter sweeping to jointly optimize position and orientation
estimates from the filter.

% Measurement noises
Rmag = 0.09; % Magnetometer measurement noise
Rvel = 0.01; % GPS Velocity measurement noise
Rpos = 2.56; % GPS Position measurement noise

% Process noises
fusionfilt.AccelerometerBiasNoise = 2e-4;
fusionfilt.AccelerometerNoise = 2;
fusionfilt.GyroscopeBiasNoise = 1e-16;
fusionfilt.GyroscopeNoise = 1e-5;
fusionfilt.MagnetometerBiasNoise = 1e-10;

 IMU and GPS Fusion for Inertial Navigation

6-19

fusionfilt.GeomagneticVectorNoise = 1e-12;

% Initial error covariance
fusionfilt.StateCovariance = 1e-9*ones(22);

Initialize Scopes

The HelperScrollingPlotter scope enables plotting of variables over time. It is used here to
track errors in pose. The HelperPoseViewer scope allows 3-D visualization of the filter estimate
and ground truth pose. The scopes can slow the simulation. To disable a scope, set the corresponding
logical variable to false.

useErrScope = true; % Turn on the streaming error plot
usePoseView = true; % Turn on the 3-D pose viewer

if useErrScope
 errscope = HelperScrollingPlotter(...
 'NumInputs', 4, ...
 'TimeSpan', 10, ...
 'SampleRate', imuFs, ...
 'YLabel', {'degrees', ...
 'meters', ...
 'meters', ...
 'meters'}, ...
 'Title', {'Quaternion Distance', ...
 'Position X Error', ...
 'Position Y Error', ...
 'Position Z Error'}, ...
 'YLimits', ...
 [-1, 1
 -2, 2
 -2 2
 -2 2]);
end

if usePoseView
 posescope = HelperPoseViewer(...
 'XPositionLimits', [-15 15], ...
 'YPositionLimits', [-15, 15], ...
 'ZPositionLimits', [-10 10]);
end

Simulation Loop

The main simulation loop is a while loop with a nested for loop. The while loop executes at gpsFs,
which is the GPS sample rate. The nested for loop executes at imuFs, which is the IMU sample rate.
The scopes are updated at the IMU sample rate.

% Loop setup - |trajData| has about 142 seconds of recorded data.
secondsToSimulate = 50; % simulate about 50 seconds
numsamples = secondsToSimulate*imuFs;

loopBound = floor(numsamples);
loopBound = floor(loopBound/imuFs)*imuFs; % ensure enough IMU Samples

% Log data for final metric computation.
pqorient = quaternion.zeros(loopBound,1);
pqpos = zeros(loopBound,3);

6 Featured Examples

6-20

fcnt = 1;

while(fcnt <=loopBound)
 % |predict| loop at IMU update frequency.
 for ff=1:imuSamplesPerGPS
 % Simulate the IMU data from the current pose.
 [accel, gyro, mag] = imu(trajAcc(fcnt,:), trajAngVel(fcnt, :), ...
 trajOrient(fcnt));

 % Use the |predict| method to estimate the filter state based
 % on the simulated accelerometer and gyroscope signals.
 predict(fusionfilt, accel, gyro);

 % Acquire the current estimate of the filter states.
 [fusedPos, fusedOrient] = pose(fusionfilt);

 % Save the position and orientation for post processing.
 pqorient(fcnt) = fusedOrient;
 pqpos(fcnt,:) = fusedPos;

 % Compute the errors and plot.
 if useErrScope
 orientErr = rad2deg(dist(fusedOrient, ...
 trajOrient(fcnt)));
 posErr = fusedPos - trajPos(fcnt,:);
 errscope(orientErr, posErr(1), posErr(2), posErr(3));
 end

 % Update the pose viewer.
 if usePoseView
 posescope(pqpos(fcnt,:), pqorient(fcnt), trajPos(fcnt,:), ...
 trajOrient(fcnt,:));
 end
 fcnt = fcnt + 1;
 end

 % This next step happens at the GPS sample rate.
 % Simulate the GPS output based on the current pose.
 [lla, gpsvel] = gps(trajPos(fcnt,:), trajVel(fcnt,:));

 % Correct the filter states based on the GPS data and magnetic
 % field measurements.
 fusegps(fusionfilt, lla, Rpos, gpsvel, Rvel);
 fusemag(fusionfilt, mag, Rmag);

end

 IMU and GPS Fusion for Inertial Navigation

6-21

6 Featured Examples

6-22

Error Metric Computation

Position and orientation estimates were logged throughout the simulation. Now compute an end-to-
end root mean squared error for both position and orientation.

posd = pqpos(1:loopBound,:) - trajPos(1:loopBound, :);

% For orientation, quaternion distance is a much better alternative to
% subtracting Euler angles, which have discontinuities. The quaternion
% distance can be computed with the |dist| function, which gives the
% angular difference in orientation in radians. Convert to degrees
% for display in the command window.

quatd = rad2deg(dist(pqorient(1:loopBound), trajOrient(1:loopBound)));

% Display RMS errors in the command window.
fprintf('\n\nEnd-to-End Simulation Position RMS Error\n');

End-to-End Simulation Position RMS Error

msep = sqrt(mean(posd.^2));
fprintf('\tX: %.2f , Y: %.2f, Z: %.2f (meters)\n\n',msep(1), ...
 msep(2), msep(3));

 X: 0.57 , Y: 0.53, Z: 0.68 (meters)

fprintf('End-to-End Quaternion Distance RMS Error (degrees) \n');

 IMU and GPS Fusion for Inertial Navigation

6-23

End-to-End Quaternion Distance RMS Error (degrees)

fprintf('\t%.2f (degrees)\n\n', sqrt(mean(quatd.^2)));

 0.32 (degrees)

6 Featured Examples

6-24

Estimate Position and Orientation of a Ground Vehicle
This example shows how to estimate the position and orientation of ground vehicles by fusing data
from an inertial measurement unit (IMU) and a global positioning system (GPS) receiver.

Simulation Setup

Set the sampling rates. In a typical system, the accelerometer and gyroscope in the IMU run at
relatively high sample rates. The complexity of processing data from those sensors in the fusion
algorithm is relatively low. Conversely, the GPS runs at a relatively low sample rate and the
complexity associated with processing it is high. In this fusion algorithm the GPS samples are
processed at a low rate, and the accelerometer and gyroscope samples are processed together at the
same high rate.

To simulate this configuration, the IMU (accelerometer and gyroscope) is sampled at 100 Hz, and the
GPS is sampled at 10 Hz.

imuFs = 100;
gpsFs = 10;

% Define where on the Earth this simulation takes place using latitude,
% longitude, and altitude (LLA) coordinates.
localOrigin = [42.2825 -71.343 53.0352];

% Validate that the |gpsFs| divides |imuFs|. This allows the sensor sample
% rates to be simulated using a nested for loop without complex sample rate
% matching.

imuSamplesPerGPS = (imuFs/gpsFs);
assert(imuSamplesPerGPS == fix(imuSamplesPerGPS), ...
 'GPS sampling rate must be an integer factor of IMU sampling rate.');

Fusion Filter

Create the filter to fuse IMU + GPS measurements. The fusion filter uses an extended Kalman filter to
track orientation (as a quaternion), position, velocity, and sensor biases.

The insfilterNonholonomic object that has two main methods: predict and fusegps. The
predict method takes the accelerometer and gyroscope samples from the IMU as input. Call the
predict method each time the accelerometer and gyroscope are sampled. This method predicts the
states forward one time step based on the accelerometer and gyroscope. The error covariance of the
extended Kalman filter is updated in this step.

The fusegps method takes the GPS samples as input. This method updates the filter states based on
the GPS sample by computing a Kalman gain that weights the various sensor inputs according to
their uncertainty. An error covariance is also updated in this step, this time using the Kalman gain as
well.

The insfilterNonholonomic object has two main properties: IMUSampleRate and
DecimationFactor. The ground vehicle has two velocity constraints that assume it does not bounce
off the ground or slide on the ground. These constraints are applied using the extended Kalman filter
update equations. These updates are applied to the filter states at a rate of IMUSampleRate/
DecimationFactor Hz.

gndFusion = insfilterNonholonomic('ReferenceFrame', 'ENU', ...
 'IMUSampleRate', imuFs, ...

 Estimate Position and Orientation of a Ground Vehicle

6-25

 'ReferenceLocation', localOrigin, ...
 'DecimationFactor', 2);

Create Ground Vehicle Trajectory

The waypointTrajectory object calculates pose based on specified sampling rate, waypoints, times
of arrival, and orientation. Specify the parameters of a circular trajectory for the ground vehicle.

% Trajectory parameters
r = 8.42; % (m)
speed = 2.50; % (m/s)
center = [0, 0]; % (m)
initialYaw = 90; % (degrees)
numRevs = 2;

% Define angles theta and corresponding times of arrival t.
revTime = 2*pi*r / speed;
theta = (0:pi/2:2*pi*numRevs).';
t = linspace(0, revTime*numRevs, numel(theta)).';

% Define position.
x = r .* cos(theta) + center(1);
y = r .* sin(theta) + center(2);
z = zeros(size(x));
position = [x, y, z];

% Define orientation.
yaw = theta + deg2rad(initialYaw);
yaw = mod(yaw, 2*pi);
pitch = zeros(size(yaw));
roll = zeros(size(yaw));
orientation = quaternion([yaw, pitch, roll], 'euler', ...
 'ZYX', 'frame');

% Generate trajectory.
groundTruth = waypointTrajectory('SampleRate', imuFs, ...
 'Waypoints', position, ...
 'TimeOfArrival', t, ...
 'Orientation', orientation);

% Initialize the random number generator used to simulate sensor noise.
rng('default');

GPS Receiver

Set up the GPS at the specified sample rate and reference location. The other parameters control the
nature of the noise in the output signal.

gps = gpsSensor('UpdateRate', gpsFs, 'ReferenceFrame', 'ENU');
gps.ReferenceLocation = localOrigin;
gps.DecayFactor = 0.5; % Random walk noise parameter
gps.HorizontalPositionAccuracy = 1.0;
gps.VerticalPositionAccuracy = 1.0;
gps.VelocityAccuracy = 0.1;

IMU Sensors

Typically, ground vehicles use a 6-axis IMU sensor for pose estimation. To model an IMU sensor,
define an IMU sensor model containing an accelerometer and gyroscope. In a real-world application,

6 Featured Examples

6-26

the two sensors could come from a single integrated circuit or separate ones. The property values set
here are typical for low-cost MEMS sensors.

imu = imuSensor('accel-gyro', ...
 'ReferenceFrame', 'ENU', 'SampleRate', imuFs);

% Accelerometer
imu.Accelerometer.MeasurementRange = 19.6133;
imu.Accelerometer.Resolution = 0.0023928;
imu.Accelerometer.NoiseDensity = 0.0012356;

% Gyroscope
imu.Gyroscope.MeasurementRange = deg2rad(250);
imu.Gyroscope.Resolution = deg2rad(0.0625);
imu.Gyroscope.NoiseDensity = deg2rad(0.025);

Initialize the States of the insfilterNonholonomic

The states are:

States Units Index
Orientation (quaternion parts) 1:4
Gyroscope Bias (XYZ) rad/s 5:7
Position (NED) m 8:10
Velocity (NED) m/s 11:13
Accelerometer Bias (XYZ) m/s^2 14:16

Ground truth is used to help initialize the filter states, so the filter converges to good answers quickly.

% Get the initial ground truth pose from the first sample of the trajectory
% and release the ground truth trajectory to ensure the first sample is not
% skipped during simulation.
[initialPos, initialAtt, initialVel] = groundTruth();
reset(groundTruth);

% Initialize the states of the filter
gndFusion.State(1:4) = compact(initialAtt).';
gndFusion.State(5:7) = imu.Gyroscope.ConstantBias;
gndFusion.State(8:10) = initialPos.';
gndFusion.State(11:13) = initialVel.';
gndFusion.State(14:16) = imu.Accelerometer.ConstantBias;

Initialize the Variances of the insfilterNonholonomic

The measurement noises describe how much noise is corrupting the GPS reading based on the
gpsSensor parameters and how much uncertainty is in the vehicle dynamic model.

The process noises describe how well the filter equations describe the state evolution. Process noises
are determined empirically using parameter sweeping to jointly optimize position and orientation
estimates from the filter.

% Measurement noises
Rvel = gps.VelocityAccuracy.^2;
Rpos = gps.HorizontalPositionAccuracy.^2;

% The dynamic model of the ground vehicle for this filter assumes there is
% no side slip or skid during movement. This means that the velocity is
% constrained to only the forward body axis. The other two velocity axis

 Estimate Position and Orientation of a Ground Vehicle

6-27

% readings are corrected with a zero measurement weighted by the
% |ZeroVelocityConstraintNoise| parameter.
gndFusion.ZeroVelocityConstraintNoise = 1e-2;

% Process noises
gndFusion.GyroscopeNoise = 4e-6;
gndFusion.GyroscopeBiasNoise = 4e-14;
gndFusion.AccelerometerNoise = 4.8e-2;
gndFusion.AccelerometerBiasNoise = 4e-14;

% Initial error covariance
gndFusion.StateCovariance = 1e-9*ones(16);

Initialize Scopes

The HelperScrollingPlotter scope enables plotting of variables over time. It is used here to
track errors in pose. The HelperPoseViewer scope allows 3-D visualization of the filter estimate
and ground truth pose. The scopes can slow the simulation. To disable a scope, set the corresponding
logical variable to false.

useErrScope = true; % Turn on the streaming error plot
usePoseView = true; % Turn on the 3D pose viewer

if useErrScope
 errscope = HelperScrollingPlotter(...
 'NumInputs', 4, ...
 'TimeSpan', 10, ...
 'SampleRate', imuFs, ...
 'YLabel', {'degrees', ...
 'meters', ...
 'meters', ...
 'meters'}, ...
 'Title', {'Quaternion Distance', ...
 'Position X Error', ...
 'Position Y Error', ...
 'Position Z Error'}, ...
 'YLimits', ...
 [-1, 1
 -1, 1
 -1, 1
 -1, 1]);
end

if usePoseView
 viewer = HelperPoseViewer(...
 'XPositionLimits', [-15, 15], ...
 'YPositionLimits', [-15, 15], ...
 'ZPositionLimits', [-5, 5], ...
 'ReferenceFrame', 'ENU');
end

Simulation Loop

The main simulation loop is a while loop with a nested for loop. The while loop executes at the gpsFs,
which is the GPS measurement rate. The nested for loop executes at the imuFs, which is the IMU
sample rate. The scopes are updated at the IMU sample rate.

6 Featured Examples

6-28

totalSimTime = 30; % seconds

% Log data for final metric computation.
numsamples = floor(min(t(end), totalSimTime) * gpsFs);
truePosition = zeros(numsamples,3);
trueOrientation = quaternion.zeros(numsamples,1);
estPosition = zeros(numsamples,3);
estOrientation = quaternion.zeros(numsamples,1);

idx = 0;

for sampleIdx = 1:numsamples
 % Predict loop at IMU update frequency.
 for i = 1:imuSamplesPerGPS
 if ~isDone(groundTruth)
 idx = idx + 1;

 % Simulate the IMU data from the current pose.
 [truePosition(idx,:), trueOrientation(idx,:), ...
 trueVel, trueAcc, trueAngVel] = groundTruth();
 [accelData, gyroData] = imu(trueAcc, trueAngVel, ...
 trueOrientation(idx,:));

 % Use the predict method to estimate the filter state based
 % on the accelData and gyroData arrays.
 predict(gndFusion, accelData, gyroData);

 % Log the estimated orientation and position.
 [estPosition(idx,:), estOrientation(idx,:)] = pose(gndFusion);

 % Compute the errors and plot.
 if useErrScope
 orientErr = rad2deg(...
 dist(estOrientation(idx,:), trueOrientation(idx,:)));
 posErr = estPosition(idx,:) - truePosition(idx,:);
 errscope(orientErr, posErr(1), posErr(2), posErr(3));
 end

 % Update the pose viewer.
 if usePoseView
 viewer(estPosition(idx,:), estOrientation(idx,:), ...
 truePosition(idx,:), estOrientation(idx,:));
 end
 end
 end

 if ~isDone(groundTruth)
 % This next step happens at the GPS sample rate.
 % Simulate the GPS output based on the current pose.
 [lla, gpsVel] = gps(truePosition(idx,:), trueVel);

 % Update the filter states based on the GPS data.
 fusegps(gndFusion, lla, Rpos, gpsVel, Rvel);
 end
end

 Estimate Position and Orientation of a Ground Vehicle

6-29

6 Featured Examples

6-30

Error Metric Computation

Position and orientation were logged throughout the simulation. Now compute an end-to-end root
mean squared error for both position and orientation.

posd = estPosition - truePosition;

% For orientation, quaternion distance is a much better alternative to
% subtracting Euler angles, which have discontinuities. The quaternion
% distance can be computed with the |dist| function, which gives the
% angular difference in orientation in radians. Convert to degrees for
% display in the command window.

quatd = rad2deg(dist(estOrientation, trueOrientation));

% Display RMS errors in the command window.
fprintf('\n\nEnd-to-End Simulation Position RMS Error\n');
msep = sqrt(mean(posd.^2));
fprintf('\tX: %.2f , Y: %.2f, Z: %.2f (meters)\n\n', msep(1), ...
 msep(2), msep(3));

fprintf('End-to-End Quaternion Distance RMS Error (degrees) \n');
fprintf('\t%.2f (degrees)\n\n', sqrt(mean(quatd.^2)));

End-to-End Simulation Position RMS Error

 Estimate Position and Orientation of a Ground Vehicle

6-31

 X: 1.16 , Y: 0.99, Z: 0.03 (meters)

End-to-End Quaternion Distance RMS Error (degrees)
 0.09 (degrees)

6 Featured Examples

6-32

Rotations, Orientation, and Quaternions
This example reviews concepts in three-dimensional rotations and how quaternions are used to
describe orientation and rotations. Quaternions are a skew field of hypercomplex numbers. They have
found applications in aerospace, computer graphics, and virtual reality. In MATLAB®, quaternion
mathematics can be represented by manipulating the quaternion class.

The HelperDrawRotation class is used to illustrate several portions of this example.

dr = HelperDrawRotation;

Rotations in Three Dimensions

All rotations in 3-D can be defined by an axis of rotation and an angle of rotation about that axis.
Consider the 3-D image of a teapot in the leftmost plot. The teapot is rotated by 45 degrees around
the Z-axis in the second plot. A more complex rotation of 15 degrees around the axis [1 0 1] is shown
in the third plot. Quaternions encapsulate the axis and angle of rotation and have an algebra for
manipulating these rotations. The quaternion class, and this example, use the "right-hand rule"
convention to define rotations. That is, positive rotations are clockwise around the axis of rotation
when viewed from the origin.

dr.drawTeapotRotations;

Point Rotation

The vertices of the teapot were rotated about the axis of rotation in the reference frame. Consider a
point (0.7, 0.5) rotated 30 degrees about the Z-axis.

figure;
dr.draw2DPointRotation(gca);

 Rotations, Orientation, and Quaternions

6-33

Frame Rotation

Frame rotation is, in some sense, the opposite of point rotation. In frame rotation, the points of the
object stay fixed, but the frame of reference is rotated. Again, consider the point (0.7, 0.5). Now the
reference frame is rotated by 30 degrees around the Z-axis. Note that while the point (0.7, 0.5) stays
fixed, it has different coordinates in the new, rotated frame of reference.

figure;
dr.draw2DFrameRotation(gca);

6 Featured Examples

6-34

Orientation

Orientation refers to the angular displacement of an object relative to a frame of reference. Typically,
orientation is described by the rotation that causes this angular displacement from a starting
orientation. In this example, orientation is defined as the rotation that takes a quantity in a parent
reference frame to a child reference frame. Orientation is usually given as a quaternion, rotation
matrix, set of Euler angles, or rotation vector. It is useful to think about orientation as a frame
rotation: the child reference frame is rotated relative to the parent frame.

Consider an example where the child reference frame is rotated 30 degrees around the vector [1/3
2/3 2/3].

figure;
dr.draw3DOrientation(gca, [1/3 2/3 2/3], 30);

 Rotations, Orientation, and Quaternions

6-35

Quaternions

Quaternions are numbers of the form

where

and and are real numbers. In the rest of this example, the four numbers and are
referred to as the parts of the quaternion.

Quaternions for Rotations and Orientation

The axis and the angle of rotation are encapsulated in the quaternion parts. For a unit vector axis of
rotation [x, y, z], and rotation angle , the quaternion describing this rotation is

Note that to describe a rotation using a quaternion, the quaternion must be a unit quaternion. A unit
quaternion has a norm of 1, where the norm is defined as

6 Featured Examples

6-36

There are a variety of ways to construct a quaternion in MATLAB, for example:

q1 = quaternion(1,2,3,4)

q1 =

 quaternion

 1 + 2i + 3j + 4k

Arrays of quaternions can be made in the same way:

quaternion([1 10; -1 1], [2 20; -2 2], [3 30; -3 3], [4 40; -4 4])

ans =

 2x2 quaternion array

 1 + 2i + 3j + 4k 10 + 20i + 30j + 40k
 -1 - 2i - 3j - 4k 1 + 2i + 3j + 4k

Arrays with four columns can also be used to construct quaternions, with each column representing a
quaternion part:

qmgk = quaternion(magic(4))

qmgk =

 4x1 quaternion array

 16 + 2i + 3j + 13k
 5 + 11i + 10j + 8k
 9 + 7i + 6j + 12k
 4 + 14i + 15j + 1k

Quaternions can be indexed and manipulated just like any other array:

qmgk(3)

ans =

 quaternion

 9 + 7i + 6j + 12k

reshape(qmgk,2,2)

 Rotations, Orientation, and Quaternions

6-37

ans =

 2x2 quaternion array

 16 + 2i + 3j + 13k 9 + 7i + 6j + 12k
 5 + 11i + 10j + 8k 4 + 14i + 15j + 1k

[q1; q1]

ans =

 2x1 quaternion array

 1 + 2i + 3j + 4k
 1 + 2i + 3j + 4k

Quaternion Math

Quaternions have well-defined arithmetic operations. Addition and subtraction are similar to complex
numbers: parts are added/subtracted independently. Multiplication is more complicated because of
the earlier equation:

This means that multiplication of quaternions is not commutative. That is, for quaternions
and . However, every quaternion has a multiplicative inverse, so quaternions can be divided. Arrays
of the quaternion class can be added, subtracted, multiplied, and divided in MATLAB.

q = quaternion(1,2,3,4);
p = quaternion(-5,6,-7,8);

Addition

p + q

ans =

 quaternion

 -4 + 8i - 4j + 12k

Subtraction

p - q

ans =

 quaternion

6 Featured Examples

6-38

 -6 + 4i - 10j + 4k

Multiplication

p*q

ans =

 quaternion

 -28 - 56i - 30j + 20k

Multiplication in the reverse order (note the different result)

q*p

ans =

 quaternion

 -28 + 48i - 14j - 44k

Right division of p by q is equivalent to .

p./q

ans =

 quaternion

 0.6 + 2.2667i + 0.53333j - 0.13333k

Left division of q by p is equivalent to .

p.\q

ans =

 quaternion

 0.10345 + 0.2069i + 0j - 0.34483k

The conjugate of a quaternion is formed by negating each of the non-real parts, similar to conjugation
for a complex number:

 Rotations, Orientation, and Quaternions

6-39

conj(p)

ans =

 quaternion

 -5 - 6i + 7j - 8k

Quaternions can be normalized in MATLAB:

pnormed = normalize(p)

pnormed =

 quaternion

 -0.37905 + 0.45486i - 0.53067j + 0.60648k

norm(pnormed)

ans =

 1

Point and Frame Rotations with Quaternions

Quaternions can be used to rotate points in a static frame of reference, or to rotate the frame of
reference itself. The rotatepoint function rotates a point using a quaternion q
through the following equation:

where is

and indicates quaternion conjugation. Note the above quaternion multiplication results in a
quaternion with the real part, , equal to 0. The , , and parts of the result form the rotated point
(, ,).

Consider the example of point rotation from above. The point (0.7, 0.5) was rotated 30 degrees
around the Z-axis. In three dimensions this point has a 0 Z-coordinate. Using the axis-angle
formulation, a quaternion can be constructed using [0 0 1] as the axis of rotation.

ang = deg2rad(30);
q = quaternion(cos(ang/2), 0, 0, sin(ang/2));
pt = [0.7, 0.5, 0]; % Z-coordinate is 0 in the X-Y plane
ptrot = rotatepoint(q, pt)

6 Featured Examples

6-40

ptrot =

 0.3562 0.7830 0

Similarly, the rotateframe function takes a quaternion and point to compute

Again the above quaternion multiplication results in a quaternion with 0 real part. The (, ,) parts
of the result form the coordinate of the point in the new, rotated reference frame. Using the
quaternion class:

ptframerot = rotateframe(q, pt)

ptframerot =

 0.8562 0.0830 0

A quaternion and its conjugate have opposite effects because of the symmetry in the point and frame
rotation equations. Rotating by the conjugate "undoes" the rotation.

rotateframe(conj(q), ptframerot)

ans =

 0.7000 0.5000 0

Because of the symmetry of the equations, this code performs the same rotation.

rotatepoint(q, ptframerot)

ans =

 0.7000 0.5000 0

Other Rotation Representations

Often rotations and orientations are described using alternate means: Euler angles, rotation matrices,
and/or rotation vectors. All of these interoperate with quaternions in MATLAB.

Euler angles are frequently used because they are easy to interpret. Consider a frame of reference
rotated by 30 degrees around the Z-axis, then 20 degrees around the Y-axis, and then -50 degrees
around the X-axis. Note here, and throughout, the rotations around each axis are intrinsic: each
subsequent rotation is around the newly created set of axes. In other words, the second rotation is
around the "new" Y-axis created by the first rotation, not around the original Y-axis.

figure;
euld = [30 20 -50];
dr.drawEulerRotation(gca, euld);

 Rotations, Orientation, and Quaternions

6-41

To build a quaternion from these Euler angles for the purpose of frame rotation, use the quaternion
constructor. Since the order of rotations is around the Z-axis first, then around the new Y-axis, and
finally around the new X-axis, use the 'ZYX' flag.

qeul = quaternion(deg2rad(euld), 'euler', 'ZYX', 'frame')

qeul =

 quaternion

 0.84313 - 0.44275i + 0.044296j + 0.30189k

The 'euler' flag indicates that the first argument is in radians. If the argument is in degrees, use
the 'eulerd' flag.

qeuld = quaternion(euld, 'eulerd', 'ZYX', 'frame')

qeuld =

 quaternion

 0.84313 - 0.44275i + 0.044296j + 0.30189k

6 Featured Examples

6-42

To convert back to Euler angles:

rad2deg(euler(qeul, 'ZYX', 'frame'))

ans =

 30.0000 20.0000 -50.0000

Equivalently, the eulerd method can be used.

eulerd(qeul, 'ZYX', 'frame')

ans =

 30.0000 20.0000 -50.0000

Alternatively, this same rotation can be represented as a rotation matrix:

rmat = rotmat(qeul, 'frame')

rmat =

 0.8138 0.4698 -0.3420
 -0.5483 0.4257 -0.7198
 -0.1926 0.7733 0.6040

The conversion back to quaternions is similar:

quaternion(rmat, 'rotmat', 'frame')

ans =

 quaternion

 0.84313 - 0.44275i + 0.044296j + 0.30189k

Just as a quaternion can be used for either point or frame rotation, it can be converted to a rotation
matrix (or set of Euler angles) specifically for point or frame rotation. The rotation matrix for point
rotation is the transpose of the matrix for frame rotation. To convert between rotation
representations, it is necessary to specify 'point' or 'frame'.

The rotation matrix for the point rotation section of this example is:

rotmatPoint = rotmat(q, 'point')

rotmatPoint =

 0.8660 -0.5000 0
 0.5000 0.8660 0

 Rotations, Orientation, and Quaternions

6-43

 0 0 1.0000

To find the location of the rotated point, right-multiply rotmatPoint by the transposed array pt.

rotmatPoint * (pt')

ans =

 0.3562
 0.7830
 0

The rotation matrix for the frame rotation section of this example is:

rotmatFrame = rotmat(q, 'frame')

rotmatFrame =

 0.8660 0.5000 0
 -0.5000 0.8660 0
 0 0 1.0000

To find the location of the point in the rotated reference frame, right-multiply rotmatFrame by the
transposed array pt.

rotmatFrame * (pt')

ans =

 0.8562
 0.0830
 0

A rotation vector is an alternate, compact rotation encapsulation. A rotation vector is simply a three-
element vector that represents the unit length axis of rotation scaled-up by the angle of rotation in
radians. There is no frame-ness or point-ness associated with a rotation vector. To convert to a
rotation vector:

rv = rotvec(qeul)

rv =

 -0.9349 0.0935 0.6375

To convert to a quaternion:

quaternion(rv, 'rotvec')

ans =

6 Featured Examples

6-44

 quaternion

 0.84313 - 0.44275i + 0.044296j + 0.30189k

Distance

One advantage of quaternions over Euler angles is the lack of discontinuities. Euler angles have
discontinuities that vary depending on the convention being used. The dist function compares the
effect of rotation by two different quaternions. The result is a number in the range of 0 to pi.
Consider two quaternions constructed from Euler angles:

eul1 = [0, 10, 0];
eul2 = [0, 15, 0];
qdist1 = quaternion(deg2rad(eul1), 'euler', 'ZYX', 'frame');
qdist2 = quaternion(deg2rad(eul2), 'euler', 'ZYX', 'frame');

Subtracting the Euler angles, you can see there is no rotation around the Z-axis or X-axis.

eul2 - eul1

ans =

 0 5 0

The difference between these two rotations is five degrees around the Y-axis. The dist shows the
difference as well.

rad2deg(dist(qdist1, qdist2))

ans =

 5.0000

For Euler angles such as eul1 and eul2, computing angular distance is trivial. A more complex
example, which spans an Euler angle discontinuity, is:

eul3 = [0, 89, 0];
eul4 = [180, 89, 180];
qdist3 = quaternion(deg2rad(eul3), 'euler', 'ZYX', 'frame');
qdist4 = quaternion(deg2rad(eul4), 'euler', 'ZYX', 'frame');

Though eul3 and eul4 represent nearly the same orientation, simple Euler angle subtraction gives
the impression that these two orientations are very far apart.

euldiff = eul4 - eul3

euldiff =

 180 0 180

 Rotations, Orientation, and Quaternions

6-45

Using the dist function on the quaternions shows that there is only a two-degree difference in these
rotations:

euldist = rad2deg(dist(qdist3, qdist4))

euldist =

 2.0000

A quaternion and its negative represent the same rotation. This is not obvious from subtracting
quaternions, but the dist function makes it clear.

qpos = quaternion(-cos(pi/4), 0 ,0, sin(pi/4))

qpos =

 quaternion

 -0.70711 + 0i + 0j + 0.70711k

qneg = -qpos

qneg =

 quaternion

 0.70711 + 0i + 0j - 0.70711k

qdiff = qpos - qneg

qdiff =

 quaternion

 -1.4142 + 0i + 0j + 1.4142k

dist(qpos, qneg)

ans =

 0

Supported Functions

The quaternion class lets you effectively describe rotations and orientations in MATLAB. The full
list of quaternion-supported functions can be found with the methods function:

6 Featured Examples

6-46

methods('quaternion')

Methods for class quaternion:

angvel ismatrix prod
cat isnan quaternion
classUnderlying isrow rdivide
compact isscalar reshape
conj isvector rotateframe
ctranspose ldivide rotatepoint
disp length rotmat
dist log rotvec
double meanrot rotvecd
eq minus single
euler mtimes size
eulerd ndims slerp
exp ne times
horzcat norm transpose
iscolumn normalize uminus
isempty numel validateattributes
isequal parts vertcat
isequaln permute
isfinite plus
isinf power

Static methods:

ones zeros

 Rotations, Orientation, and Quaternions

6-47

Lowpass Filter Orientation Using Quaternion SLERP
This example shows how to use spherical linear interpolation (SLERP) to create sequences of
quaternions and lowpass filter noisy trajectories. SLERP is a commonly used computer graphics
technique for creating animations of a rotating object.

SLERP Overview

Consider a pair of quaternions and . Spherical linear interpolation allows you to create a
sequence of quaternions that vary smoothly between and with a constant angular velocity.
SLERP uses an interpolation parameter h that can vary between 0 and 1 and determines how close
the output quaternion is to either or .

The original formulation of quaternion SLERP was given by Ken Shoemake [1] as:

An alternate formulation with sinusoids (used in the slerp function implementation) is:

where is the dot product of the quaternion parts. Note that .

SLERP vs Linear Interpolation of Quaternion Parts

Consider the following example. Build two quaternions from Euler angles.

q0 = quaternion([-80 10 0], 'eulerd', 'ZYX', 'frame');
q1 = quaternion([80 70 70], 'eulerd', 'ZYX', 'frame');

To find a quaternion 30 percent of the way from q0 to q1, specify the slerp parameter as 0.3.

p30 = slerp(q0, q1, 0.3);

To view the interpolated quaternion's Euler angle representation, use the eulerd function.

eulerd(p30, 'ZYX', 'frame')

ans =

 -56.6792 33.2464 -9.6740

To create a smooth trajectory between q0 and q1, specify the slerp interpolation parameter as a
vector of evenly spaced numbers between 0 and 1.

dt = 0.01;
h = (0:dt:1).';
trajSlerped = slerp(q0, q1, h);

Compare the results of the SLERP algorithm with a trajectory between q0 and q1, using simple linear
interpolation (LERP) of each quaternion part.

partsLinInterp = interp1([0;1], compact([q0;q1]), h, 'linear');

6 Featured Examples

6-48

Note that linear interpolation does not give unit quaternions, so they must be normalized.

trajLerped = normalize(quaternion(partsLinInterp));

Compute the angular velocities from each approach.

avSlerp = helperQuat2AV(trajSlerped, dt);
avLerp = helperQuat2AV(trajLerped, dt);

Plot both sets of angular velocities. Notice that the angular velocity for SLERP is constant, but it
varies for linear interpolation.

sp = HelperSlerpPlotting;
sp.plotAngularVelocities(avSlerp, avLerp);

SLERP produces a smooth rotation at a constant rate.

Lowpass Filtering with SLERP

SLERP can also be used to make more complex functions. Here, SLERP is used to lowpass filter a
noisy trajectory.

Rotational noise can be constructed by forming a quaternion from a noisy rotation vector.

rcurr = rng(1);
sigma = 1e-1;
noiserv = sigma .* (rand(numel(h), 3) - 0.5);

 Lowpass Filter Orientation Using Quaternion SLERP

6-49

qnoise = quaternion(noiserv, 'rotvec');
rng(rcurr);

To corrupt the trajectory trajSlerped with noise, incrementally rotate the trajectory with the noise
vector qnoise.

trajNoisy = trajSlerped .* qnoise;

You can smooth real-valued signals using a single pole filter of the form:

This formula essentially says that the new filter state should be moved toward the current input
by a step size that is proportional to the distance between the current input and the current filter
state .

The spirit of this approach informs how a quaternion sequence can be lowpass filtered. To do this,
both the dist and slerp functions are used.

The dist function returns a measurement in radians of the difference in rotation applied by two
quaternions. The range of the dist function is the half-open interval [0, pi).

The slerp function is used to steer the filter state towards the current input. It is steered more
towards the input when the difference between the input and current filter state has a large dist,
and less toward the input when dist gives a small value. The interpolation parameter to slerp is in
the closed-interval [0,1], so the output of dist must be re-normalized to this range. However, the full
range of [0,1] for the interpolation parameter gives poor performance, so it is limited to a smaller
range hrange centered at hbias.

hrange = 0.4;
hbias = 0.4;

Limit low and high to the interval [0, 1].

low = max(min(hbias - (hrange./2), 1), 0);
high = max(min(hbias + (hrange./2), 1), 0);
hrangeLimited = high - low;

Initialize the filter and preallocate outputs.

y = trajNoisy(1); % initial filter state
qout = zeros(size(y), 'like', y); % preallocate filter output
qout(1) = y;

Filter the noisy trajectory, sample-by-sample.

for ii=2:numel(trajNoisy)
 x = trajNoisy(ii);
 d = dist(y, x);

 % Renormalize dist output to the range [low, high]
 hlpf = (d./pi).*hrangeLimited + low;
 y = slerp(y,x,hlpf);
 qout(ii) = y;
end

f = figure;

6 Featured Examples

6-50

sp.plotEulerd(f, trajNoisy, 'o');
sp.plotEulerd(f, trajSlerped, 'k-.', 'LineWidth', 2);
sp.plotEulerd(f, qout, '-', 'LineWidth', 2);
sp.addAnnotations(f, hrange, hbias);

Conclusion

SLERP can be used for creating both short trajectories between two orientations and for smoothing
or lowpass filtering. It has found widespread use in a variety of industries.

References

1 Shoemake, Ken. "Animating Rotation with Quaternion Curves." ACM SIGRAPH Computer
Graphics 19, no 3 (1985):245-54, doi:10.1145/325165.325242

 Lowpass Filter Orientation Using Quaternion SLERP

6-51

Introduction to Simulating IMU Measurements
This example shows how to simulate inertial measurement unit (IMU) measurements using the
imuSensor System object. An IMU can include a combination of individual sensors, including a
gyroscope, an accelerometer, and a magnetometer. You can specify properties of the individual
sensors using gyroparams, accelparams, and magparams, respectively.

In the following plots, unless otherwise noted, only the x-axis measurements are shown. Use the
sliders to interactively tune the parameters.

Default Parameters

The default parameters for the gyroscope model simulate an ideal signal. Given a sinusoidal input,
the gyroscope output should match exactly.

params = gyroparams

params =
 gyroparams with properties:

 MeasurementRange: Inf rad/s
 Resolution: 0 (rad/s)/LSB
 ConstantBias: [0 0 0] rad/s
 AxesMisalignment: [3x3 double] %

 NoiseDensity: [0 0 0] (rad/s)/√Hz
 BiasInstability: [0 0 0] rad/s
 RandomWalk: [0 0 0] (rad/s)*√Hz

 TemperatureBias: [0 0 0] (rad/s)/°C
 TemperatureScaleFactor: [0 0 0] %/°C
 AccelerationBias: [0 0 0] (rad/s)/(m/s²)

% Generate N samples at a sampling rate of Fs with a sinusoidal frequency
% of Fc.
N = 1000;
Fs = 100;
Fc = 0.25;

t = (0:(1/Fs):((N-1)/Fs)).';
acc = zeros(N, 3);
angvel = zeros(N, 3);
angvel(:,1) = sin(2*pi*Fc*t);

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);
[~, gyroData] = imu(acc, angvel);

figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Ideal Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')

6 Featured Examples

6-52

Hardware Parameter Tuning

The following parameters model hardware limitations or defects. Some can be corrected through
calibration.

MeasurementRange determines the maximum absolute value reported by the gyroscope. Larger
absolute values are saturated. The effect is shown by setting the measurement range to a value
smaller than the amplitude of the sinusoidal ground-truth angular velocity.

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);

imu.Gyroscope.MeasurementRange = ; % rad/s

[~, gyroData] = imu(acc, angvel);

figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Saturated Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')

 Introduction to Simulating IMU Measurements

6-53

Resolution affects the step size of the digital measurements. Use this parameter to model the
quantization effects from the analog-to-digital converter (ADC). The effect is shown by increasing the
parameter to a much larger value than is typical.

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);

imu.Gyroscope.Resolution = ; % (rad/s)/LSB

[~, gyroData] = imu(acc, angvel);

figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Quantized Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')

6 Featured Examples

6-54

AxesMisalignment is the amount of skew in the sensor axes. This skew normally occurs when the
sensor is mounted to the PCB and can be corrected through calibration. The effect is shown by
skewing the x-axis slightly and plotting both the x-axis and y-axis.

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);

xMisalignment = ; % percent
imu.Gyroscope.AxesMisalignment = [xMisalignment, 0, 0]; % percent

[~, gyroData] = imu(acc, angvel);

figure
plot(t, angvel(:,1:2), '--', t, gyroData(:,1:2))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Misaligned Gyroscope Data')
legend('x (ground truth)', 'y (ground truth)', ...
 'x (gyroscope)', 'y (gyroscope)')

 Introduction to Simulating IMU Measurements

6-55

ConstantBias occurs in sensor measurements due to hardware defects. Since this bias is not
caused by environmental factors, such as temperature, it can be corrected through calibration.

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);

xBias = ; % rad/s
imu.Gyroscope.ConstantBias = [xBias, 0, 0]; % rad/s

[~, gyroData] = imu(acc, angvel);

figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Biased Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')

6 Featured Examples

6-56

Random Noise Parameter Tuning

The following parameters model random noise in sensor measurements. More information on these
parameters can be found in the “Inertial Sensor Noise Analysis Using Allan Variance” on page 6-96
example.

NoiseDensity is the amount of white noise in the sensor measurement. It is sometimes called angle
random walk for gyroscopes or velocity random walk for accelerometers.

rng('default')

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);

imu.Gyroscope.NoiseDensity = ; % (rad/s)/sqrt(Hz)

[~, gyroData] = imu(acc, angvel);

figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('White Noise Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')

 Introduction to Simulating IMU Measurements

6-57

BiasInstability is the amount of pink or flicker noise in the sensor measurement.

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);

imu.Gyroscope.BiasInstability = ; % rad/s

[~, gyroData] = imu(acc, angvel);

figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Bias Instability Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')

6 Featured Examples

6-58

RandomWalk is the amount of Brownian noise in the sensor measurement. It is sometimes called rate
random walk for gyroscopes or acceleration random walk for accelerometers.

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);

imu.Gyroscope.RandomWalk = ; % (rad/s)*sqrt(Hz)

[~, gyroData] = imu(acc, angvel);

figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Random Walk Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')

 Introduction to Simulating IMU Measurements

6-59

Environmental Parameter Tuning

The following parameters model noise that arises from changes to the environment of the sensor.

TemperatureBias is the bias added to sensor measurements due to temperature difference from
the default operating temperature. Most sensor datasheets list the default operating temperature as
25 degrees Celsius. This bias is shown by setting the parameter to a non-zero value and setting the
operating temperature to a value above 25 degrees Celsius.

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);

imu.Gyroscope.TemperatureBias = ; % (rad/s)/(degrees C)
imu.Temperature = 35;

[~, gyroData] = imu(acc, angvel);

figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Temperature-Biased Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')

6 Featured Examples

6-60

TemperatureScaleFactor is the error in the sensor scale factor due to changes in the operating
temperature. This causes errors in the scaling of the measurement; in other words smaller ideal
values have less error than larger values. This error is shown by linearly increasing the temperature.

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);

imu.Gyroscope.TemperatureScaleFactor = ; % %/(degrees C)

standardTemperature = 25; % degrees C
temperatureSlope = 2; % (degrees C)/s

temperature = temperatureSlope*t + standardTemperature;

gyroData = zeros(N, 3);
for i = 1:N
 imu.Temperature = temperature(i);
 [~, gyroData(i,:)] = imu(acc(i,:), angvel(i,:));
end

figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Temperature-Scaled Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')

 Introduction to Simulating IMU Measurements

6-61

AccelerationBias is the bias added to the gyroscope measurement due to linear accelerations.
This parameter is specific to the gyroscope. This bias is shown by setting the parameter to a non-zero
value and using a non-zero input acceleration.

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);

imu.Gyroscope.AccelerationBias = ; % (rad/s)/(m/s^2)

acc(:,1) = 1;

[~, gyroData] = imu(acc, angvel);

figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Acceleration-Biased Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')

6 Featured Examples

6-62

 Introduction to Simulating IMU Measurements

6-63

Introduction to Using the Global Nearest Neighbor Tracker
This example shows how to configure and use the global nearest neighbor (GNN) tracker.

Motivation

The trackerGNN is a global nearest neighbor (GNN), single-hypothesis tracker. The trackerGNN
allows you to:

1 Choose the assignment algorithm to associate detections with tracks.
2 Use either history-based or score-based track logic for confirmation and deletion of tracks.
3 Use any kind of tracking filter, including an interacting multiple model filter.
4 Connect the tracker to scanning and managed sensors that update only a subset of the tracks

managed by the tracker.
5 Predict tracks into the future without modifying their internal state. This allows you to display

the predicted state of the tracks or to provide track predictions to a sensor resource manager.

Construct and Use the trackerGNN

You can construct the trackerGNN and choose one of the assignment algorithms. By default, the
trackerGNN uses the 'Munkres' algorithm, which guarantees an optimal assignment, but may take
more time to compute. You can use 'Auction' or 'Jonker-Volgenant' or provide a 'Custom'
function of your own. In this example, you choose the 'Auction' algorithm.

tracker = trackerGNN('Assignment','Auction')

tracker =

 trackerGNN with properties:

 TrackerIndex: 0
 FilterInitializationFcn: 'initcvekf'
 Assignment: 'Auction'
 AssignmentThreshold: [30 Inf]
 MaxNumTracks: 100
 MaxNumDetections: Inf
 MaxNumSensors: 20

 OOSMHandling: 'Terminate'

 TrackLogic: 'History'
 ConfirmationThreshold: [2 3]
 DeletionThreshold: [5 5]

 HasCostMatrixInput: false
 HasDetectableTrackIDsInput: false
 StateParameters: [1x1 struct]

 NumTracks: 0
 NumConfirmedTracks: 0

6 Featured Examples

6-64

The main way of using the trackerGNN is by calling it with new detections at each simulation step. A
detection is an objectDetection input or a struct with similar fields. You must specify the time of
the detection and its measurement. The other properties have default values. For example:

detections = {objectDetection(0,[1;2;3]); % Using default values on the detection ...
 objectDetection(0, [10;0;0], 'ObjectClassID', 2)}; % Using a non-default object class
disp(detections{1})

 objectDetection with properties:

 Time: 0
 Measurement: [3x1 double]
 MeasurementNoise: [3x3 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: {}
 ObjectAttributes: {}

time = 0;
[confirmedTracks, tentativeTracks] = tracker(detections, time);
disp(confirmedTracks)
disp(tentativeTracks)

 objectTrack with properties:

 TrackID: 2
 BranchID: 0
 SourceIndex: 0
 UpdateTime: 0
 Age: 1
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 2
 TrackLogic: 'History'
 TrackLogicState: [1 0 0 0 0]
 IsConfirmed: 1
 IsCoasted: 0
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

 objectTrack with properties:

 TrackID: 1
 BranchID: 0
 SourceIndex: 0
 UpdateTime: 0
 Age: 1
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 0
 TrackLogic: 'History'
 TrackLogicState: [1 0 0 0 0]
 IsConfirmed: 0
 IsCoasted: 0
 IsSelfReported: 1

 Introduction to Using the Global Nearest Neighbor Tracker

6-65

 ObjectAttributes: [1x1 struct]

Two types of tracks are created: confirmed and tentative. A confirmed track is a track that is
considered to be an estimation of a real target, while a tentative track may still be a false target. The
IsConfirmed flag distinguishes between the two. The track created by the second detection has a
nonzero ObjectClassID field and is immediately confirmed, because the sensor that reported it has
been able to classify it and thus it is considered a real target. Alternatively, a track can be confirmed
if there is enough evidence of its existence. In the history-based confirmation logic used here, if the
track has been assigned 2 detections out of 3 it will be confirmed. This is controlled by the
ConfirmationThreshold property. For example, the next detection is assigned to the tentative
track and confirms it:

detections = {objectDetection(1,[1.1;2.2;3.3])};
time = time + 1; % Time must increase from one update of the tracker to the next
confirmedTracks = tracker(detections,time);
confirmedTracks(1)

ans =

 objectTrack with properties:

 TrackID: 1
 BranchID: 0
 SourceIndex: 0
 UpdateTime: 1
 Age: 2
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 0
 TrackLogic: 'History'
 TrackLogicState: [1 1 0 0 0]
 IsConfirmed: 1
 IsCoasted: 0
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

Use a Score-Based Confirmation and Deletion Logic

In many cases, the history-based confirmation and deletion logic is considered too simplistic, as it
does not take into account statistical metrics. These metrics include the sensor's probability of
detection and false alarm rate, the likelihood of new targets to appear, or the distance between a
detection and the estimated state of the track assigned to it. A score-based confirmation and deletion
logic takes into account such metrics and provides a more suitable statistical test.

To convert the tracker to a score-based confirmation and deletion logic, first release the tracker and
then set the tracker's TrackLogic to 'Score':

release(tracker)
tracker.TrackLogic = 'Score'

tracker =

6 Featured Examples

6-66

 trackerGNN with properties:

 TrackerIndex: 0
 FilterInitializationFcn: 'initcvekf'
 Assignment: 'Auction'
 AssignmentThreshold: [30 Inf]
 MaxNumTracks: 100
 MaxNumDetections: Inf
 MaxNumSensors: 20

 OOSMHandling: 'Terminate'

 TrackLogic: 'Score'
 ConfirmationThreshold: 20
 DeletionThreshold: -7
 DetectionProbability: 0.9000
 FalseAlarmRate: 1.0000e-06
 Volume: 1
 Beta: 1

 HasCostMatrixInput: false
 HasDetectableTrackIDsInput: false
 StateParameters: [1x1 struct]

 NumTracks: 0
 NumConfirmedTracks: 0

Notice that the confirmation and deletion thresholds have changed to scalar values, which represent
the score used to confirm and delete a track. In addition, several more properties are now used to
provide the parameters for the score-based confirmation and deletion.

Now, update the tracker to see the tracks confirmation.

detections = {objectDetection(0,[1;2;3]); % Using default values on the detection ...
 objectDetection(0, [10;0;0], 'ObjectClassID', 2)}; % Using a non-default object class
time = 0;
tracker(detections, time); % Same as the first step above
detections = {objectDetection(1,[1.1;2.2;3.3])};
time = time + 1; % Time must increase from one update of the tracker to the next
[confirmedTracks, tentativeTracks] = tracker(detections,time);
confirmedTracks

confirmedTracks =

 objectTrack with properties:

 TrackID: 2
 BranchID: 0
 SourceIndex: 0
 UpdateTime: 1
 Age: 2
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 2
 TrackLogic: 'Score'

 Introduction to Using the Global Nearest Neighbor Tracker

6-67

 TrackLogicState: [11.4076 13.7102]
 IsConfirmed: 1
 IsCoasted: 1
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

Because the confirmed track was not assigned to any detection in this update, its score decreased.
You can see that by looking at the TrackLogicState field and seeing that the first element, the
current score, is lower than the second element, the maximum score. If the track continues to
decrease relative to the maximum score, by more than the DeletionThreshold value, the track is
deleted.

tentativeTracks

tentativeTracks =

 objectTrack with properties:

 TrackID: 1
 BranchID: 0
 SourceIndex: 0
 UpdateTime: 1
 Age: 2
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 0
 TrackLogic: 'Score'
 TrackLogicState: [17.7217 17.7217]
 IsConfirmed: 0
 IsCoasted: 0
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

If the tracks are not assigned to any detections, they will first be coasted and after a few 'misses' they
will be deleted. To see that, call the tracker with no detections:

for i = 1:3
 time = time + 1;
 [~,~,allTracks] = tracker({},time)
end

allTracks =

 2x1 objectTrack array with properties:

 TrackID
 BranchID
 SourceIndex
 UpdateTime
 Age
 State
 StateCovariance
 StateParameters

6 Featured Examples

6-68

 ObjectClassID
 TrackLogic
 TrackLogicState
 IsConfirmed
 IsCoasted
 IsSelfReported
 ObjectAttributes

allTracks =

 2x1 objectTrack array with properties:

 TrackID
 BranchID
 SourceIndex
 UpdateTime
 Age
 State
 StateCovariance
 StateParameters
 ObjectClassID
 TrackLogic
 TrackLogicState
 IsConfirmed
 IsCoasted
 IsSelfReported
 ObjectAttributes

allTracks =

 objectTrack with properties:

 TrackID: 1
 BranchID: 0
 SourceIndex: 0
 UpdateTime: 4
 Age: 5
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 0
 TrackLogic: 'Score'
 TrackLogicState: [10.8139 17.7217]
 IsConfirmed: 0
 IsCoasted: 1
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

The second track was deleted because it was not assigned any detections in 4 updates. This caused
its score to fall by more than 7, the value of the DeletionThreshold. The first track is still not
deleted, but its score is now lower and close to the deletion threshold.

 Introduction to Using the Global Nearest Neighbor Tracker

6-69

Use Any Tracking Filter

The trackerGNN supports any tracking filter that implements the tracking filter interface. The
selection of filter initialization function is defined using the FilterInitializationFcn property of
the trackerGNN. This provides the following flexibility:

1 You can use any filter initialization function available in the product. Some examples include
initcvekf (default), initcvkf , initcvukf , initcvckf , initcaekf , etc.

2 You can write your own filter initialization function and use any tracking filter. These include
trackingABF , trackingEKF , trackingKF , trackingUKF , trackingCKF , trackingPF ,
trackingMSCEKF , trackingGSF , and trackingIMM .

3 You can write a tracking filter that inherits and implements the interface defined by the abstract
matlabshared.tracking.internal.AbstractTrackingFilter class.

The following example shows how to use an interacting motion model (IMM) filter that has 3 types of
motion models: constant velocity, constant acceleration and constant turn rate.

Modify the tracker to use an IMM filter

release(tracker) % Release the tracker
tracker.FilterInitializationFcn = 'initekfimm'

tracker =

 trackerGNN with properties:

 TrackerIndex: 0
 FilterInitializationFcn: 'initekfimm'
 Assignment: 'Auction'
 AssignmentThreshold: [30 Inf]
 MaxNumTracks: 100
 MaxNumDetections: Inf
 MaxNumSensors: 20

 OOSMHandling: 'Terminate'

 TrackLogic: 'Score'
 ConfirmationThreshold: 20
 DeletionThreshold: -7
 DetectionProbability: 0.9000
 FalseAlarmRate: 1.0000e-06
 Volume: 1
 Beta: 1

 HasCostMatrixInput: false
 HasDetectableTrackIDsInput: false
 StateParameters: [1x1 struct]

 NumTracks: 0
 NumConfirmedTracks: 0

Next, update the tracker with a detection and observe the three motion models that comprise it. You
can see which model is used by looking at the StateTransitionFcn of each filter.

6 Featured Examples

6-70

% Update the tracker with a single detection to get a single track
detection = {objectDetection(0, [1;2;3], 'ObjectClassID', 2)};
time = 0;
tracker(detection, time);

Use the getTrackFilterProperties method to view the TrackingFilters property. It returns a
cell array that contains the TrackingFilters property: {filter1;filter2;filter3}

filters = getTrackFilterProperties(tracker,1,'TrackingFilters');
for i = 1:numel(filters{1})
 disp(filters{1}{i})
end

 trackingEKF with properties:

 State: [6x1 double]
 StateCovariance: [6x6 double]

 StateTransitionFcn: @constvel
 StateTransitionJacobianFcn: @constveljac
 ProcessNoise: [3x3 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @cvmeas
 MeasurementJacobianFcn: @cvmeasjac
 MeasurementNoise: [3x3 double]
 HasAdditiveMeasurementNoise: 1

 MaxNumOOSMSteps: 0

 EnableSmoothing: 0

 trackingEKF with properties:

 State: [9x1 double]
 StateCovariance: [9x9 double]

 StateTransitionFcn: @constacc
 StateTransitionJacobianFcn: @constaccjac
 ProcessNoise: [3x3 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @cameas
 MeasurementJacobianFcn: @cameasjac
 MeasurementNoise: [3x3 double]
 HasAdditiveMeasurementNoise: 1

 MaxNumOOSMSteps: 0

 EnableSmoothing: 0

 trackingEKF with properties:

 State: [7x1 double]
 StateCovariance: [7x7 double]

 StateTransitionFcn: @constturn
 StateTransitionJacobianFcn: @constturnjac

 Introduction to Using the Global Nearest Neighbor Tracker

6-71

 ProcessNoise: [4x4 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @ctmeas
 MeasurementJacobianFcn: @ctmeasjac
 MeasurementNoise: [3x3 double]
 HasAdditiveMeasurementNoise: 1

 MaxNumOOSMSteps: 0

 EnableSmoothing: 0

Interface with Scanning and Managed Sensors

By default, the tracker assumes that each step updates all the tracks managed by the tracker in a
coverage area. This is not the case when sensors have limited coverage, and scan a small area, or
when they are managed and cued to scan certain areas out of the total coverage area. If that is the
case, the sensors should let the tracker know that some tracks were not covered by the sensors at
that step. Otherwise, the tracker assumes that the tracks were supposed to be detected and will
count a 'miss' against them, leading to their premature deletion.

The following example shows how the sensors signify that the track will not be detected, and how the
track is not deleted.

Create a tracker that allows feedback from the sensors.

release(tracker) % Release the tracker
tracker.FilterInitializationFcn = 'initcvekf';
tracker.HasDetectableTrackIDsInput = true % Allows the tracker to get input about the track detectability by the sensors
% Update the tracker with a single detection to get a single track
detection = {objectDetection(0, [1;2;3], 'ObjectClassID', 2)};
time = 0;
trackIDs = []; % Initially, there are no tracks, so trackIDs has zero rows
track = tracker(detection, time, trackIDs)
% Update the tracker 2 more times without any detections. Let the tracker
% know that the track was not detectable by any sensor. Note how the
% TrackLogicState, shown as [currentScore, maxScore], does not change even
% though the track is not detected.
for i=1:2
 time = time + 1;
 trackIDs = [1, 0]; % Zero probability of detection means the track score should not decrease
 track = tracker({}, time, trackIDs) % No detections
end

tracker =

 trackerGNN with properties:

 TrackerIndex: 0
 FilterInitializationFcn: 'initcvekf'
 Assignment: 'Auction'
 AssignmentThreshold: [30 Inf]
 MaxNumTracks: 100
 MaxNumDetections: Inf
 MaxNumSensors: 20

6 Featured Examples

6-72

 OOSMHandling: 'Terminate'

 TrackLogic: 'Score'
 ConfirmationThreshold: 20
 DeletionThreshold: -7
 DetectionProbability: 0.9000
 FalseAlarmRate: 1.0000e-06
 Volume: 1
 Beta: 1

 HasCostMatrixInput: false
 HasDetectableTrackIDsInput: true
 StateParameters: [1x1 struct]

 NumTracks: 0
 NumConfirmedTracks: 0

track =

 objectTrack with properties:

 TrackID: 1
 BranchID: 0
 SourceIndex: 0
 UpdateTime: 0
 Age: 1
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 2
 TrackLogic: 'Score'
 TrackLogicState: [13.7102 13.7102]
 IsConfirmed: 1
 IsCoasted: 0
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

track =

 objectTrack with properties:

 TrackID: 1
 BranchID: 0
 SourceIndex: 0
 UpdateTime: 1
 Age: 2
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 2
 TrackLogic: 'Score'
 TrackLogicState: [13.7102 13.7102]
 IsConfirmed: 1
 IsCoasted: 1
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

 Introduction to Using the Global Nearest Neighbor Tracker

6-73

track =

 objectTrack with properties:

 TrackID: 1
 BranchID: 0
 SourceIndex: 0
 UpdateTime: 2
 Age: 3
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 2
 TrackLogic: 'Score'
 TrackLogicState: [13.7102 13.7102]
 IsConfirmed: 1
 IsCoasted: 1
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

As seen, the track score did not decrease and the track was not deleted by the tracker, even though it
was not detected in 5 updates.

Predict the Tracks to a Certain Time

The last enhancement allows you to predict the tracks into the future without changing their internal
state. There are two common use cases for this:

1 Displaying the predicted tracks on a display.
2 Passing the predicted tracks to a sensor system so that the sensor system can cue a search

pattern to detect them.

You use the predictTracksToTime method to get the predicted tracks.

Update the tracker with more detections

time = time + 1;
detections = {objectDetection(time, [4,2,3]); ...
 objectDetection(time, [10;0;0])};
track = tracker(detections, time, trackIDs);
disp('State of track #1 at time 3:')
disp(track.State)

% Predict tracks to different time steps:
predictedTrack1 = predictTracksToTime(tracker,1, time+0.5); % Predict track number 1 half a second to the future
disp('State of track #1 at time 3.5:')
predictedTrack1.State
% Predict all the confirmed tracks 2 seconds to the future
predictedConfirmedTracks = predictTracksToTime(tracker, 'Confirmed', time+2);
disp('State of track #1 at time 5:')
predictedConfirmedTracks.State

% Predict all the tracks 0.3 seconds to the future
disp('State of all the tracks at time 3.3:')

6 Featured Examples

6-74

predictedTracks = predictTracksToTime(tracker, 'all', time+0.3);
predictedTracks.State

State of track #1 at time 3:
 3.9967
 1.0030
 2.0000
 0
 3.0000
 0

State of track #1 at time 3.5:

ans =

 4.4982
 1.0030
 2.0000
 0
 3.0000
 0

State of track #1 at time 5:

ans =

 6.0027
 1.0030
 2.0000
 0
 3.0000
 0

State of all the tracks at time 3.3:

ans =

 4.2976
 1.0030
 2.0000
 0
 3.0000
 0

ans =

 10
 0
 0
 0
 0
 0

You can use the predictTracksToTime method to visualize the predicted state of the tracks.

 Introduction to Using the Global Nearest Neighbor Tracker

6-75

% First, use a |theaterPlot| and a |trackPlotter| to plot the tracks.
thPlot = theaterPlot('XLimits',[-20 20], 'Ylimits', [-20 20]);
trPlotter = trackPlotter(thPlot, 'DisplayName', 'Predicted Track');
posSelector = [1 0 0 0 0 0; 0 0 1 0 0 0; 0 0 0 0 1 0];
velSelector = [0 1 0 0 0 0; 0 0 0 1 0 0; 0 0 0 0 0 1];

% Then, plot the predicted tracks every 0.1 seconds
for t = time+(0.1:0.1:5)
 predictedTracks = predictTracksToTime(tracker, 'Confirmed', t);
 [pos,cov] = getTrackPositions(predictedTracks,posSelector);
 vel = getTrackVelocities(predictedTracks,velSelector);
 plotTrack(trPlotter,pos,vel,cov);
 drawnow
end

Summary

In this example, you created a trackerGNN and used it to track multiple targets. You modified the
tracker to use various assignment algorithms, two types of confirmation and deletion logic, and
various tracking filters. In addition, you saw how to interface the tracker with a scanning radar and
how to get the track predictions for display or sensor management.

6 Featured Examples

6-76

Introduction to Track Logic
This example shows how to define and use confirmation and deletion logic that are based on history
or score. It introduces the trackHistoryLogic and trackScoreLogic objects and shows how to
use them as stand-alone objects and how to use them as part of the trackerGNN.

Introduction

The tracker maintains a list of tracks, or estimates of the target states in the area of interest. If a
detection cannot be assigned to any track already maintained by the tracker, the tracker initiates a
new track. In most cases, it is unclear whether the new track represents a true target or a false one.
At first, a track is created with tentative status. If enough evidence is obtained, the track becomes
confirmed. Similarly, if no detections are assigned to a track, the track is coasted (predicted without
correction), but after a few missed updates, the tracker deletes the track.

There are two main ways of confirming and deleting tracks used in the literature:

1 History-based: the tracker counts the number of detections assigned to a track in several recent
updates. If enough detections are assigned, the track is confirmed. If the track is not assigned to
any detection for enough updates, it is deleted. This type of logic is often referred to as M-out-of-
N or Last-N, meaning that out of N updates, the track must be detected at least _M _ times for it
to be confirmed.

2 Score-based: the tracker calculates the likelihood that a track is of a real target. Instead of
likelihood, we use the score, defined as the log of the likelihood. A high positive track score
means that the track is very likely to be of a real target. A very negative track score means that
the track is likely to be false. As a result, we can set a threshold for confirming a track if the
score is high enough. If the score is low, or falls enough from the maximum score, the track is
deleted.

In the following sections, you can see how to define and use the two types of objects that implement
the history-based and score-based track logic.

Use a History-Based Track Logic to Confirm and Delete a Track

The simplest type of track logic is based on history. This type of logic counts how many times the
track is detected (or missed) in the recent N updates. You want to confirm a track after 3 detections
in 5 updates (3-out-of-5), and delete it after 6 consecutive misses. First, create the
trackHistoryLogic object that maintains the track history by defining the confirmation and
deletion thresholds.

historyLogic = trackHistoryLogic('ConfirmationThreshold', [3 5], 'DeletionThreshold', 6)

historyLogic =
 trackHistoryLogic with properties:

 ConfirmationThreshold: [3 5]
 DeletionThreshold: [6 6]
 History: [0 0 0 0 0 0]

To illustrate this, in the first 5 updates, the track is detected every other update. The following shows
how the track logic gets confirmed after exactly 3 out of 5 hits. Use the init method to initialize the
object with the first hit. Then use either the hit or miss methods to indicate whether the track logic
is updated by a hit or a miss, respectively.

 Introduction to Track Logic

6-77

The checkConfirmation method is used to check if the track can be confirmed based on its history.
Use the output method to get the track history, which is a logical array of length Nmax =
max(Nconf, Ndel). In this example, Nmax is 6.

wasInitialized = false; % Has the object been initialized yet?
for i = 1:5
 detectedFlag = logical(mod(i,2)); % Only odd updates are true
 if detectedFlag && ~wasInitialized
 init(historyLogic)
 wasInitialized = true;
 elseif detectedFlag && wasInitialized
 hit(historyLogic)
 else
 miss(historyLogic)
 end
 history = output(historyLogic);
 confFlag = checkConfirmation(historyLogic);
 disp(['Track history is: ', num2str(history),'. Confirmation Flag is: ',num2str(confFlag)])
end

Track history is: 1 0 0 0 0 0. Confirmation Flag is: 0
Track history is: 0 1 0 0 0 0. Confirmation Flag is: 0
Track history is: 1 0 1 0 0 0. Confirmation Flag is: 0
Track history is: 0 1 0 1 0 0. Confirmation Flag is: 0
Track history is: 1 0 1 0 1 0. Confirmation Flag is: 1

Now, suppose that the track is not detected for several updates. After the sixth update it should be
deleted. Use the checkDeletion method to check if the track was deleted.

for i = 1:6
 miss(historyLogic); % Every update the track is not detected
 history = output(historyLogic);
 deleteFlag = checkDeletion(historyLogic);
 disp(['Track history is: ', num2str(history),'. Deletion Flag is: ',num2str(deleteFlag)])
end

Track history is: 0 1 0 1 0 1. Deletion Flag is: 0
Track history is: 0 0 1 0 1 0. Deletion Flag is: 0
Track history is: 0 0 0 1 0 1. Deletion Flag is: 0
Track history is: 0 0 0 0 1 0. Deletion Flag is: 0
Track history is: 0 0 0 0 0 1. Deletion Flag is: 0
Track history is: 0 0 0 0 0 0. Deletion Flag is: 1

Use a Score-Based Track Logic to Confirm and Delete a Track

In many cases, it is not enough to know if a track is assigned a detection. You may need to account for
the likelihood that the assignment is correct. There is also a need to know how likely the detection is
that of a real target, based on its detection probability, or how likely it is to be false, based on its false
alarm rate. Additionally, if the track is new, you need to account for the rate, beta , at which new
targets are likely to be detected in a unit volume.

Use the trackScoreLogic object to create a score-based track confirmation and deletion logic.
Define the ConfirmationThreshold and DeletionThreshold as two scalar values.

When a track is assigned a detection, you update the track logic with a hit and in most cases the
track score increases. The ConfirmationThreshold defines the minimum score that is required to
confirm a track.

6 Featured Examples

6-78

The track score decreases when a track is not assigned a detection. The DeletionThreshold is
used to define how much we allow the score to decrease from the maximum score before deleting the
track.

scoreLogic = trackScoreLogic('ConfirmationThreshold', 25, 'DeletionThreshold', -5)

scoreLogic =
 trackScoreLogic with properties:

 ConfirmationThreshold: 25
 DeletionThreshold: -5
 Score: 0
 MaxScore: 0

pd = 0.9; % Probability of detection
pfa = 1e-6; % Probability of false alarm
volume = 1; % The volume of a sensor detection bin
beta = 0.1; % New target rate in a unit volume
wasInitialized = false; % Has the object been initialized yet?

Confirming a track using score-based logic is very similar to confirming a track using history-based
logic. The main difference is that now additional parameters are taken into account that include the
statistical performance of the sensor as well as the residual distance of the track relative to the
detection.

You use the init , hit , and miss methods to initialize on first hit, update the trackScoreLogic
with a subsequent hit, or update with a miss, respectively.

You use the checkConfirmation method to check if the track should be confirmed. You use the
output method to get the current score and maximum score as a [currentScore, maxScore]
array.

r = rng(2018); % Set the random seed for repeatable results
numSteps1 = 6;
scores = zeros(numSteps1,2);
for i = 1:numSteps1
 l = 0.05 + 0.05 * rand; % likelihood of the measurement
 detectedFlag = logical(mod(i,2)); % Only even updates are true in this example
 if detectedFlag && ~wasInitialized
 init(scoreLogic, volume, beta);
 wasInitialized = true;
 elseif detectedFlag && wasInitialized
 hit(scoreLogic, volume, l);
 else
 miss(scoreLogic);
 end
 scores(i,:) = output(scoreLogic);
 confFlag = checkConfirmation(scoreLogic);
 disp(['Score and MaxScore: ', num2str(scores(i,:)),'. Confirmation Flag is: ',num2str(confFlag)])
end

Score and MaxScore: 11.4076 11.4076. Confirmation Flag is: 0
Score and MaxScore: 9.10498 11.4076. Confirmation Flag is: 0
Score and MaxScore: 20.4649 20.4649. Confirmation Flag is: 0
Score and MaxScore: 18.1624 20.4649. Confirmation Flag is: 0
Score and MaxScore: 29.2459 29.2459. Confirmation Flag is: 1
Score and MaxScore: 26.9433 29.2459. Confirmation Flag is: 1

 Introduction to Track Logic

6-79

rng(r); % Return the random seed to its previous setting

Notice how the track score increases with every successful update and decreases with every missed
detection. Once the track score is higher than the ConfirmationThreshold, the checkConfirmation
function returns true, meaning that the track is confirmed now.

As in the history-based track logic, if the track is not assigned to any detection, it should eventually
be deleted. The DeletionThreshold property is used to determine when the track score has
decreased enough so that the track should be deleted. Note that the score does not have to fall below
the DeletionThreshold, only that the difference between the current score and the maximum
score obtained by the track should go below the threshold. The reason is that if a track obtains a high
score after many successful updates, and if we used the absolute score, it would take too many
missed updates to delete the track. The following shows a track being deleted after three misses.

numSteps2 = 3;
scores(end+1:end+numSteps2,:) = zeros(numSteps2,2);
for i = 1:numSteps2
 miss(scoreLogic);
 deleteFlag = checkDeletion(scoreLogic);
 scores(numSteps1+i,:) = output(scoreLogic);
 disp(['Score and MaxScore: ', num2str(scores(numSteps1+i,:)),'. Deletion Flag is: ',num2str(deleteFlag)])
end

Score and MaxScore: 24.6407 29.2459. Deletion Flag is: 0
Score and MaxScore: 22.3381 29.2459. Deletion Flag is: 1
Score and MaxScore: 20.0355 29.2459. Deletion Flag is: 1

deletionScore = scores(:,2) + scoreLogic.DeletionThreshold;

stairs(scores)
hold on
plot([1,numSteps1+numSteps2],[scoreLogic.ConfirmationThreshold scoreLogic.ConfirmationThreshold],'--')
stairs(deletionScore,'--')
title('Track Score and Maximum Score')
legend('Score','MaxScore','ConfirmationThrehsold','DeletionThreshold','Location','best')

6 Featured Examples

6-80

If you want to delay the track deletion until more misses happen, simply change the
DeletionThreshold to a more negative value.

Use a Track Logic in a Tracker

Typically, track logic is used inside a tracker. Configure the trackerGNN to use history-based track
logic with confirmation after 3 successes in 5 updates and deletion after 5 misses in 6 updates.

tracker = trackerGNN('Assignment', 'Auction', 'ConfirmationThreshold', [3 5], 'DeletionThreshold', [5 6], 'TrackLogic', 'History')

tracker =
 trackerGNN with properties:

 TrackerIndex: 0
 FilterInitializationFcn: 'initcvekf'
 Assignment: 'Auction'
 AssignmentThreshold: [30 Inf]
 MaxNumTracks: 100
 MaxNumDetections: Inf
 MaxNumSensors: 20

 OOSMHandling: 'Terminate'

 TrackLogic: 'History'
 ConfirmationThreshold: [3 5]
 DeletionThreshold: [5 6]

 HasCostMatrixInput: false

 Introduction to Track Logic

6-81

 HasDetectableTrackIDsInput: false
 StateParameters: [1x1 struct]

 NumTracks: 0
 NumConfirmedTracks: 0

The following loop updates the tracker with a detection at every odd numbered update. After 5
updates, the tracker confirms the track. You can look at the track history and the track confirmation
flag after each update by examining the TrackLogicState and IsConfirmed fields of the track
output.

for i = 1:5
 detectedFlag = logical(mod(i,2)); % Only odd updates are true
 if detectedFlag
 detection = {objectDetection(i,[1;2;3])};
 else
 detection = {};
 end
 [~,~,allTracks] = tracker(detection, i)
end

allTracks =
 objectTrack with properties:

 TrackID: 1
 BranchID: 0
 SourceIndex: 0
 UpdateTime: 1
 Age: 1
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 0
 TrackLogic: 'History'
 TrackLogicState: [1 0 0 0 0 0]
 IsConfirmed: 0
 IsCoasted: 0
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

allTracks =
 objectTrack with properties:

 TrackID: 1
 BranchID: 0
 SourceIndex: 0
 UpdateTime: 2
 Age: 2
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 0
 TrackLogic: 'History'
 TrackLogicState: [0 1 0 0 0 0]
 IsConfirmed: 0
 IsCoasted: 1

6 Featured Examples

6-82

 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

allTracks =
 objectTrack with properties:

 TrackID: 1
 BranchID: 0
 SourceIndex: 0
 UpdateTime: 3
 Age: 3
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 0
 TrackLogic: 'History'
 TrackLogicState: [1 0 1 0 0 0]
 IsConfirmed: 0
 IsCoasted: 0
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

allTracks =
 objectTrack with properties:

 TrackID: 1
 BranchID: 0
 SourceIndex: 0
 UpdateTime: 4
 Age: 4
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 0
 TrackLogic: 'History'
 TrackLogicState: [0 1 0 1 0 0]
 IsConfirmed: 0
 IsCoasted: 1
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

allTracks =
 objectTrack with properties:

 TrackID: 1
 BranchID: 0
 SourceIndex: 0
 UpdateTime: 5
 Age: 5
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 0
 TrackLogic: 'History'
 TrackLogicState: [1 0 1 0 1 0]
 IsConfirmed: 1

 Introduction to Track Logic

6-83

 IsCoasted: 0
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

The following loop updates the tracker 5 more times with 5 misses. The track is deleted after 4
additional updates (the 9th update overall) because it has missed detections in the 4th, 6th, 7th, 8th
and 9th updates (5 out of the last 6 updates).

for i = 1:5
 detection = {};
 confirmedTrack = tracker(detection, i+5)
end

confirmedTrack =
 objectTrack with properties:

 TrackID: 1
 BranchID: 0
 SourceIndex: 0
 UpdateTime: 6
 Age: 6
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 0
 TrackLogic: 'History'
 TrackLogicState: [0 1 0 1 0 1]
 IsConfirmed: 1
 IsCoasted: 1
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

confirmedTrack =
 objectTrack with properties:

 TrackID: 1
 BranchID: 0
 SourceIndex: 0
 UpdateTime: 7
 Age: 7
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 0
 TrackLogic: 'History'
 TrackLogicState: [0 0 1 0 1 0]
 IsConfirmed: 1
 IsCoasted: 1
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

confirmedTrack =
 objectTrack with properties:

 TrackID: 1

6 Featured Examples

6-84

 BranchID: 0
 SourceIndex: 0
 UpdateTime: 8
 Age: 8
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 0
 TrackLogic: 'History'
 TrackLogicState: [0 0 0 1 0 1]
 IsConfirmed: 1
 IsCoasted: 1
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

confirmedTrack =

 0x1 objectTrack array with properties:

 TrackID
 BranchID
 SourceIndex
 UpdateTime
 Age
 State
 StateCovariance
 StateParameters
 ObjectClassID
 TrackLogic
 TrackLogicState
 IsConfirmed
 IsCoasted
 IsSelfReported
 ObjectAttributes

confirmedTrack =

 0x1 objectTrack array with properties:

 TrackID
 BranchID
 SourceIndex
 UpdateTime
 Age
 State
 StateCovariance
 StateParameters
 ObjectClassID
 TrackLogic
 TrackLogicState
 IsConfirmed
 IsCoasted
 IsSelfReported
 ObjectAttributes

 Introduction to Track Logic

6-85

Summary

Trackers require a way to confirm tracks that are considered to be of true targets and delete tracks
after they are not assigned any detections after a while. Two types of track confirmation and deletion
logic were presented: a history-based track logic and a score-based track logic. The history-based
track logic only considers whether a track is assigned detections in the recent past updates. The
score-based track logic provides a statistical measure of how likely a track is to represent a real
target. Both types of track logic objects can be used as stand-alone objects, but are typically used
inside a tracker object.

6 Featured Examples

6-86

Introduction to Tracking Scenario and Simulating Sensor
Detections

This example introduces how to generate synthetic radar detections in a tracking scenario that
simulates target motion and sensor detections. Specifically, this example shows:

• How to simulate the motion of targets using trackingScenario.
• How to generate synthetic sensor detections using a sensor object. You use three different

approaches to generate detections — generate detections from a specific sensor, generate
detections for all sensors mounted on a given platform, and generate all detections in the tracking
scenario.

• How to use the various plotters offered by theaterPlot to visualize the scenario, sensor
coverage, and detections.

The main benefit of using scenario generation and sensor simulation over sensor recording is the
ability to create rare and potentially hazardous scenarios and test sensor fusion algorithms with these
scenarios. These radar detections can be used to develop various tracking algorithms, such as
trackerGNN and trackerJPDA.

Simulate a Moving Object and its Attributes

Create a Tracking Scenario with a Moving Target

The first step in generating simulated radar detections is creating a tracking scenario, in which the
motion of one or more moving targets is simulated. To set up a tracking scenario, you first create a
trackingScenario object, which serves as a simulation environment for all the moving targets
added later.

rng(2020); % For repeatable results.
scene = trackingScenario('UpdateRate',2.5)

scene =
 trackingScenario with properties:

 IsEarthCentered: 0
 UpdateRate: 2.5000
 SimulationTime: 0
 StopTime: Inf
 SimulationStatus: NotStarted
 Platforms: {}

By default, a tracking scenario runs from the SimulationTime to the StopTime. The step size is
given by UpdateRate in Hz. Based on an update rate of 2.5 Hz, the step size of scene is 0.4 sec.
Currently, there is no targets (defined using platform) defined in the scenario. When the StopTime
is defined as Inf, the scenario runs until the motion of all the platforms in the scenario ends. Define a
platform in the scenario named target:

target = platform(scene);

You can check the target is now defined in the scenario, scene.

scene.Platforms{1}

ans =
 Platform with properties:

 Introduction to Tracking Scenario and Simulating Sensor Detections

6-87

 PlatformID: 1
 ClassID: 0
 Position: [0 0 0]
 Orientation: [0 0 0]
 Dimensions: [1x1 struct]
 Mesh: [1x1 extendedObjectMesh]
 Trajectory: [1x1 kinematicTrajectory]
 PoseEstimator: [1x1 insSensor]
 Emitters: {}
 Sensors: {}
 Signatures: {[1x1 rcsSignature] [1x1 irSignature] [1x1 tsSignature]}

By default, a dimensionless point object is created, but you can specify the object extent in length,
width and height. Also, a trivial kinematicTrajectory is associated with the target. To create a
trajectory for the target, you can use the waypointTrajectory object. You can set up a waypoint
trajectory by specifying a series of waypoints of the target and the corresponding visiting time. You
can also specify other trajectory properties such as velocity and course. See waypointTrajectory
for more details.

The following code defines a racetrack path for a target with straight legs of 20 km and a turn radius
of 2 km. The altitude of the trajectory is 3 km, which is defined as –3 km in the default North-East-
Down coordinate frame used in this scenario.

h = 3; % Unit in km
waypoints = 1e3*[1 1 0 -1 -1 0 1 1
 0 10 12 10 -10 -12 -10 0
 h h h h h h h h]';
course = [90 90 180 270 270 0 90 90]';% unit in degree
timeOfArrival = 60*[0 1.5 1.8 2.1 5.1 5.4 5.7 7.2]';
targetTrajectory = waypointTrajectory('Waypoints', waypoints, 'TimeOfArrival', timeOfArrival);
target.Trajectory = targetTrajectory;

Visualize and Run the Tracking Scenario

To visualize the scenario as it runs, create a theaterPlot and add a trajectoryPlotter and a
platformPlotter to visualize the trajectory and the target, respectively.

tp = theaterPlot('XLimits',[-12 12]*1e3,'Ylimits',[-12 12]*1e3,'ZLimits',[-1e4 1e4]);
trajPlotter = trajectoryPlotter(tp,'DisplayName','Trajectory');
plotTrajectory(trajPlotter,{waypoints})
targetPlotter = platformPlotter(tp,'DisplayName','Target');

Run the tracking scenario and visualize the target motion in a bird's eye view.

while advance(scene) && ishghandle(tp.Parent)
 targetPose = pose(target,'true');
 plotPlatform(targetPlotter, targetPose.Position);
end

6 Featured Examples

6-88

Generate Detections Using Radar Sensors

In a tracking scenario, you can generate detections of targets in three different approaches:

Model a Radar Sensor and Simulate its Detections

To add a sensor to the scenario, you first create a Platform on which the sensor is mounted. The
Platform object also provides a targetPoses function which you can use to obtain the poses of
targets relative to the platform.

Create a Tower and a Radar

Next, you create a tower platform with dimensions of 5 m, 5 m, and 30 m in length, width, and height,
respectively. Position the tower to the left the target path. Set the z coordinate of the tower position
to -15 m such that the tower bottom is on the horizontal plane of the scenario frame.

tower = platform(scene);
tower.Dimensions = struct ('Length',5,'Width',5,'Height',30,'OriginOffset', [0 0 0]);
tower.Trajectory.Position = [-1e4 0 15];

Define a platform plotter to show the tower.

towerPlotter = platformPlotter(tp,'DisplayName','Tower','Marker','o','MarkerFaceColor',[0 0 0]);
plotPlatform(towerPlotter,tower.Trajectory.Position,tower.Dimensions,tower.Trajectory.Orientation);

Use a fusionRadarSensor in monostatic mode to implement a monostatic scanning radar sensor. By
default, a sensor object reports detections in the coordinate frame of the platform on which the

 Introduction to Tracking Scenario and Simulating Sensor Detections

6-89

sensor is mounted. You can change the output coordinate frame using the DetectionsCoordinates
property of fusionRadarSensor. The available output frames are 'Body'(default), 'Scenario',
'Sensor rectangular', and 'Sensor spherical'.

radar1 = fusionRadarSensor(1,'UpdateRate',2.5,...
 'MountingLocation',[0 0 -15],'FieldOfView',[4;45],...
 'MechanicalAzimuthLimits',[-60 60],'MechanicalElevationLimits',[0 0],...
 'HasElevation',true,'FalseAlarmRate',1e-7)

radar1 =
 fusionRadarSensor with properties:

 SensorIndex: 1
 UpdateRate: 2.5000
 DetectionMode: 'Monostatic'
 ScanMode: 'Mechanical'
 InterferenceInputPort: 0
 EmissionsInputPort: 0

 MountingLocation: [0 0 -15]
 MountingAngles: [0 0 0]

 FieldOfView: [4 45]
 RangeLimits: [0 100000]

 DetectionProbability: 0.9000
 FalseAlarmRate: 1.0000e-07
 ReferenceRange: 100000

 TargetReportFormat: 'Clustered detections'

 Show all properties

Mount the sensor on the tower platform.

tower.Sensors = radar1;

Generate and Simulate Detections

You can visualize the radar coverage area and its scanning beam using the coveragePlotter,
coverageConfig, and plotCoverage functions. Create a detectionPlotter to visualize
detections generated by the radar.

radar1Plotter = coveragePlotter(tp,'DisplayName','Radar1 Beam','Color','b');
detPlotter = detectionPlotter(tp,'DisplayName','Detections',...
 'Marker','o','MarkerFaceColor',[1 0 0]);

Restart the scenario, generate the detections, and plot the detections. You can observe several false
detections.

restart(scene);
while advance(scene) && ishghandle(tp.Parent)

 view(70,40); % Comment this to show the bird's eye view;
 time = scene.SimulationTime;

 % Obtain the target pose and plot it.

6 Featured Examples

6-90

 poseTarget = pose(target,'true');
 plotPlatform(targetPlotter,poseTarget.Position);

 % Obtain the target pose expressed in the tower's coordinate frame.
 poseInTower = targetPoses(tower);

 % Obtain the radar detections using the radar object.
 [detections, numDets] = radar1(poseInTower,time);

 % Extract detection positions and transform them to the scenario frame.
 detPos = zeros(numDets,3);
 for i=1:numDets
 detPos(i,:) = tower.Trajectory.Position + detections{i}.Measurement';
 end

 % Plot detections.
 if ~isempty(detPos)
 plotDetection(detPlotter,detPos);
 end

 % Plot the radar beam and coverage area.
 plotCoverage(radar1Plotter,coverageConfig(scene));

end

 Introduction to Tracking Scenario and Simulating Sensor Detections

6-91

Generate Detections for All the Sensors Mounted on a Platform

Alternately, you can generate detections for all sensors on a given platform using the detect
function. To illustrate this approach, you add a second radar sensor to the tower platform. You also
create a coverage plotter for the second radar sensor.

radar2 = fusionRadarSensor(2,'Rotator','UpdateRate',2.5, ...
 'MountingLocation',[0 0 -15], 'FieldOfView',[4; 45], ...
 'HasElevation',true,'FalseAlarmRate',1e-7);
tower.Sensors{2} = radar2;
radar2Plotter = coveragePlotter(tp,'DisplayName','Radar 2 Beam', 'Color','g');

Restart the scenario, generate the detections based on the tower, and plot the detections. As shown
in the simulation, both the two radars generate detections of the target.

restart(scene);
while advance(scene) && ishghandle(tp.Parent)

 time = scene.SimulationTime;

 % Obtain the target pose and plot it.
 poseTarget = pose(target,'true');
 plotPlatform(targetPlotter,poseTarget.Position);

 % Plot the coverage of sensors.
 configs = coverageConfig(scene);
 plotCoverage(radar1Plotter,configs(1));
 plotCoverage(radar2Plotter,configs(2));

 % Generate the detections.
 [towerDetections, numDets] = detect(tower,time);

 % Extract detection positions and transform them to the scenario frame.
 detPos = NaN(numDets,3);
 for i=1:numDets
 detPos(i,:) = tower.Trajectory.Position + towerDetections{i}.Measurement';
 end

 % Plot detections.
 if numDets
 plotDetection(detPlotter,detPos);
 end

end

6 Featured Examples

6-92

Generate Detections from All the Sensors in a Scenario

You can also generate detections from all sensors in the tracking scenario using the detect function
of trackingScenario.

To illustrate this approach, you add a plane in the scenario and define its waypoint trajectory. The
plane flies from southwest to northeast at a height of 2.9 km. Create a platform plotter for the plane.

plane = platform(scene);
planeTrajectory = waypointTrajectory('Waypoints',1e3*[-10 -10 -2.9; 12 12 -2.9],'TimeOfArrival',[0 80]);
plane.Trajectory = planeTrajectory;
planePlotter = platformPlotter(tp,'DisplayName','Plane','Marker','d','MarkerEdgeColor','k');

Mount a staring radar on the plane with a field of view of 50 degrees. Create a plotter for the radar.

radar3 = fusionRadarSensor(3,'No scanning','UpdateRate',2.5,'FieldOfView',[60,20], ...
 'HasElevation',true,'FalseAlarmRate',1e-7);
plane.Sensors = radar3;
radar3Plotter = coveragePlotter(tp,'DisplayName','Radar 3 Beam', 'Color','y');

Set the reporting frames of all the three radars to the scenario frame. You need to enable inertial
navigation system (INS) before setting the detection coordinate to the scenario frame.

release(radar1);
radar1.HasINS = true;
radar1.DetectionCoordinates = 'Scenario';
release(radar2);
radar2.HasINS = true;

 Introduction to Tracking Scenario and Simulating Sensor Detections

6-93

radar2.DetectionCoordinates = 'Scenario';
radar3.HasINS = true;
radar3.DetectionCoordinates = 'Scenario';

Restart and run the scenario, generate all the detections in the scenario, and plot the detections.

% Hide the published figure. Show a pre-recorded animation instead.
f = tp.Parent.Parent;
if numel(dbstack) > 5
 f.Visible = 'on';
 f.Visible = 'off';
end

restart(scene);
while advance(scene) && ishghandle(tp.Parent)

 % Obtain the target pose and plot it.
 poseTarget = pose(target,'true');
 plotPlatform(targetPlotter,poseTarget.Position);

 % Obtain the plane pose and plot it.
 posePlane = pose(plane,'true');
 plotPlatform(planePlotter,posePlane.Position);

 % Plot the coverage of sensors.
 configs = coverageConfig(scene);
 plotCoverage(radar1Plotter,configs(1));
 plotCoverage(radar2Plotter,configs(2));
 plotCoverage(radar3Plotter,configs(3));

 % Generate the detections.
 scenarioDetections = detect(scene);
 numDets = numel(scenarioDetections);

 % Extract detection positions in the scenario frame.
 detPos = NaN(numDets,3);
 for i=1:numDets
 detPos(i,:) = scenarioDetections{i}.Measurement';
 end

 % Plot detections.
 if numDets
 plotDetection(detPlotter,detPos);
 end

end

6 Featured Examples

6-94

From the results, for a period of time, the radar on the plane can continuously detect the target. The
radar on the plane also generate several false detections. The two radars on the tower can detect the
plane.

Summary

This example shows you how to create a tracking scenario, simulate target motion, and simulate
radar detections in three different approaches based on a sensor, a platform, and the whole scenario.
It also shows you how to visualize the target trajectory, instantaneous positions, radar scan beams,
and detections.

 Introduction to Tracking Scenario and Simulating Sensor Detections

6-95

Inertial Sensor Noise Analysis Using Allan Variance
This example shows how to use the Allan variance to determine noise parameters of a MEMS
gyroscope. These parameters can be used to model the gyroscope in simulation. The gyroscope
measurement is modeled as:

The three noise parameters N (angle random walk), K (rate random walk), and B (bias instability) are
estimated using data logged from a stationary gyroscope.

Background

Allan variance was originally developed by David W. Allan to measure the frequency stability of
precision oscillators. It can also be used to identify various noise sources present in stationary
gyroscope measurements. Consider L samples of data from a gyroscope with a sample time of .
Form data clusters of durations , , ..., and obtain the averages of the sum
of the data points contained in each cluster over the length of the cluster. The Allan variance is
defined as the two-sample variance of the data cluster averages as a function of cluster time. This
example uses the overlapping Allan variance estimator. This means that the calculated clusters are
overlapping. The estimator performs better than non-overlapping estimators for larger values of L.

Allan Variance Calculation

The Allan variance is calculated as follows:

Log L stationary gyroscope samples with a sample period . Let be the logged samples.

% Load logged data from one axis of a three-axis gyroscope. This recording
% was done over a six hour period with a 100 Hz sampling rate.
load('LoggedSingleAxisGyroscope', 'omega', 'Fs')
t0 = 1/Fs;

For each sample, calculate the output angle :

For discrete samples, the cumulative sum multiplied by can be used.

theta = cumsum(omega, 1)*t0;

Next, calculate the Allan variance:

where and is the ensemble average.

The ensemble average can be expanded to:

6 Featured Examples

6-96

maxNumM = 100;
L = size(theta, 1);
maxM = 2.^floor(log2(L/2));
m = logspace(log10(1), log10(maxM), maxNumM).';
m = ceil(m); % m must be an integer.
m = unique(m); % Remove duplicates.

tau = m*t0;

avar = zeros(numel(m), 1);
for i = 1:numel(m)
 mi = m(i);
 avar(i,:) = sum(...
 (theta(1+2*mi:L) - 2*theta(1+mi:L-mi) + theta(1:L-2*mi)).^2, 1);
end
avar = avar ./ (2*tau.^2 .* (L - 2*m));

Finally, the Allan deviation is used to determine the gyroscope noise parameters.

adev = sqrt(avar);

figure
loglog(tau, adev)
title('Allan Deviation')
xlabel('\tau');
ylabel('\sigma(\tau)')
grid on
axis equal

 Inertial Sensor Noise Analysis Using Allan Variance

6-97

The Allan variance can also be calculated using the allanvar function.

[avarFromFunc, tauFromFunc] = allanvar(omega, m, Fs);
adevFromFunc = sqrt(avarFromFunc);

figure
loglog(tau, adev, tauFromFunc, adevFromFunc);
title('Allan Deviations')
xlabel('\tau')
ylabel('\sigma(\tau)')
legend('Manual Calculation', 'allanvar Function')
grid on
axis equal

6 Featured Examples

6-98

Noise Parameter Identification

To obtain the noise parameters for the gyroscope, use the following relationship between the Allan
variance and the two-sided power spectral density (PSD) of the noise parameters in the original data
set . The relationship is:

From the above equation, the Allan variance is proportional to the total noise power of the gyroscope
when passed through a filter with a transfer function of . This transfer function arises
from the operations done to create and operate on the clusters.

Using this transfer function interpretation, the filter bandpass depends on . This means that
different noise parameters can be identified by changing the filter bandpass, or varying .

Angle Random Walk

The angle random walk is characterized by the white noise spectrum of the gyroscope output. The
PSD is represented by:

where

N = angle random walk coefficient

 Inertial Sensor Noise Analysis Using Allan Variance

6-99

Substituting into the original PSD equation and performing integration yields:

The above equation is a line with a slope of -1/2 when plotted on a log-log plot of versus . The
value of N can be read directly off of this line at . The units of N are .

% Find the index where the slope of the log-scaled Allan deviation is equal
% to the slope specified.
slope = -0.5;
logtau = log10(tau);
logadev = log10(adev);
dlogadev = diff(logadev) ./ diff(logtau);
[~, i] = min(abs(dlogadev - slope));

% Find the y-intercept of the line.
b = logadev(i) - slope*logtau(i);

% Determine the angle random walk coefficient from the line.
logN = slope*log(1) + b;
N = 10^logN

% Plot the results.
tauN = 1;
lineN = N ./ sqrt(tau);
figure
loglog(tau, adev, tau, lineN, '--', tauN, N, 'o')
title('Allan Deviation with Angle Random Walk')
xlabel('\tau')
ylabel('\sigma(\tau)')
legend('\sigma', '\sigma_N')
text(tauN, N, 'N')
grid on
axis equal

N =

 0.0126

6 Featured Examples

6-100

Rate Random Walk

The rate random walk is characterized by the red noise (Brownian noise) spectrum of the gyroscope
output. The PSD is represented by:

where

K = rate random walk coefficient

Substituting into the original PSD equation and performing integration yields:

The above equation is a line with a slope of 1/2 when plotted on a log-log plot of versus . The
value of K can be read directly off of this line at . The units of K are .

% Find the index where the slope of the log-scaled Allan deviation is equal
% to the slope specified.
slope = 0.5;
logtau = log10(tau);
logadev = log10(adev);

 Inertial Sensor Noise Analysis Using Allan Variance

6-101

dlogadev = diff(logadev) ./ diff(logtau);
[~, i] = min(abs(dlogadev - slope));

% Find the y-intercept of the line.
b = logadev(i) - slope*logtau(i);

% Determine the rate random walk coefficient from the line.
logK = slope*log10(3) + b;
K = 10^logK

% Plot the results.
tauK = 3;
lineK = K .* sqrt(tau/3);
figure
loglog(tau, adev, tau, lineK, '--', tauK, K, 'o')
title('Allan Deviation with Rate Random Walk')
xlabel('\tau')
ylabel('\sigma(\tau)')
legend('\sigma', '\sigma_K')
text(tauK, K, 'K')
grid on
axis equal

K =

 9.0679e-05

6 Featured Examples

6-102

Bias Instability

The bias instability is characterized by the pink noise (flicker noise) spectrum of the gyroscope
output. The PSD is represented by:

where

B = bias instability coefficient

 = cut-off frequency

Substituting into the original PSD equation and performing integration yields:

where

Ci = cosine-integral function

When is much longer than the inverse of the cutoff frequency, the PSD equation is:

The above equation is a line with a slope of 0 when plotted on a log-log plot of versus . The

value of B can be read directly off of this line with a scaling of . The units of B are
.

% Find the index where the slope of the log-scaled Allan deviation is equal
% to the slope specified.
slope = 0;
logtau = log10(tau);
logadev = log10(adev);
dlogadev = diff(logadev) ./ diff(logtau);
[~, i] = min(abs(dlogadev - slope));

% Find the y-intercept of the line.
b = logadev(i) - slope*logtau(i);

% Determine the bias instability coefficient from the line.
scfB = sqrt(2*log(2)/pi);
logB = b - log10(scfB);
B = 10^logB

% Plot the results.
tauB = tau(i);
lineB = B * scfB * ones(size(tau));

 Inertial Sensor Noise Analysis Using Allan Variance

6-103

figure
loglog(tau, adev, tau, lineB, '--', tauB, scfB*B, 'o')
title('Allan Deviation with Bias Instability')
xlabel('\tau')
ylabel('\sigma(\tau)')
legend('\sigma', '\sigma_B')
text(tauB, scfB*B, '0.664B')
grid on
axis equal

B =

 0.0020

Now that all the noise parameters have been calculated, plot the Allan deviation with all of the lines
used for quantifying the parameters.

tauParams = [tauN, tauK, tauB];
params = [N, K, scfB*B];
figure
loglog(tau, adev, tau, [lineN, lineK, lineB], '--', ...
 tauParams, params, 'o')
title('Allan Deviation with Noise Parameters')
xlabel('\tau')
ylabel('\sigma(\tau)')
legend('$\sigma (rad/s)$', '$\sigma_N ((rad/s)/\sqrt{Hz})$', ...

6 Featured Examples

6-104

 '$\sigma_K ((rad/s)\sqrt{Hz})$', '$\sigma_B (rad/s)$', 'Interpreter', 'latex')
text(tauParams, params, {'N', 'K', '0.664B'})
grid on
axis equal

Gyroscope Simulation

Use the imuSensor object to simulate gyroscope measurements with the noise parameters identified
above.

% Simulating the gyroscope measurements takes some time. To avoid this, the
% measurements were generated and saved to a MAT-file. By default, this
% example uses the MAT-file. To generate the measurements instead, change
% this logical variable to true.
generateSimulatedData = false;

if generateSimulatedData
 % Set the gyroscope parameters to the noise parameters determined
 % above.
 gyro = gyroparams('NoiseDensity', N, 'RandomWalk', K, ...
 'BiasInstability', B);
 omegaSim = helperAllanVarianceExample(L, Fs, gyro);
else
 load('SimulatedSingleAxisGyroscope', 'omegaSim')
end

Calculate the simulated Allan deviation and compare it to the logged data.

 Inertial Sensor Noise Analysis Using Allan Variance

6-105

[avarSim, tauSim] = allanvar(omegaSim, 'octave', Fs);
adevSim = sqrt(avarSim);
adevSim = mean(adevSim, 2); % Use the mean of the simulations.

figure
loglog(tau, adev, tauSim, adevSim, '--')
title('Allan Deviation of HW and Simulation')
xlabel('\tau');
ylabel('\sigma(\tau)')
legend('HW', 'SIM')
grid on
axis equal

The plot shows that the gyroscope model created from the imuSensor generates measurements with
similar Allan deviation to the logged data. The model measurements contain slightly less noise since
the quantization and temperature-related parameters are not set using gyroparams. The gyroscope
model can be used to generate measurements using movements that are not easily captured with
hardware.

References

• IEEE Std. 647-2006 IEEE Standard Specification Format Guide and Test Procedure for Single-Axis
Laser Gyros

6 Featured Examples

6-106

Estimate Orientation Through Inertial Sensor Fusion
This example shows how to use 6-axis and 9-axis fusion algorithms to compute orientation. There are
several algorithms to compute orientation from inertial measurement units (IMUs) and magnetic-
angular rate-gravity (MARG) units. This example covers the basics of orientation and how to use
these algorithms.

Orientation

An object's orientation describes its rotation relative to some coordinate system, sometimes called a
parent coordinate system, in three dimensions.

For the following algorithms, the fixed, parent coordinate system used is North-East-Down (NED).
NED is sometimes referred to as the global coordinate system or reference frame. In the NED
reference frame, the X-axis points north, the Y-axis points east, and the Z-axis points downward. The
X-Y plane of NED is considered to be the local tangent plane of the Earth. Depending on the
algorithm, north may be either magnetic north or true north. The algorithms in this example use
magnetic north.

If specified, the following algorithms can estimate orientation relative to East-North-Up (ENU) parent
coordinate system instead of NED.

An object can be thought of as having its own coordinate system, often called the local or child
coordinate system. This child coordinate system rotates with the object relative to the parent
coordinate system. If there is no translation, the origins of both coordinate systems overlap.

The orientation quantity computed is a rotation that takes quantities from the parent reference frame
to the child reference frame. The rotation is represented by a quaternion or rotation matrix.

Types of Sensors

For orientation estimation, three types of sensors are commonly used: accelerometers, gyroscopes
and magnetometers. Accelerometers measure proper acceleration. Gyroscopes measure angular
velocity. Magnetometers measure the local magnetic field. Different algorithms are used to fuse
different combinations of sensors to estimate orientation.

Sensor Data

Through most of this example, the same set of sensor data is used. Accelerometer, gyroscope, and
magnetometer sensor data was recorded while a device rotated around three different axes: first
around its local Y-axis, then around its Z-axis, and finally around its X-axis. The device's X-axis was
generally pointed southward for the duration of the experiment.

ld = load('rpy_9axis.mat');

acc = ld.sensorData.Acceleration;
gyro = ld.sensorData.AngularVelocity;
mag = ld.sensorData.MagneticField;

pp = poseplot;

 Estimate Orientation Through Inertial Sensor Fusion

6-107

Accelerometer-Magnetometer Fusion

The ecompass function fuses accelerometer and magnetometer data. This is a memoryless algorithm
that requires no parameter tuning, but the algorithm is highly susceptible to sensor noise.

qe = ecompass(acc, mag);
for ii=1:size(acc,1)
 set(pp, "Orientation", qe(ii))
 drawnow limitrate
end

6 Featured Examples

6-108

Note that the ecompass algorithm correctly finds the location of north. However, because the
function is memoryless, the estimated motion is not smooth. The algorithm could be used as an
initialization step in an orientation filter or some of the techniques presented in the “Lowpass Filter
Orientation Using Quaternion SLERP” on page 6-48 could be used to smooth the motion.

Accelerometer-Gyroscope Fusion

The following objects estimate orientation using either an error-state Kalman filter or a
complementary filter. The error-state Kalman filter is the standard estimation filter and allows for
many different aspects of the system to be tuned using the corresponding noise parameters. The
complementary filter can be used as a substitute for systems with memory constraints, and has
minimal tunable parameters, which allows for easier configuration at the cost of finer tuning.

The imufilter and complementaryFilter System objects™ fuse accelerometer and gyroscope
data. The imufilter uses an internal error-state Kalman filter and the complementaryFilter
uses a complementary filter. The filters are capable of removing the gyroscope's bias noise, which
drifts over time.

ifilt = imufilter('SampleRate', ld.Fs);
for ii=1:size(acc,1)
 qimu = ifilt(acc(ii,:), gyro(ii,:));
 set(pp, "Orientation", qimu)
 drawnow limitrate
end

 Estimate Orientation Through Inertial Sensor Fusion

6-109

% Disable magnetometer input.
cfilt = complementaryFilter('SampleRate', ld.Fs, 'HasMagnetometer', false);
for ii=1:size(acc,1)
 qimu = cfilt(acc(ii,:), gyro(ii,:));
 set(pp, "Orientation", qimu)
 drawnow limitrate
end

6 Featured Examples

6-110

Although the imufilter and complementaryFilter algorithms produce significantly smoother
estimates of the motion, compared to the ecompass, they do not correctly estimate the direction of
north. The imufilter does not process magnetometer data, so it simply assumes the device's X-axis
is initially pointing northward. The motion estimate given by imufilter is relative to the initial
estimated orientation. The complementaryFilter makes the same assumption when the
HasMagnetometer property is set to false.

Accelerometer-Gyroscope-Magnetometer Fusion

An attitude and heading reference system (AHRS) consists of a 9-axis system that uses an
accelerometer, gyroscope, and magnetometer to compute orientation. The ahrsfilter and
complementaryFilter System objects™ combine the best of the previous algorithms to produce a
smoothly changing estimate of the device orientation, while correctly estimating the direction of
north. The complementaryFilter uses the same complementary filter algorithm as before, with an
extra step to include the magnetometer and improve the orientation estimate. Like imufilter,
ahrsfilter algorithm also uses an error-state Kalman filter. In addition to gyroscope bias removal,
the ahrsfilter has some ability to detect and reject mild magnetic jamming.

ifilt = ahrsfilter('SampleRate', ld.Fs);
for ii=1:size(acc,1)
 qahrs = ifilt(acc(ii,:), gyro(ii,:), mag(ii,:));
 set(pp, "Orientation", qahrs)
 drawnow limitrate
end

 Estimate Orientation Through Inertial Sensor Fusion

6-111

cfilt = complementaryFilter('SampleRate', ld.Fs);
for ii=1:size(acc,1)
 qahrs = cfilt(acc(ii,:), gyro(ii,:), mag(ii,:));
 set(pp, "Orientation", qahrs)
 drawnow limitrate
end

6 Featured Examples

6-112

Tuning Filter Parameters

The complementaryFilter, imufilter, and ahrsfilter System objects™ all have tunable
parameters. Tuning the parameters based on the specified sensors being used can improve
performance.

The complementaryFilter parameters AccelerometerGain and MagnetometerGain can be
tuned to change the amount each sensor's measurements impact the orientation estimate. When
AccelerometerGain is set to 0, only the gyroscope is used for the x- and y-axis orientation. When
AccelerometerGain is set to 1, only the accelerometer is used for the x- and y-axis orientation.
When MagnetometerGain is set to 0, only the gyroscope is used for the z-axis orientation. When
MagnetometerGain is set to 1, only the magnetometer is used for the z-axis orientation.

The ahrsfilter and imufilter System objects™ have more parameters that can allow the filters
to more closely match specific hardware sensors. The environment of the sensor is also important to
take into account. The imufilter parameters are a subset of the ahrsfilter parameters. The
AccelerometerNoise, GyroscopeNoise, MagnetometerNoise, and GyroscopeDriftNoise are
measurement noises. The sensors' datasheets help determine those values.

The LinearAccelerationNoise and LinearAccelerationDecayFactor govern the filter's
response to linear (translational) acceleration. Shaking a device is a simple example of adding linear
acceleration.

Consider how an imufilter with a LinearAccelerationNoise of 9e-3 (m/s2)2 responds to a
shaking trajectory, compared to one with a LinearAccelerationNoise of 9e-4 (m/s2)2.

 Estimate Orientation Through Inertial Sensor Fusion

6-113

ld = load('shakingDevice.mat');
accel = ld.sensorData.Acceleration;
gyro = ld.sensorData.AngularVelocity;

highVarFilt = imufilter('SampleRate', ld.Fs, ...
 'LinearAccelerationNoise', 0.009);
qHighLANoise = highVarFilt(accel, gyro);

lowVarFilt = imufilter('SampleRate', ld.Fs, ...
 'LinearAccelerationNoise', 0.0009);
qLowLANoise = lowVarFilt(accel, gyro);

One way to see the effect of the LinearAccelerationNoise is to look at the output gravity vector.
The gravity vector is simply the third column of the orientation rotation matrix.

rmatHigh = rotmat(qHighLANoise, 'frame');
rmatLow = rotmat(qLowLANoise, 'frame');

gravDistHigh = sqrt(sum((rmatHigh(:,3,:) - [0;0;1]).^2, 1));
gravDistLow = sqrt(sum((rmatLow(:,3,:) - [0;0;1]).^2, 1));

figure;
plot([squeeze(gravDistHigh), squeeze(gravDistLow)]);
title('Euclidean Distance to Gravity');
legend('LinearAccelerationNoise = 0.009', ...
 'LinearAccelerationNoise = 0.0009');

6 Featured Examples

6-114

The lowVarFilt has a low LinearAccelerationNoise, so it expects to be in an environment with
low linear acceleration. Therefore, it is more susceptible to linear acceleration, as illustrated by the
large variations earlier in the plot. However, because it expects to be in an environment with a low
linear acceleration, higher trust is placed in the accelerometer signal. As such, the orientation
estimate converges quickly back to vertical once the shaking has ended. The converse is true for
highVarFilt. The filter is less affected by shaking, but the orientation estimate takes longer to
converge to vertical when the shaking has stopped.

The MagneticDisturbanceNoise property enables modeling magnetic disturbances (non-
geomagnetic noise sources) in much the same way LinearAccelerationNoise models linear
acceleration.

The two decay factor properties (MagneticDisturbanceDecayFactor and
LinearAccelerationDecayFactor) model the rate of variation of the noises. For slowly varying
noise sources, set these parameters to a value closer to 1. For quickly varying, uncorrelated noises,
set these parameters closer to 0. A lower LinearAccelerationDecayFactor enables the
orientation estimate to find "down" more quickly. A lower MagneticDisturbanceDecayFactor
enables the orientation estimate to find north more quickly.

Very large, short magnetic disturbances are rejected almost entirely by the ahrsfilter. Consider a
pulse of [0 250 0] uT applied while recording from a stationary sensor. Ideally, there should be no
change in orientation estimate.

ld = load('magJamming.mat');
hpulse = ahrsfilter('SampleRate', ld.Fs);
len = 1:10000;
qpulse = hpulse(ld.sensorData.Acceleration(len,:), ...
 ld.sensorData.AngularVelocity(len,:), ...
 ld.sensorData.MagneticField(len,:));

figure;
timevec = 0:ld.Fs:(ld.Fs*numel(qpulse) - 1);
plot(timevec, eulerd(qpulse, 'ZYX', 'frame'));
title(['Stationary Trajectory Orientation Euler Angles' newline ...
 'Magnetic Jamming Response']);
legend('Z-rotation', 'Y-rotation', 'X-rotation');
ylabel('Degrees');
xlabel('Seconds');

 Estimate Orientation Through Inertial Sensor Fusion

6-115

Note that the filter almost totally rejects this magnetic pulse as interference. Any magnetic field
strength greater than four times the ExpectedMagneticFieldStrength is considered a jamming
source and the magnetometer signal is ignored for those samples.

Conclusion

The algorithms presented here, when properly tuned, enable estimation of orientation and are robust
against environmental noise sources. It is important to consider the situations in which the sensors
are used and tune the filters accordingly.

6 Featured Examples

6-116

Estimate Orientation and Height Using IMU, Magnetometer,
and Altimeter

This example shows how to fuse data from a 3-axis accelerometer, 3-axis gyroscope, 3-axis
magnetometer (together commonly referred to as a MARG sensor for Magnetic, Angular Rate, and
Gravity), and 1-axis altimeter to estimate orientation and height.

Simulation Setup

This simulation processes sensor data at multiple rates. The IMU (accelerometer and gyroscope)
typically runs at the highest rate. The magnetometer generally runs at a lower rate than the IMU, and
the altimeter runs at the lowest rate. Changing the sample rates causes parts of the fusion algorithm
to run more frequently and can affect performance.

% Set the sampling rate for IMU sensors, magnetometer, and altimeter.
imuFs = 100;
altFs = 10;
magFs = 25;
imuSamplesPerAlt = fix(imuFs/altFs);
imuSamplesPerMag = fix(imuFs/magFs);

% Set the number of samples to simulate.
N = 1000;

% Construct object for other helper functions.
hfunc = Helper10AxisFusion;

Define Trajectory

The sensor body rotates about all three axes while oscillating in position vertically. The oscillations
increase in magnitude as the simulation continues.

% Define the initial state of the sensor body
initPos = [0, 0, 0]; % initial position (m)
initVel = [0, 0, -1]; % initial linear velocity (m/s)
initOrient = ones(1, 'quaternion');

% Define the constant angular velocity for rotating the sensor body
% (rad/s).
angVel = [0.34 0.2 0.045];

% Define the acceleration required for simple oscillating motion of the
% sensor body.
fc = 0.2;
t = 0:1/imuFs:(N-1)/imuFs;
a = 1;
oscMotionAcc = sin(2*pi*fc*t);
oscMotionAcc = hfunc.growAmplitude(oscMotionAcc);

% Construct the trajectory object
traj = kinematicTrajectory('SampleRate', imuFs, ...
 'Velocity', initVel, ...
 'Position', initPos, ...
 'Orientation', initOrient);

 Estimate Orientation and Height Using IMU, Magnetometer, and Altimeter

6-117

Sensor Configuration

The accelerometer, gyroscope and magnetometer are simulated using imuSensor. The altimeter is
modeled using the altimeterSensor. The values used in the sensor configurations correspond to
real MEMS sensor values.

imu = imuSensor('accel-gyro-mag', 'SampleRate', imuFs);

% Accelerometer
imu.Accelerometer.MeasurementRange = 19.6133;
imu.Accelerometer.Resolution = 0.0023928;
imu.Accelerometer.ConstantBias = 0.19;
imu.Accelerometer.NoiseDensity = 0.0012356;

% Gyroscope
imu.Gyroscope.MeasurementRange = deg2rad(250);
imu.Gyroscope.Resolution = deg2rad(0.0625);
imu.Gyroscope.ConstantBias = deg2rad(3.125);
imu.Gyroscope.AxesMisalignment = 1.5;
imu.Gyroscope.NoiseDensity = deg2rad(0.025);

% Magnetometer
imu.Magnetometer.MeasurementRange = 1000;
imu.Magnetometer.Resolution = 0.1;
imu.Magnetometer.ConstantBias = 100;
imu.Magnetometer.NoiseDensity = 0.3/sqrt(50);

% altimeter
altimeter = altimeterSensor('UpdateRate', altFs, 'NoiseDensity', 2*0.1549);

Fusion Filter

Construct an ahrs10filter and configure.

fusionfilt = ahrs10filter;
fusionfilt.IMUSampleRate = imuFs;

Set initial values for the fusion filter.

initstate = zeros(18,1);
initstate(1:4) = compact(initOrient);
initstate(5) = initPos(3);
initstate(6) = initVel(3);
initstate(7:9) = imu.Gyroscope.ConstantBias/imuFs;
initstate(10:12) = imu.Accelerometer.ConstantBias/imuFs;
initstate(13:15) = imu.MagneticField;
initstate(16:18) = imu.Magnetometer.ConstantBias;
fusionfilt.State = initstate;

Initialize the state covariance matrix of the fusion filter. The ground truth is used for initial states, so
there should be little error in the estimates.

icv = diag([1e-8*[1 1 1 1 1 1 1], 1e-3*ones(1,11)]);
fusionfilt.StateCovariance = icv;

Magnetometer and altimeter measurement noises are the observation noises associated with the
sensors used by the internal Kalman filter in the ahrs10filter. These values would normally come
from a sensor datasheet.

6 Featured Examples

6-118

magNoise = 2*(imu.Magnetometer.NoiseDensity(1).^2)*imuFs;
altimeterNoise = 2*(altimeter.NoiseDensity).^2 * altFs;

Filter process noises are used to tune the filter to desired performance.

fusionfilt.AccelerometerNoise = [1e-1 1e-1 1e-4];
fusionfilt.AccelerometerBiasNoise = 1e-8;
fusionfilt.GeomagneticVectorNoise = 1e-12;
fusionfilt.MagnetometerBiasNoise = 1e-12;
fusionfilt.GyroscopeNoise = 1e-12;

Additional Simulation Option : Viewer

By default, this simulation plots the estimation errors at the end of the simulation. To view both the
estimated position and orientation along with the ground truth as the simulation runs, set the
usePoseViewer variable to true.

usePoseViewer = false;

Simulation Loop

q = initOrient;
firstTime = true;

actQ = zeros(N,1, 'quaternion');
expQ = zeros(N,1, 'quaternion');
actP = zeros(N,1);
expP = zeros(N,1);

for ii = 1: N
 % Generate a new set of samples from the trajectory generator
 accBody = rotateframe(q, [0 0 +oscMotionAcc(ii)]);
 omgBody = rotateframe(q, angVel);
 [pos, q, vel, acc] = traj(accBody, omgBody);

 % Feed the current position and orientation to the imuSensor object
 [accel, gyro, mag] = imu(acc, omgBody, q);
 fusionfilt.predict(accel, gyro);

 % Fuse magnetometer samples at the magnetometer sample rate
 if ~mod(ii,imuSamplesPerMag)
 fusemag(fusionfilt, mag, magNoise);
 end

 % Sample and fuse the altimeter output at the altimeter sample rate
 if ~mod(ii,imuSamplesPerAlt)
 altHeight = altimeter(pos);

 % Use the |fusealtimeter| method to update the fusion filter with
 % the altimeter output.
 fusealtimeter(fusionfilt,altHeight,altimeterNoise);
 end

 % Log the actual orientation and position
 [actP(ii), actQ(ii)] = pose(fusionfilt);

 % Log the expected orientation and position
 expQ(ii) = q;

 Estimate Orientation and Height Using IMU, Magnetometer, and Altimeter

6-119

 expP(ii) = pos(3);

 if usePoseViewer
 hfunc.view(actP(ii), actQ(ii),expP(ii), expQ(ii)); %#ok<*UNRCH>
 end

end

Plot Filter Performance

Plot the performance of the filter. The display shows the error in the orientation using quaternion
distance and height error.

hfunc.plotErrs(actP, actQ, expP, expQ);

Conclusion

This example shows how to the ahrs10filter to perform 10-axis sensor fusion for height and
orientation.

6 Featured Examples

6-120

Scanning Radar Mode Configuration
This example shows you how to model different radar scan modes using the fusionRadarSensor.
This example shows how to configure the fusionRadarSensor for several commonly used radar
scan modes. With this model, you can simulate radars which mechanically scan, electronically scan,
and which use both mechanical and electronic scanning. The scan limits in azimuth and elevation are
configurable for both mechanical and electronic scan modes.

Mechanical Rotator

360 Degree Azimuth Scan

360 degree azimuth scan is a mode commonly found on both ground and airborne radars. This mode
provides 360 degree surveillance by mechanically scanning the radar's antenna in azimuth. In this
mode, radars typically employ a fan beam, which has a narrow field of view in azimuth, but covers a
wide elevation span. These radars provide accurate range and azimuth measurements, but typically
do not report elevation for the detected targets. A common example of a 360 degree azimuth scan
radar is the airport surveillance radar.

Use the function helperScanRadarModesExample to create a trackingScenario with a platform
to mount the radar and three targets. This function also sets up a theaterPlot to display the
locations of the targets, the beam and boresight position for the radar, and the detections generated
by the radar.

You can learn more about using trackingScenario and theaterPlot from the “Introduction to
Tracking Scenario and Simulating Sensor Detections” on page 6-87 example.

% Initialize trackingScenario for simulation and theaterPlot for
% visualization
ts = trackingScenario;
[platform,fig] = helperScanRadarModesExample('Setup tracking scenario',ts);

% Set random seed for repeatable results
rng(2018)

Create a radar that mechanically rotates its antenna 360 degrees in azimuth. Mount it 15 meters
above the platform with a yaw of -135 degrees from the platform's axes. Increase the azimuth field of
view for better visibility in the displayed figures.

% Create a 360 degree mechanically rotating radar
radar = fusionRadarSensor(1,'rotator');

% Locate the radar 15 meters above the platform
radar.MountingLocation = [0 0 -15];

% Rotate the radar so that it is yawed -135 degrees from the platform's axes
radar.MountingAngles(1) = -135;

% Set the radar's azimuth field of view to 5 degrees to display larger beams
radar.FieldOfView(1) = 5;

% Display configured radar
radar

radar =

 Scanning Radar Mode Configuration

6-121

 fusionRadarSensor with properties:

 SensorIndex: 1
 UpdateRate: 1
 DetectionMode: 'Monostatic'
 ScanMode: 'Mechanical'
 InterferenceInputPort: 0
 EmissionsInputPort: 0

 MountingLocation: [0 0 -15]
 MountingAngles: [-135 0 0]

 FieldOfView: [5 10.0000]
 RangeLimits: [0 100000]

 DetectionProbability: 0.9000
 FalseAlarmRate: 1.0000e-06
 ReferenceRange: 100000

 TargetReportFormat: 'Clustered detections'

 Use get to show all properties

Configure the radar to mechanically scan at a rate of 2 rpm. In this mode, the radar schedules beams
at each dwell that are spaced by the radar's azimuthal field of view. The radar's update rate is then
computed from the desired scan rate and its azimuthal field of view.

rpm = 2;
fov = radar.FieldOfView;
scanrate = rpm*360/60; % deg/s
updaterate = scanrate/fov(1) % Hz
radar.UpdateRate = updaterate;

updaterate =

 2.4000

Use trackingScenario to simulate the motion of the targets in the scenario and generate
detections using the mechanically rotating radar model. helperScanRadarModesExample is used
to update the theaterPlot with the platform positions, radar beam and boresight location, and
detections generated at each step of the simulation.

% Configure trackingScenario to advance at the radar's update rate.
ts.UpdateRate = radar.UpdateRate;

% Run simulation
figure(fig);
title('360 Degree Azimuth Scan');
while advance(ts) && ishghandle(fig)

 % Current simulation time
 simTime = ts.SimulationTime;

 % Current target positions

6 Featured Examples

6-122

 targets = targetPoses(platform);

 % Generate target detections at current scan position
 dets = radar(targets,simTime);

 % Update display
 helperScanRadarModesExample('Update display',ts,platform,radar,dets);

 % Take a snapshot of detection on inbound target
 takeSnapshot = simTime> 5 && any(cellfun(@(d)d.ObjectAttributes{1}.TargetIndex,dets)==2);
 snapped = helperScanRadarModesExample('Snapshot',fig,takeSnapshot);
 if snapped
 close(fig);
 end
end

 Scanning Radar Mode Configuration

6-123

The preceding figures show the detection of the inbound target in 3-D and 2-D views. The inbound
target is detected by the radar when its beam sweeps across its position. The radar's boresight is
shown as a black, dotted line. The radar's current beam is shown as a blue, dashed line. The history
of beam and boresight positions are shown in gray scale, with the more recent positions shown as
black and the older positions fading to white.

360 Degree Azimuth Scan with Tilted Elevation Coverage

In the preceding section, the boresight of the radar's antenna (black, dotted line) was constrained to
lie in the horizontal plane, resulting in half of the radar's beam directed below the horizontal plane. If
you are modeling a ground-based radar, you may want to tilt the radar's boresight upwards so that
only the area above the ground is surveyed by the radar. Conversely, for an airborne platform, you
may desire to point the radar's beam downwards, to survey targets at altitudes below the radar's
platform.

Tilt the boresight of the radar antenna so that none of the elevation span of the beam lies below the
ground. To do this, enable elevation for the radar and set the elevation mechanical scan limits to
search from the ground up to the full elevation field of view. Then set the elevation field of view to be
slightly greater than the elevation spanned by the mechanical scan limits so that no raster scanning is
performed by the radar (raster scanning is addressed in the next section).

As previously mentioned, the radar schedules beams that are spaced by the azimuth and elevation
field of view to cover the entire mechanical scan limits. By setting the elevation field of view to be
slightly larger than the mechanical elevation scan limits, the radar places the beams in the middle of
the mechanical scan limits.

6 Featured Examples

6-124

This configuration was already set up when you created the radar using the 'rotator' configuration.
All that you need to do is enable elevation.

release(radar);
radar.HasElevation = true;

% Confirm mechanical scan limits
radar.MechanicalAzimuthLimits
radar.MechanicalElevationLimits

ans =

 0 360

ans =

 -10 0

% Confirm elevation field of view is slightly larger than the elevation
% spanned by the scan limits so that raster scan is not performed
elSpan = diff(radar.MechanicalElevationLimits)
isLarger = radar.FieldOfView(2)>elSpan

elSpan =

 10

isLarger =

 logical

 1

Use the helperScanRadarModesExample function to run the simulation as was done by using a
while-loop in the preceding section.

helperScanRadarModesExample('Run simulation',ts,platform,radar,2);

 Scanning Radar Mode Configuration

6-125

6 Featured Examples

6-126

In the preceding figures, you observe that the antenna is tilted upwards so that no radar energy is
directed below the ground. The entire radar beam (blue, dashed lines) lies above the ground.

360 Degree Azimuth with Elevation Raster

Sometimes a radar must perform 360 degree surveillance which covers a region greater than can be
spanned by its elevation field of view. In this case, the radar mechanically rotates in azimuth and
mechanically steps its antenna in elevation at the end of each 360 degree scan. This is a form of
raster scanning where each raster bar is spaced by the radar's elevation field of view across the
radar's elevation scan limits.

Setup the radar to scan a 10 degree region above the ground using a beam which spans 5 degrees in
elevation. This produces 3 elevation raster bars at 0, -5, and -10 degrees elevation.

release(radar);
elFov = 5; % deg
radar.FieldOfView(2) = elFov;
radar.MechanicalElevationLimits = [-10 0]-elFov/2;

% Increase the scan rate of the radar to show 2 complete cycles of the
% raster scan pattern.
rpm = 5;
fov = radar.FieldOfView;
scanrate = rpm*360/60; % deg/s
updaterate = scanrate/fov(1); % Hz
radar.UpdateRate = updaterate;

 Scanning Radar Mode Configuration

6-127

% Run the simulation
helperScanRadarModesExample('Run simulation',ts,platform,radar,3);

6 Featured Examples

6-128

The two preceding figures show the radar's beam positions. The figure on the left shows the beam
positions as the beam steps down from the first to the second raster bar (notice the step in elevation
in the middle of the figure). The figure on the right shows beam positions after the previous raster
scan has completed. In this case, the radar is stepping up from the third raster bar to the second
raster bar. The distance between each raster bar is the radar's elevation field of view.

Sector Scan

Mechanical Azimuth Sector Scan

Scanning a full 360 degree sector is time consuming. If the targets of interest are known to occupy a
smaller region, a sector scan is typically used. By scanning over a smaller azimuth sector, a higher
update rate is achieved for each target within the sector without increasing the mechanical scan rate
of the radar.

Setup the radar to scan a 90 degree azimuth sector by setting the mechanical scan limits to span 45
degrees on either side of the radar's mounted orientation. Disable elevation to constrain the radar's
beam to the horizontal plane.

Setup a fusionRadarSensor with this configuration by specifying the 'Sector' configuration for the
radar.

radar = fusionRadarSensor(1,'Sector','MountingAngles',[-135 0 0],'MountingLocation',[0 0 -15]);

% Set the radar's azimuth field of view to 5 degrees to display larger beams
radar.FieldOfView(1) = 5;

 Scanning Radar Mode Configuration

6-129

% Set the update rate to show multiple cycles of the sector scan
rpm = 2;
fov = radar.FieldOfView;
scanrate = rpm*360/60; % deg/s
updaterate = scanrate/fov(1); % Hz
radar.UpdateRate = updaterate;

% Run the simulation
helperScanRadarModesExample('Run simulation',ts,platform,radar,4);

6 Featured Examples

6-130

 Scanning Radar Mode Configuration

6-131

6 Featured Examples

6-132

The top row of the figures shows the first scan of the azimuth sector, with the beam traversing the
sector from the left to the right side of the figure. The bottom row shows the following scan of the
azimuth sector, where the direction of the mechanical scan has reversed, traversing the figure from
the right to the left.

Once again, half of the radar's beam lies below the horizontal ground plane. You can mechanically tilt
the beam upward or downward using the same technique as you used in the preceding section 360
Degree Azimuth Scan with Tilted Elevation Coverage.

Mechanical Azimuth Sector Scan with Electronic Elevation Scan

Some radars scan mechanically in azimuth and electronically stack multiple beams in elevation at the
antenna's boresight. This avoids the need to perform a raster scan to slowly search out the region of
interest. Electronically steering and processing multiple beams in a single dwell position requires
more complicated antenna hardware and signal processing algorithms, but provides higher update
rates on each target in the sector.

Configure the radar to mechanically scan its beam in azimuth while processing a 10 degree elevation
field of view by electronically stacking multiple elevation beams at each dwell position.

release(radar);

% Enable mechanical and electronic scanning
radar.ScanMode = 'Mechanical and electronic';

% Enable elevation scanning and measurements

 Scanning Radar Mode Configuration

6-133

radar.HasElevation = true;

% Elevation scanning is performed electronically. Set the electronic
% azimuth scan limits to zero to disable electronic azimuth scan. Set the
% mechanical elevation scan limits to zero to disable mechanical elevation
% scan
radar.ElectronicAzimuthLimits = [0 0];
radar.MechanicalElevationLimits = [0 0];

% Confirm that the elevation field of view is greater than the elevation
% spanned by the scan limits
elSpan = diff(radar.ElectronicElevationLimits)
isLarger = radar.FieldOfView(2)>elSpan

elSpan =

 10

isLarger =

 logical

 1

% Run the simulation
helperScanRadarModesExample('Run simulation',ts,platform,radar,5);

6 Featured Examples

6-134

 Scanning Radar Mode Configuration

6-135

6 Featured Examples

6-136

 Scanning Radar Mode Configuration

6-137

The preceding figures show the radar detecting the inbound target. Notice that the radar's boresight
(black, dotted line) lies in the horizontal ground plane, but that the radar's beam is offset in elevation
from its boresight. This offset of the beam position from the radar's boresight is accomplished by
electronically steering beams in elevation.

Electronic Azimuth Sector Scan

The azimuth sector can be surveyed using electronic scanning as well. Electronically scan the same
azimuth sector by creating a fusionRadarSensor using the 'Sector' scan configuration with its scan
mode set to 'Electronic' instead of 'Mechanical'. Enable elevation so that the region above the ground
is scanned by stacking beams in elevation to span the entire elevation scan limits.

radar = fusionRadarSensor(1,'Sector','ScanMode','Electronic','HasElevation',true, ...
 'MountingAngles',[-135 0 0],'MountingLocation',[0 0 -15]);

% Set update rate to show multiple cycles of the raster scan pattern
radar.UpdateRate = updaterate;

% Set the radar's azimuth field of view to 5 degrees to display larger beams
radar.FieldOfView(1) = 5;

% Run the simulation
helperScanRadarModesExample('Run simulation',ts,platform,radar,6);

6 Featured Examples

6-138

 Scanning Radar Mode Configuration

6-139

6 Featured Examples

6-140

 Scanning Radar Mode Configuration

6-141

The preceding figures show that electronic sector scans always scan in the same direction (in this
case, from the left side of the figure to the right side of the figure). Unlike mechanical scanning,
where the next beam position is constrained by the antenna's current mechanical position, electronic
scanning can instantaneously move the beams within the scanned sector.

Raster Scan

Mechanical Raster Scan

The radar can be easily configured to execute a mechanical raster scan pattern as follows.

radar = fusionRadarSensor(1,'Raster','MountingAngles', [-135 0 0], 'MountingLocation', [0 0 -15]);

% Set update rate to show multiple cycles of the raster scan pattern
radar.UpdateRate = updaterate;

% Set the radar's azimuth field of view to 5 degrees to display larger beams
radar.FieldOfView(1) = 5;

% Run the simulation
helperScanRadarModesExample('Run simulation',ts,platform,radar,7);

6 Featured Examples

6-142

 Scanning Radar Mode Configuration

6-143

The preceding figures show the radar's beam position along each of the radar's 3 elevation raster
scan bars. At the end of each azimuth scan, the radar steps in elevation by its field of view and
reverses the direction of its azimuth scan. When an elevation scan limit is reached, the radar begins a
new raster scan by reversing the direction in which it steps the beams in elevation.

You can use this configuration as a starting point and adjust the mechanical scan limits and field of
view to match the scan pattern for the radar you wish to model.

Electronic Raster Scan

You can also configure the radar to perform an electronic raster scan pattern. Electronic raster scan
patterns immediately repeat the same scan sequence after each scan, but a mechanical raster
reverses its scan sequence to return the antenna's mechanical position back to its origin.

Configure the radar to perform an electronic raster scan by setting its scan mode to 'Electronic'.

radar = fusionRadarSensor(1,'Raster','ScanMode','Electronic','MountingAngles',[-135 0 0],'MountingLocation',[0 0 -15]);

% Set update rate to show multiple cycles of the raster scan pattern
radar.UpdateRate = updaterate;

% Set the radar's azimuth field of view to 5 degrees to display larger beams
radar.FieldOfView(1) = 5;

% Run the simulation
helperScanRadarModesExample('Run simulation',ts,platform,radar,8);

6 Featured Examples

6-144

 Scanning Radar Mode Configuration

6-145

The preceding figures show the radar's beam position along each of the radar's 3 elevation raster
scan bars. At the end of each azimuth scan, the radar steps in elevation by its field of view and
continues scanning in azimuth in the same direction as the previous scan. When an elevation scan
limit is reached, the radar repeats the same sequence of raster scan positions. With electronic
scanning, the radar can instantaneously return to the beginning of the scan pattern and is not
constrained by the current mechanical position of the radar.

You can use this configuration as a starting point and adjust the electronic scan limits and field of
view to match the scan pattern for the radar you wish to model.

Summary

This example shows you how to model many common scan patterns using the fusionRadarSensor.
This model provides presets that enable you to quickly configure the radar and make additional minor
adjustments to the scan parameters to match the radar you are modeling.

6 Featured Examples

6-146

Extended Object Tracking of Highway Vehicles with Radar and
Camera

This example shows you how to track highway vehicles around an ego vehicle. Vehicles are extended
objects, whose dimensions span multiple sensor resolution cells. As a result, the sensors report
multiple detections of these objects in a single scan. In this example, you will use different extended
object tracking techniques to track highway vehicles and evaluate the results of their tracking
performance.

Introduction

In conventional tracking approaches such as global nearest neighbor (multiObjectTracker,
trackerGNN), joint probabilistic data association (trackerJPDA) and multi-hypothesis tracking
(trackerTOMHT), tracked objects are assumed to return one detection per sensor scan. With the
development of sensors that have better resolution, such as a high-resolution radar, the sensors
typically return more than one detection of an object. For example, the image below depicts multiple
detections for a single vehicle that spans multiple radar resolution cells. In such cases, the technique
used to track the objects is known as extended object tracking [1].

The key benefit of using a high-resolution sensor is getting more information about the object, such
as its dimensions and orientation. This additional information can improve the probability of detection
and reduce the false alarm rate.

Extended objects present new challenges to conventional trackers, because these trackers assume a
single detection per object per sensor. In some cases, you can cluster the sensor data to provide the

 Extended Object Tracking of Highway Vehicles with Radar and Camera

6-147

conventional trackers with a single detection per object. However, by doing so, the benefit of using a
high-resolution sensor may be lost.

In contrast, extended object trackers can handle multiple detections per object. In addition, these
trackers can estimate not only the kinematic states, such as position and velocity of the object, but
also the dimensions and orientation of the object. In this example, you track vehicles around the ego
vehicle using the following trackers:

• A conventional multi-object tracker using a point-target model, multiObjectTracker
• A GGIW-PHD (Gamma Gaussian Inverse Wishart PHD) tracker, trackerPHD with ggiwphd filter
• A GM-PHD (Gaussian mixture PHD) tracker, trackerPHD with gmphd filter using rectangular

target model

You will evaluate the tracking results of all trackers using trackErrorMetrics and
trackAssignmentMetrics, which provide multiple measures of effectiveness of a tracker. You will
also evaluate the results using the Optimal SubPattern Assignment Metric (OSPA),
trackOSPAMetric, which aims to evaluate the performance of a tracker using a combined score.

Setup

Scenario

In this example, there is an ego vehicle and four other vehicles: a vehicle ahead of the ego vehicle in
the center lane, a vehicle behind the ego vehicle in the center lane, a truck ahead of the ego vehicle
in the right lane and an overtaking vehicle in the left lane.

In this example, you simulate an ego vehicle that has 6 radar sensors and 2 vision sensors covering
the 360-degree field of view. The sensors have some overlap and some coverage gap. The ego vehicle
is equipped with a long-range radar sensor and a vision sensor on both the front and back of the
vehicle. Each side of the vehicle has two short-range radar sensors, each covering 90 degrees. One
sensor on each side covers from the middle of the vehicle to the back. The other sensor on each side
covers from the middle of the vehicle forward.

% Create the scenario
exPath = fullfile(matlabroot,'examples','driving_fusion','main');
addpath(exPath)
[scenario, egoVehicle, sensors] = helperCreateScenario;

% Create the display object
display = helperExtendedTargetTrackingDisplay;

% Create the Animation writer to record each frame of the figure for
% animation writing. Set 'RecordGIF' to true to enable GIF writing.
gifWriter = helperGIFWriter('Figure',display.Figure,...
 'RecordGIF',false);

6 Featured Examples

6-148

Metrics

In this example, you use some key metrics to assess the tracking performance of each tracker. In
particular, you assess the trackers based on their accuracy in estimating the positions, velocities,
dimensions (length and width) and orientations of the objects. These metrics can be evaluated using
the trackErrorMetrics class. To define the error of a tracked target from its ground truth, this
example uses a 'custom' error function, helperExtendedTargetError, listed at the end of this
example.

You will also assess the performance based on metrics such as number of false tracks or redundant
tracks. These metrics can be calculated using the trackAssignmentMetrics class. To define the
distance between a tracked target and a truth object, this example uses a 'custom' error function,
helperExtendedTargetDistance, listed at the end of this example. The function defines the
distance metric as the sum of distances in position, velocity, dimension and yaw.

trackErrorMetrics and trackAssignmentMetrics provide multiple measures of effectiveness of
a tracking algorithm. You will also assess the performance based on the Optimal SubPattern

 Extended Object Tracking of Highway Vehicles with Radar and Camera

6-149

Assignment Metric (OSPA), which provides a single score value for the tracking algorithm at each
time step. This metric can be calculated using the trackOSPAMetric class. The 'custom' distance
function defined for OSPA is same as the assignment metrics.

% Function to return the errors given track and truth.
errorFcn = @(track,truth)helperExtendedTargetError(track,truth);

% Function to return the distance between track and truth.
distFcn = @(track,truth)helperExtendedTargetDistance(track,truth);

% Function to return the IDs from the ground truth. The default
% identifier assumes that the truth is identified with PlatformID. In
% drivingScenario, truth is identified with an ActorID.
truthIdFcn = @(x)[x.ActorID];

% Create metrics object.
tem = trackErrorMetrics(...
 'ErrorFunctionFormat','custom',...
 'EstimationErrorLabels',{'PositionError','VelocityError','DimensionsError','YawError'},...
 'EstimationErrorFcn',errorFcn,...
 'TruthIdentifierFcn',truthIdFcn);

tam = trackAssignmentMetrics(...
 'DistanceFunctionFormat','custom',...
 'AssignmentDistanceFcn',distFcn,...
 'DivergenceDistanceFcn',distFcn,...
 'TruthIdentifierFcn',truthIdFcn,...
 'AssignmentThreshold',30,...
 'DivergenceThreshold',35);

% Create ospa metric object.
tom = trackOSPAMetric(...
 'Distance','custom',...
 'DistanceFcn',distFcn,...
 'TruthIdentifierFcn',truthIdFcn);

Point Object Tracker

The multiObjectTracker System object™ assumes one detection per object per sensor and uses a
global nearest neighbor approach to associate detections to tracks. It assumes that every object can
be detected at most once by a sensor in a scan. In this case, the simulated radar sensors have a high
enough resolution to generate multiple detections per object. If these detections are not clustered,
the tracker generates multiple tracks per object. Clustering returns one detection per cluster, at the
cost of having a larger uncertainty covariance and losing information about the true object
dimensions. Clustering also makes it hard to distinguish between two objects when they are close to
each other, for example, when one vehicle passes another vehicle.

trackerRunTimes = zeros(0,3);
ospaMetric = zeros(0,3);

% Create a multiObjectTracker
tracker = multiObjectTracker(...
 'FilterInitializationFcn', @helperInitPointFilter, ...
 'AssignmentThreshold', 30, ...
 'ConfirmationThreshold', [4 5], ...
 'DeletionThreshold', 3);

6 Featured Examples

6-150

% Reset the random number generator for repeatable results
seed = 2018;
S = rng(seed);
timeStep = 1;

% For multiObjectTracker, the radar reports in Ego Cartesian frame and does
% not report velocity. This allows us to cluster detections from multiple
% sensors.
for i = 1:6
 sensors{i}.HasRangeRate = false;
 sensors{i}.DetectionCoordinates = 'Body';
end

Run the scenario.

while advance(scenario) && ishghandle(display.Figure)
 % Get the scenario time
 time = scenario.SimulationTime;

 % Collect detections from the ego vehicle sensors
 [detections,isValidTime] = helperDetect(sensors, egoVehicle, time);

 % Update the tracker if there are new detections
 if any(isValidTime)
 % Detections must be clustered first for the point tracker
 detectionClusters = helperClusterRadarDetections(detections);

 % Update the tracker
 tic
 % confirmedTracks are in scenario coordinates
 confirmedTracks = updateTracks(tracker, detectionClusters, time);
 t = toc;

 % Update the metrics
 % a. Obtain ground truth
 groundTruth = scenario.Actors(2:end); % All except Ego

 % b. Update assignment metrics
 tam(confirmedTracks,groundTruth);
 [trackIDs,truthIDs] = currentAssignment(tam);

 % c. Update error metrics
 tem(confirmedTracks,trackIDs,groundTruth,truthIDs);

 % d. Update ospa metric
 ospaMetric(timeStep,1) = tom(confirmedTracks, groundTruth);

 % Update bird's-eye-plot
 % Convert tracks to ego coordinates for display
 confirmedTracksEgo = helperConvertToEgoCoordinates(egoVehicle, confirmedTracks);
 display(egoVehicle, sensors, detections, confirmedTracksEgo, detectionClusters);
 drawnow;

 % Record tracker run times
 trackerRunTimes(timeStep,1) = t;
 timeStep = timeStep + 1;

 % Capture frames for animation

 Extended Object Tracking of Highway Vehicles with Radar and Camera

6-151

 gifWriter();
 end
end

% Capture the cumulative track metrics. The error metrics show the averaged
% value of the error over the simulation.
assignmentMetricsMOT = tam.trackMetricsTable;
errorMetricsMOT = tem.cumulativeTruthMetrics;

% Write GIF if requested
writeAnimation(gifWriter,'multiObjectTracking');

These results show that, with clustering, the tracker can keep track of the objects in the scene.
However, it also shows that the track associated with the overtaking vehicle (yellow) moves from the
front of the vehicle at the beginning of the scenario to the back of the vehicle at the end. At the
beginning of the scenario, the overtaking vehicle is behind the ego vehicle (blue), so radar and vision
detections are made from its front. As the overtaking vehicle passes the ego vehicle, radar detections
are made from the side of the overtaking vehicle and then from its back, and the track moves to the
back of the vehicle.

You can also see that the clustering is not perfect. When the passing vehicle passes the vehicle that is
behind the ego vehicle (purple), both tracks are slightly shifted to the left due to the imperfect
clustering. A redundant track is created on the track initially due to multiple clusters created when
part of the side edge is missed. Also, a redundant track appears on the passing vehicle during the end
because the distances between its detections increase.

GGIW-PHD Extended Object Tracker

In this section, you use a GGIW-PHD tracker (trackerPHD with ggiwphd) to track objects. Unlike
multiObjectTracker, which uses one filter per track, the GGIW-PHD is a multi-target filter which

6 Featured Examples

6-152

describes the probability hypothesis density (PHD) of the scenario. To model the extended target,
GGIW-PHD uses the following distributions:

Gamma: Positive value to describe expected number of detections.

Gaussian: State vector to describe target's kinematic state.

Inverse-Wishart: Positive-definite matrix to describe the elliptical extent.

The model assumes that each distribution is independent of each other. Thus, the probability
hypothesis density (PHD) in GGIW-PHD filter is described by a weighted sum of the probability
density functions of several GGIW components.

A PHD tracker requires calculating the detectability of each component in the density. The calculation
of detectability requires configurations of each sensor used with the tracker. You define these
configurations for trackerPHD using the trackingSensorConfiguration class. Review the
helperCreateSensorConfigurations function to see how sensor properties can be utilized to
define the sensor configurations for the tracker.

% Set up sensor configurations
%
sensorConfigurations = helperCreateSensorConfigurations(sensors,egoVehicle);

% The transform function and filter initialization functions are state and
% filter dependent. Therefore, they are not set in the helper function.
for i = 1:numel(sensorConfigurations)
 % You can use a different technique to initialize a filter for each
 % sensor by using a different function for each configuration.
 sensorConfigurations{i}.FilterInitializationFcn = @helperInitGGIWFilter;

 % Tracks are defined in constant turn-rate state-space in the scenario
 % coordinates. The MeasurementFcn for constant turn-rate model can be
 % used as the transform function.
 sensorConfigurations{i}.SensorTransformFcn = @ctmeas;
end

Define the tracker.

In contrast to a point object tracker, which usually takes into account one partition (cluster) of
detections, the trackerPHD creates multiple possible partitions of a set of detections and evaluates it
against the current components in the PHD filter. The 3 and 5 in the function below defines the lower
and upper Mahalanobis distance between detections. This is equivalent to defining that each cluster
of detection must be a minimum of 3 resolutions apart and maximum of 5 resolutions apart from each
other. The helper function wraps around partitionDetections and doesn't use range-rate
measurements for partitioning detections from side radars.

partFcn = @(x)helperPartitioningFcn(x,3,5);

tracker = trackerPHD('SensorConfigurations', sensorConfigurations,...
 'PartitioningFcn',partFcn,...
 'AssignmentThreshold',450,...% Minimum negative log-likelihood of a detection cell (multiple detections per cell) to add birth components.
 'ExtractionThreshold',0.75,...% Weight threshold of a filter component to be declared a track
 'ConfirmationThreshold',0.85,...% Weight threshold of a filter component to be declared a confirmed track
 'MergingThreshold',50,...% Threshold to merge components
 'HasSensorConfigurationsInput',true... % Tracking is performed in scenario frame and hence sensor configurations change with time
);

 Extended Object Tracking of Highway Vehicles with Radar and Camera

6-153

Run the simulation.

% Release and restart all objects.
restart(scenario);
release(tem);
release(tam);
% No penality for trackerPHD
tam.AssignmentThreshold = tam.AssignmentThreshold - 2;
release(display);
display.PlotClusteredDetection = false;
gifWriter.pFrames = {};
for i = 1:numel(sensors)
 release(sensors{i});
 if i <= 6
 sensors{i}.HasRangeRate = true;
 sensors{i}.DetectionCoordinates = 'Sensor spherical';
 end
end

% Restore random seed.
rng(seed)

% First time step
timeStep = 1;
% Run the scenario
while advance(scenario) && ishghandle(display.Figure)
 % Get the scenario time
 time = scenario.SimulationTime;

 % Get the poses of the other vehicles in ego vehicle coordinates
 ta = targetPoses(egoVehicle);

 % Collect detections from the ego vehicle sensors
 [detections, isValidTime, configurations] = helperDetect(sensors, egoVehicle, time, sensorConfigurations);

 % Update the tracker with all the detections. Note that there is no
 % need to cluster the detections before passing them to the tracker.
 % Also, the sensor configurations are passed as an input to the
 % tracker.
 tic
 % confirmedTracks are in scenario coordinates
 confirmedTracks = tracker(detections,configurations,time);
 t = toc;

 % Update the metrics
 % a. Obtain ground truth
 groundTruth = scenario.Actors(2:end); % All except Ego

 % b. Update assignment metrics
 tam(confirmedTracks,groundTruth);
 [trackIDs,truthIDs] = currentAssignment(tam);

 % c. Update error metrics
 tem(confirmedTracks,trackIDs,groundTruth,truthIDs);

 % d. Update ospa metric
 ospaMetric(timeStep,2) = tom(confirmedTracks, groundTruth);

6 Featured Examples

6-154

 % Update the bird's-eye plot
 % Convert tracks to ego coordinates for display
 confirmedTracksEgo = helperConvertToEgoCoordinates(egoVehicle, confirmedTracks);
 display(egoVehicle, sensors, detections, confirmedTracksEgo);
 drawnow;

 % Record tracker run times
 trackerRunTimes(timeStep,2) = t;
 timeStep = timeStep + 1;

 % Capture frames for GIF
 gifWriter();
end

% Capture the truth and track metrics tables
assignmentMetricsGGIWPHD = tam.trackMetricsTable;
errorMetricsGGIWPHD = tem.cumulativeTruthMetrics;

% Write GIF if requested
writeAnimation(gifWriter,'ggiwphdTracking');

These results show that the GGIW-PHD can handle multiple detections per object per sensor, without
the need to cluster these detections first. Moreover, by using the multiple detections, the tracker
estimates the position, velocity, dimensions and orientation of each object. The dashed elliptical shape
in the figure demonstrates the expected extent of the target. The filter initialization function specifies
multiple possible sizes and their relative weights using multiple components. The list can be
expanded to add more sizes with added computational complexity. In contrast, you can also initialize
one component per detection with a higher uncertainty in dimensions. This will enable the tracker to
estimate the dimensions of the objects automatically. That said, the accuracy of the estimate will
depend on the observability of the target dimensions and is susceptible to shrinkage and enlargement
of track dimensions as the targets move around the ego vehicle.

The GGIW-PHD filter assumes that detections are distributed around the target's elliptical center.
Therefore, the tracks tend to follow observable portions of the vehicle. Such observable portions
include rear face of the vehicle that is directly ahead of the ego vehicle or the front face of the vehicle
directly behind the ego vehicle for example, the rear and front face of the vehicle directly ahead and
behind of the ego vehicle respectively. In contrast, the length and width of the passing vehicle was
fully observed during the simulation. Therefore, its estimated ellipse has a better overlap with the
actual shape.

 Extended Object Tracking of Highway Vehicles with Radar and Camera

6-155

GM-PHD Rectangular Object Tracker

In this section, you use a GM-PHD tracker (trackerPHD with gmphd) and a rectangular target model
(initctrectgmphd) to track objects. Unlike ggiwphd, which uses an elliptical shape to track extent,
gmphd allows you to use a Gaussian distribution to define the shape of your choice. The rectangular
target model is defined by motion models, ctrect and ctrectjac and measurement models,
ctrectmeas and ctrectmeasjac.

The sensor configurations defined for trackerPHD earlier remain the same, except for definition of
SensorTransformFcn and FilterInitializationFcn.

for i = 1:numel(sensorConfigurations)
 sensorConfigurations{i}.FilterInitializationFcn = @helperInitRectangularFilter; % Initialize a rectangular target gmphd
 sensorConfigurations{i}.SensorTransformFcn = @ctrectcorners; % Use corners to calculate detection probability
end

% Define tracker using new sensor configurations
tracker = trackerPHD('SensorConfigurations', sensorConfigurations,...
 'PartitioningFcn',partFcn,...
 'AssignmentThreshold',600,...% Minimum negative log-likelihood of a detection cell to add birth components
 'ExtractionThreshold',0.85,...% Weight threshold of a filter component to be declared a track
 'ConfirmationThreshold',0.95,...% Weight threshold of a filter component to be declared a confirmed track
 'MergingThreshold',50,...% Threshold to merge components
 'HasSensorConfigurationsInput',true... % Tracking is performed in scenario frame and hence sensor configurations change with time
);

% Release and restart all objects.
restart(scenario);
for i = 1:numel(sensors)
 release(sensors{i});
end

6 Featured Examples

6-156

release(tem);
release(tam);
release(display);
display.PlotClusteredDetection = false;
gifWriter.pFrames = {};

% Restore random seed.
rng(seed)

% First time step
timeStep = 1;

% Run the scenario
while advance(scenario) && ishghandle(display.Figure)
 % Get the scenario time
 time = scenario.SimulationTime;

 % Get the poses of the other vehicles in ego vehicle coordinates
 ta = targetPoses(egoVehicle);

 % Collect detections from the ego vehicle sensors
 [detections, isValidTime, configurations] = helperDetect(sensors, egoVehicle, time, sensorConfigurations);

 % Update the tracker with all the detections. Note that there is no
 % need to cluster the detections before passing them to the tracker.
 % Also, the sensor configurations are passed as an input to the
 % tracker.
 tic
 % confirmedTracks are in scenario coordinates
 confirmedTracks = tracker(detections,configurations,time);
 t = toc;

 % Update the metrics
 % a. Obtain ground truth
 groundTruth = scenario.Actors(2:end); % All except Ego

 % b. Update assignment metrics
 tam(confirmedTracks,groundTruth);
 [trackIDs,truthIDs] = currentAssignment(tam);

 % c. Update error metrics
 tem(confirmedTracks,trackIDs,groundTruth,truthIDs);

 % d. Update ospa metric
 ospaMetric(timeStep,3) = tom(confirmedTracks, groundTruth);

 % Update the bird's-eye plot
 % Convert tracks to ego coordinates for display
 confirmedTracksEgo = helperConvertToEgoCoordinates(egoVehicle, confirmedTracks);
 display(egoVehicle, sensors, detections, confirmedTracksEgo);
 drawnow;

 % Record tracker run times
 trackerRunTimes(timeStep,3) = t;
 timeStep = timeStep + 1;

 % Capture frames for GIF
 gifWriter();

 Extended Object Tracking of Highway Vehicles with Radar and Camera

6-157

end

% Capture the truth and track metrics tables
assignmentMetricsGMPHD = tam.trackMetricsTable;
errorMetricsGMPHD = tem.cumulativeTruthMetrics;

% Write GIF if requested
writeAnimation(gifWriter,'gmphdTracking');

% Return the random number generator to its previous state
rng(S)
rmpath(exPath)

These results show that the GM-PHD can also handle multiple detections per object per sensor.
Similar to GGIW-PHD, it also estimates the size and orientation of the object. The filter initialization
function uses a similar approach as the GGIW-PHD tracker and initializes multiple components for
different sizes.

You can notice that the estimated tracks, which are modeled as rectangles, have a good fit with the
simulated ground truth object, depicted by the solid color patches. In particular, the tracks are able to
correctly track the shape of the vehicle along with the kinematic center.

Evaluate Tracking Performance

Evaluate the tracking performance of each tracker using quantitative metrics such as the estimation
error in position, velocity, dimensions and orientation. Also evaluate the track assignments using
metrics such as redundant and false tracks.

Assignment metrics

helperPlotAssignmentMetrics(assignmentMetricsMOT, assignmentMetricsGGIWPHD, assignmentMetricsGMPHD);

6 Featured Examples

6-158

The assignment metrics illustrate that redundant and false tracks were initialized and confirmed by
the point object tracker. These tracks result due to imperfect clustering, where detections belonging
to the same target were clustered into more than one clustered detection. In contrast, the GGIW-PHD
tracker and the GM-PHD tracker maintain tracks on all four targets and do not create any false or
redundant tracks. These metrics show that both extended object trackers correctly partition the
detections and associate them with the correct tracks.

Error metrics

helperPlotErrorMetrics(errorMetricsMOT, errorMetricsGGIWPHD, errorMetricsGMPHD);

 Extended Object Tracking of Highway Vehicles with Radar and Camera

6-159

The plot shows the average estimation errors for the three types of trackers used in this example.
Because the point object tracker does not estimate the yaw and dimensions of the objects, they are
now shown in the plots. The point object tracker is able to estimate the kinematics of the objects with
a reasonable accuracy. The position error of the vehicle behind the ego vehicle is higher because it
was dragged to the left when the passing vehicle overtakes this vehicle. This is also an artifact of
imperfect clustering when the objects are close to each other.

As described earlier, the GGIW-PHD tracker assumes that measurements are distributed around the
object's extent, which results in center of the tracks on observable parts of the vehicle. This can also
be seen in the position error metrics for TruthID 2 and 4. The tracker is able to estimate the
dimensions of the object with about 0.3 meters accuracy for the vehicles ahead and behind the ego
vehicle. Because of higher certainty defined for the vehicles' dimensions in the
helperInitGGIWFilter function, the tracker does not collapse the length of these vehicles, even
when the best-fit ellipse has a very low length. As the passing vehicle (TruthID 3) was observed on all
dimensions, its dimensions are measured more accurately than the other vehicles. However, as the
passing vehicle maneuvers with respect to the ego vehicle, the error in yaw estimate is higher.

The GM-PHD in this example uses a rectangular shaped target model and uses received
measurements to evaluate expected measurements on the boundary of the target. This model helps
the tracker estimate the shape and orientation more accurately. However, the process of evaluating
expected measurements on the edges of a rectangular target is computationally more expensive.

OSPA Metric

6 Featured Examples

6-160

As described earlier, the OSPA metric aims to describe the performance of a tracking algorithm using
a single score. Notice that the OSPA sufficiently captures the performance of the tracking algorithm
which decreases from GM-PHD to GGIW-PHD to the point-target tracker, as described using the error
and assignment metrics.

ospaFig = figure;
plot(ospaMetric,'LineWidth',2);
legend('Point Target Tracker','GGIW-PHD Tracker','Rectangular GM-PHD Tracker');
xlabel('Time step (k)');
ylabel('OSPA');

Compare Time Performance

Previously, you learned about different techniques, the assumptions they make about target models,
and the resulting tracking performance. Now compare the run-times of the trackers. Notice that
GGIW-PHD filter offers significant computational advantages over the GM-PHD, at the cost of
decreased tracking performance.

runTimeFig = figure;
h = plot(trackerRunTimes(3:end,:)./trackerRunTimes(3:end,1),'LineWidth',2);
legend('Point Target Tracker','GGIW-PHD Tracker','Rectangular GM-PHD Tracker');
xlabel('Time step (k)');
ylabel('$$\frac{t_{tracker}}{t_{multiObjectTracker}}$$','interpreter','latex','fontsize',14);
ylim([0 max([h.YData]) + 1]);

 Extended Object Tracking of Highway Vehicles with Radar and Camera

6-161

Summary

This example showed how to track objects that return multiple detections in a single sensor scan
using different approaches. These approaches can be used to track objects with high-resolution
sensors, such as a radar or laser sensor.

References

[1] Granström, Karl, Marcus Baum, and Stephan Reuter. "Extended Object Tracking: Introduction,
Overview and Applications." Journal of Advances in Information Fusion. Vol. 12, No. 2, December
2017.

[2] Granström, Karl, Christian Lundquist, and Umut Orguner. "Tracking rectangular and elliptical
extended targets using laser measurements." 14th International Conference on Information Fusion.
IEEE, 2011.

[3] Granström, Karl. "Extended target tracking using PHD filters." 2012

Supporting Functions

helperExtendedTargetError

Function to define the error between tracked target and the associated ground truth.

function [posError,velError,dimError,yawError] = helperExtendedTargetError(track,truth)
% Errors as a function of target track and associated truth.

6 Featured Examples

6-162

% Get true information from the ground truth.
truePos = truth.Position(1:2)';
% Position is at the rear axle for all vehicles. We would like to compute
% the error from the center of the vehicle
rot = [cosd(truth.Yaw) -sind(truth.Yaw);sind(truth.Yaw) cosd(truth.Yaw)];
truePos = truePos + rot*[truth.Wheelbase/2;0];

trueVel = truth.Velocity(1:2);
trueYaw = truth.Yaw(:);
trueDims = [truth.Length;truth.Width];

% Get estimated value from track.
% GGIW-PHD tracker outputs a struct field 'Extent' and 'SourceIndex'
% GM-PHD tracker outputs struct with but not 'Extent'
% multiObjectTracker outputs objectTrack

if isa(track,'objectTrack')
 estPos = track.State([1 3]);
 estVel = track.State([2 4]);
 % No yaw or dimension information in multiObjectTracker.
 estYaw = nan;
 estDims = [nan;nan];
elseif isfield(track,'Extent') % trackerPHD with GGIWPHD
 estPos = track.State([1 3]);
 estVel = track.State([2 4]);
 estYaw = atan2d(estVel(2),estVel(1));
 d = eig(track.Extent);
 dims = 2*sqrt(d);
 estDims = [max(dims);min(dims)];
else % trackerPHD with GMPHD
 estPos = track.State(1:2);
 estYaw = track.State(4);
 estVel = [track.State(3)*cosd(estYaw);track.State(3)*sind(estYaw)];
 estDims = track.State(6:7);
end

% Compute 2-norm of error for each attribute.
posError = norm(truePos(:) - estPos(:));
velError = norm(trueVel(:) - estVel(:));
dimError = norm(trueDims(:) - estDims(:));
yawError = norm(trueYaw(:) - estYaw(:));
end

helperExtendedTargetDistance

Function to define the distance between a track and a ground truth.

function dist = helperExtendedTargetDistance(track,truth)
% This function computes the distance between track and a truth.

% Copyright 2019-2020 The MathWorks, Inc.

% Errors in each aspect
[posError,velError,dimError,yawError] = helperExtendedTargetError(track,truth);

 Extended Object Tracking of Highway Vehicles with Radar and Camera

6-163

% For multiObjectTracker, add a constant penalty for not estimating yaw
% and dimensions
if isnan(dimError)
 dimError = 1;
end
if isnan(yawError)
 yawError = 1;
end

% Distance is the sum of errors
dist = posError + velError + dimError + yawError;

end

helperInitGGIWFilter

Function to create a ggiwphd filter from a detection cell.

function phd = helperInitGGIWFilter(varargin)
% helperInitGGIWFilter A function to initialize the GGIW-PHD filter for the
% Extended Object Tracking example

% Create a ggiwphd filter using 5 states and the constant turn-rate models.
phd = ggiwphd(zeros(5,1),eye(5),...
 'StateTransitionFcn',@constturn,...
 'StateTransitionJacobianFcn',@constturnjac,...
 'MeasurementFcn',@ctmeas,...
 'MeasurementJacobianFcn',@ctmeasjac,...
 'HasAdditiveMeasurementNoise',true,...
 'HasAdditiveProcessNoise',false,...
 'ProcessNoise',diag([1 1 3]),...
 'MaxNumComponents',1000,...
 'ExtentRotationFcn',@extentRotFcn,...
 'PositionIndex',[1 3]);

% If the function is called with no inputs i.e. the predictive portion of
% the birth density, no components are added to the mixture.
if nargin == 0
 % Nullify to return 0 components.
 nullify(phd);
else
 % When called with detections input, add two components to the filter,
 % one for car and one for truck, More components can be added based on
 % prior knowledge of the scenario, example, pedestrian or motorcycle.
 % This is a "multi-model" type approach. Another approach can be to add
 % only 1 component with a higher covariance in the dimensions. The
 % later is computationally less demanding, but has a tendency to track
 % observable dimensions of the object. For example, if only the back is
 % visible, the measurement noise may cause the length of the object to
 % shrink.

 % Detections
 detections = varargin{1};

 % Enable elevation measurements to create a 3-D filter using

6 Featured Examples

6-164

 % initctggiwphd
 if detections{1}.SensorIndex < 7
 for i = 1:numel(detections)
 detections{i}.Measurement = [detections{i}.Measurement(1);0;detections{i}.Measurement(2:end)];
 detections{i}.MeasurementNoise = blkdiag(detections{i}.MeasurementNoise(1,1),0.4,detections{i}.MeasurementNoise(2:end,2:end));
 detections{i}.MeasurementParameters(1).HasElevation = true;
 end
 end
 phd3d = initctggiwphd(detections);

 % Set states of the 2-D filter using 3-D filter
 phd.States = phd3d.States(1:5);
 phd.StateCovariances = phd3d.StateCovariances(1:5,1:5);

 phd.DegreesOfFreedom = 1000;
 phd.ScaleMatrices = (1000-4)*diag([4.7/2 1.8/2].^2);

 % Add truck dimensions as second component
 append(phd,phd);
 phd.ScaleMatrices(:,:,2) = (1000-4)*diag([8.1/2 2.45/2].^2);
 phd.GammaForgettingFactors = [1.03 1.03];

 % Relative weights of the components. Can be treated as probability of
 % existence of a car vs a truck on road.
 phd.Weights = [0.7 0.3];
end
end

function R = extentRotFcn(x,dT)
 % Rotation of the extent during prediction.
 w = x(5);
 theta = w*dT;
 R = [cosd(theta) -sind(theta);sind(theta) cosd(theta)];
end

helperInitRectangularFilter

Function to create a gmphd rectangular target filter from a detection cell.

function filter = helperInitRectangularFilter(varargin)
% helperInitRectangularFilter A function to initialize the rectangular
% target PHD filter for the Extended Object Tracking example

% Copyright 2019 The MathWorks, Inc.

if nargin == 0
 % If called with no inputs, simply use the initctrectgmphd function to
 % create a PHD filter with no components.
 filter = initctrectgmphd;
 % Set process noise
 filter.ProcessNoise = diag([1 3]);
else
 % When called with detections input, add two components to the filter,
 % one for car and one for truck, More components can be added based on
 % prior knowledge of the scenario, example, pedestrian or motorcycle.
 % This is a "multi-model" type approach. Another approach can be to add

 Extended Object Tracking of Highway Vehicles with Radar and Camera

6-165

 % only 1 component with a higher covariance in the dimensions. The
 % later is computationally less demanding, but has a tendency to track
 % observable dimensions of the object. For example, if only the back is
 % visible, the measurement noise may cause the length of the object to
 % shrink.

 % Detections
 detections = varargin{1};

 % Create a GM-PHD filter with rectangular model
 filter = initctrectgmphd(detections);

 % Length width of a passenger car
 filter.States(6:7,1) = [4.7;1.8];

 % High certainty in dimensions
 lCov = 1e-4;
 wCov = 1e-4;
 lwCorr = 0.5;
 lwCov = sqrt(lCov*wCov)*lwCorr;
 filter.StateCovariances(6:7,6:7,1) = [lCov lwCov;lwCov wCov];

 % Add one more component by appending the filter with itself.
 append(filter,filter);

 % Set length and width to a truck dimensions
 filter.States(6:7,2) = [8.1;2.45];

 % Relative weights of each component
 filter.Weights = [0.7 0.3];
end

end

6 Featured Examples

6-166

Tracking Closely Spaced Targets Under Ambiguity
This example shows how to track objects when the association of sensor detections to tracks is
ambiguous. In this example, you use a single-hypothesis tracker, a multiple-hypothesis tracker, and a
probabilistic data association tracker to compare how the trackers handle this ambiguity. To track,
the maneuvering targets better, you estimate the motion of the targets by using various models.

Introduction

Tracking is the process of estimating the situation based on data gathered by one or more sources of
information. Tracking attempts to answer the following questions:

1 How many objects are there?
2 Where are the objects located in space?
3 What is their speed and direction of motion?
4 How do the objects maneuver relative to each other?

Trackers rely on sensor data such as radar detections. Sensors can generate two detections for two
targets if the sensors can resolve the targets spatially. If two targets are closely spaced, they can fall
within a single sensor resolution cell and the sensor reports only one detection of them. To illustrate
the problem, the following figure shows a radar with a 1.5 degrees azimuth resolution. At a range of
20 km, the radar sensor bin has a width of above 540 m, which means that any detection reported
from that range is located at the center of the bin, with a ±270 m uncertainty around it. Any two
targets within this bin are reported as a single detection.

 Tracking Closely Spaced Targets Under Ambiguity

6-167

Scenario

To demonstrate a case where sensor reports are ambiguously assigned to tracks, you create a simple
scenario. In this scenario, a single radar object, located at the origin (not shown), scans a small
region about 20 km from the radar. Initially, the radar reports about two detections per scan. When
the detections are coming from a region around the X = 0, Y = -20 km position, the radar reports a
single detection per scan for a while, followed by two radar detections reported from around Y =
-19.5km and toward the sensor (up).

The scenario and detections log is already saved in a matfile. You can uncomment the lines below to
regenerate the scenario and the synthetic detections.

load ATCdata.mat
% scenario = helperCreateScenario;
% dataLog = helperRunDetections(scenario);
plotScenarioAndDetections(dataLog);

Looking only at the detections in this plot, it is reasonable to assume that there are two targets, but it
is unclear whether their trajectories crossed. The targets did not cross as seen by their trajectory.

6 Featured Examples

6-168

Single-Hypothesis Tracker with Constant Velocity Model

The simplest choice of a multi-target tracker is a single-hypothesis tracker like the trackerGNN. You
set it to use a score logic, to allow easier comparison with trackerTOMHT later in this example.

This example is small and does not require more than 20 tracks. The gate should be chosen to allow
tracks to be established without spurious tracks and was increased from the default.

The sensor bin volume can be roughly estimated using the determinant of a detection measurement
noise. In this case, the value is about 1e9, so you set the volume to 1e9. The value of beta should
specify how many new objects are expected in a unit volume. As the number of objects in this
scenario is constant, set beta to be very small. The values for probability of detection and false alarm
rate are taken from the corresponding values of the radar.

numTracks = 20; % Maximum number of tracks
gate = 45; % Association gate
vol = 1e9; % Sensor bin volume
beta = 1e-14; % Rate of new targets in a unit volume
pd = 0.8; % Probability of detection
far = 1e-6; % False alarm rate

You use a constant velocity extended Kalman filter. The initCVFilter function modifies the filter
that initcvekf returns to allow for a higher uncertainty in the velocity terms and a higher
horizontal acceleration in the process noise. These modifications are needed to track the targets in
this scenario, which move at a high speed and maneuver by turning in the horizontal plane.

tracker = trackerGNN(...
 'FilterInitializationFcn',@initCVFilter,...
 'MaxNumTracks', numTracks, ...
 'MaxNumSensors', 1, ...
 'AssignmentThreshold',gate, ...
 'TrackLogic', 'Score', ...
 'DetectionProbability', pd, 'FalseAlarmRate', far, ...
 'Volume', vol, 'Beta', beta);

The following line runs the scenario and produces the visualization.

[trackSummary, truthSummary, trackMetrics, truthMetrics,timeGNNCV] = helperRunTracker(dataLog,tracker,false);

 Tracking Closely Spaced Targets Under Ambiguity

6-169

With the benefit of using a simulated ground truth, we can compare the results of the tracker with
the truth, using trackAssignmentMetrics . The results show that there are two truth objects, but
three tracks were generated by the tracker. One of the tracks did not survive until the end of the
scenario, that is, it was dropped, and two other tracks did.

At the end of the scenario, truth object 2 was associated with track 8, which was created midway
through the scenario after track 2 was dropped. Truth object 3 was assigned track 1 at the end of the
scenario, but has two breaks.

Note that the establishment length of both truth objects was small while there were few false tracks,
which means that the confirmation threshold is good.

disp(trackSummary)
disp(truthSummary)

 TrackID AssignedTruthID Surviving TotalLength DivergenceStatus
 _______ _______________ _________ ___________ ________________

 1 3 true 190 false

6 Featured Examples

6-170

 2 NaN false 77 true
 8 2 true 111 false

 TruthID AssociatedTrackID TotalLength BreakCount EstablishmentLength
 _______ _________________ ___________ __________ ___________________

 2 8 192 1 4
 3 1 192 2 2

Use the trackErrorMetrics to analyze the quality of tracking in terms of position and velocity
errors between the truth objects and the tracks associated with them. The results show that the
position errors are about 50-60 m and the velocity errors are about 30 m/s RMS.

disp(trackMetrics)
disp(truthMetrics)

 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 1 59.461 26.119 7.9331 3.495
 2 51.803 39.433 5.7494 3.0362
 8 62.914 28.877 7.2004 3.0465

 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 62.147 27.546 8.3597 3.9608
 3 56.218 32.109 6.3234 2.6642

Single-Hypothesis Tracker with Interacting Multiple Models

The combination of a single-hypothesis tracker and a constant velocity filter could not track the
maneuvering targets. This result is evident by the fact that one of the tracks stops and then a new
track begins, while there are only two targets in the scenario. It is also evident from the inability to
follow the target turns.

One option to improve the tracker is to modify the filter to be an interacting multiple-model (IMM)
filter, which allows you to consider two or more motion models for the targets. The filter switches to
the correct model based on the likelihood of one model over the other given the measurements. In
this example, the targets move in a constant velocity until they turn at a constant rate, so you define
an IMM filter with these two models using the initIMMFilter function.

tracker = trackerGNN(...
 'FilterInitializationFcn',@initIMMFilter,...
 'MaxNumTracks', numTracks, ...
 'MaxNumSensors', 1, ...
 'AssignmentThreshold',gate, ...
 'TrackLogic', 'Score', ...
 'DetectionProbability', pd, 'FalseAlarmRate', far, ...
 'Volume', vol, 'Beta', beta);
[trackSummary, truthSummary, trackMetrics, truthMetrics, timeGNNIMM] = helperRunTracker(dataLog,tracker,false);

 Tracking Closely Spaced Targets Under Ambiguity

6-171

The addition of an IMM filter enables the tracker to identify the target maneuver correctly. You can
observe this conclusion by looking at the tracks generated during the target turns and notice how
well both turns are tracked. As a result, truth object 2 has zero breaks, which you can see in the plot
by the continuous history of its associated track.

However, even with the interacting models, one of the tracks breaks in the ambiguity region. The
single-hypothesis tracker gets only one detection with that region, and can update only one of the
tracks with it, coasting the other track. After a few updates, the score of the coasted track falls below
the deletion threshold and the tracker drops the track.

disp(trackSummary)
disp(truthSummary)

 TrackID AssignedTruthID Surviving TotalLength DivergenceStatus
 _______ _______________ _________ ___________ ________________

 1 2 true 190 false
 2 NaN false 77 true
 8 3 true 111 false

6 Featured Examples

6-172

 TruthID AssociatedTrackID TotalLength BreakCount EstablishmentLength
 _______ _________________ ___________ __________ ___________________

 2 1 192 0 4
 3 8 192 1 2

The use of an IMM also improved the tracking accuracy, as the position errors reduced to 40-60
meters, while the velocity errors reduced to 25-30 m/s. This improvement can be attributed to the
lower process noise values used in the IMM for each model, which allow better smoothing of the
noisy measurements.

disp(trackMetrics)
disp(truthMetrics)

 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 1 52.445 22.4 7.6006 6.0031
 2 48.149 35.239 6.5401 3.4887
 8 34.787 20.279 5.2549 4.2032

 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 52.445 22.4 7.6006 6.0031
 3 40.75 27.364 5.7772 3.9128

Multiple-Hypothesis Tracker with Constant Velocity Model

To resolve the problem of the broken track, use a multiple-hypothesis tracker (MHT), trackerTOMHT.
In the ambiguity region, the tracker generates multiple hypotheses about the association of the
detection with the tracks. In particular, it maintains one hypothesis that the first track is assigned this
detection and another hypothesis that the second track is assigned the detection. By doing so, both
tracks are kept alive, so that the tracker gets enough detections to resolve the ambiguity in the next
updates.

trackerTOMHT uses the same parameters as trackerGNN, except:

• AssignmentThreshold allows a track to be considered unassigned even when there is an
assigned detection. This setting allows multiple branches per track. However, the second element
of the gate disallows new tracks from assigned detections, to reduce the total number of tracks
and improve performance.

• MaxNumHistoryScans is increased to 10, to delay the NScanPruning.
• MaxNumTrackBranches is increased to 5, to allow more branches (hypotheses) per track.

tracker = trackerTOMHT(...
 'FilterInitializationFcn',@initCVFilter, ...
 'MaxNumTracks', numTracks, ...
 'MaxNumSensors', 1, ...
 'AssignmentThreshold', [0.2, 1, 1]*gate,...
 'DetectionProbability', pd, 'FalseAlarmRate', far, ...
 'Volume', vol, 'Beta', beta, ...
 'MaxNumHistoryScans', 10,...

 Tracking Closely Spaced Targets Under Ambiguity

6-173

 'MaxNumTrackBranches', 5,...
 'NScanPruning', 'Hypothesis', ...
 'OutputRepresentation', 'Tracks');

[trackSummary, truthSummary, trackMetrics, truthMetrics, timeTOMHTCV] = helperRunTracker(dataLog,tracker,false);

The results show the multiple-hypothesis tracker is capable of tracking the two truth objects
throughout the scenario. For the ambiguity region, the MHT tracker formulates two hypotheses about
the assignment:

1 The detection is assigned to track 1.
2 The detection is assigned to track 2.

With these hypotheses, both tracks generate branches (track hypotheses) that update them using the
same detection. Obviously, using the same detection to update both tracks causes the tracks to
become closer in their estimate, and eventually the two tracks may coalesce. However, if the duration
of the ambiguous assignment is short, the tracker may be able to resolve the two tracks when there
are two detections. In this case, you see that the two tracks cross each other, but the metrics show

6 Featured Examples

6-174

that the break count for each truth is 1, meaning that the true targets probably did not cross each
other.

disp(trackSummary)
disp(truthSummary)

 TrackID AssignedTruthID Surviving TotalLength DivergenceStatus
 _______ _______________ _________ ___________ ________________

 1 3 true 190 false
 2 2 true 191 false

 TruthID AssociatedTrackID TotalLength BreakCount EstablishmentLength
 _______ _________________ ___________ __________ ___________________

 2 2 192 1 2
 3 1 192 1 2

In terms of tracking accuracy, the position and velocity errors of this tracker are similar to the ones
from the combination of a single-hypothesis tracker with a constant velocity filter.

disp(trackMetrics)
disp(truthMetrics)

 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 1 45.532 28.802 4.5909 3.2827
 2 61.968 29.851 6.7191 2.7338

 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 48.877 28.57 5.0144 3.2761
 3 58.203 29.895 6.1414 2.8049

Multiple-Hypothesis Tracker with Interacting Multiple Models

Building on the success of using an multiple-hypothesis tracker with constant velocity to maintain
continuous tracking, combine the tracker with the benefits of an IMM filter. The IMM filter may be
more successful in preventing the track crossing as it improves the tracking when the targets turn.
The following code configures trackerTOMHT with a trackingIMM filter.

tracker = trackerTOMHT(...
 'FilterInitializationFcn',@initIMMFilter, ...
 'MaxNumTracks', numTracks, ...
 'MaxNumSensors', 1, ...
 'AssignmentThreshold', [0.2, 1, 1]*gate,...
 'DetectionProbability', pd, 'FalseAlarmRate', far, ...
 'Volume', vol, 'Beta', beta, ...
 'MaxNumHistoryScans', 10,...
 'MaxNumTrackBranches', 5,...
 'NScanPruning', 'Hypothesis', ...
 'OutputRepresentation', 'Tracks');
[trackSummary, truthSummary, trackMetrics, truthMetrics, timeTOMHTIMM] = helperRunTracker(dataLog,tracker,false);

 Tracking Closely Spaced Targets Under Ambiguity

6-175

The plot shows that the two tracks did not cross. This result is also evident in the break count of the
true targets below, which shows zero breaks.

You can also see the true path of the targets, shown in solid line.

disp(trackSummary)
disp(truthSummary)

 TrackID AssignedTruthID Surviving TotalLength DivergenceStatus
 _______ _______________ _________ ___________ ________________

 1 2 true 190 false
 2 3 true 191 false

 TruthID AssociatedTrackID TotalLength BreakCount EstablishmentLength
 _______ _________________ ___________ __________ ___________________

 2 1 192 0 2
 3 2 192 0 2

6 Featured Examples

6-176

The tracking accuracy is similar to the combination of single-hypothesis tracker with IMM filter. Note
that the truth accuracy and the associated track accuracy are the same because there was no break
in the tracking throughout the scenario.

disp(trackMetrics)
disp(truthMetrics)

 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 1 55.947 24.442 6.9595 5.5471
 2 37.797 25.949 5.2605 4.0935

 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 55.947 24.442 6.9595 5.5471
 3 37.797 25.949 5.2605 4.0935

Joint Probabilistic Data Association Tracker with Constant Velocity Model

Although the tracking metrics are greatly improved by using trackerTOMHT over trackerGNN, the
computer processing time is also significantly increased. A Joint Probabilistic Data Association (JPDA)
tracker, trackerJPDA, will allow you to explore further trade-off considerations. Unlike GNN, JPDA
allows a single detection to be used for updating multiple tracks in its vicinity. Moreover, multiple
detections can be clustered together with several tracks and update each of those tracks. This
resolves the issue of the broken track. However, JPDA does not maintain multiple hypothesis over
multiple scans, which makes it a sub-optimal approach as opposed to MHT.

trackerJPDA uses the same parameters as trackerGNN except:

• ClutterDensity is the ratio of FalseAlarmRate and Volume.
• NewTargetDensity replaces Beta.
• TimeTolerance allows for processing multiple detections from the scanning radar in a single

cluster.

Additionally, set the TrackLogic to Integrated which is conceptually closer to the score logic used
with the previous two trackers.

tracker = trackerJPDA(...
 'FilterInitializationFcn',@initCVFilter,...
 'MaxNumTracks', numTracks, ...
 'MaxNumSensors', 1, ...
 'AssignmentThreshold',gate, ...
 'TrackLogic','Integrated',...
 'DetectionProbability', pd, ...
 'ClutterDensity', far/vol, ...
 'NewTargetDensity', beta,...
 'TimeTolerance',0.05);

[trackSummary, truthSummary, trackMetrics, truthMetrics, timeJPDACV] = helperRunTracker(dataLog,tracker,false);

 Tracking Closely Spaced Targets Under Ambiguity

6-177

Although, trackerJPDA does not maintain multiple hypothesis, it allows both tracks to remain
confirmed in the ambiguity region where only one detection is reported per update. Both tracks can
be assigned to the detection with different probabilities. However, the tracks cross each other as
observed before with the other trackers. The metrics break count of each truth is also 1.

disp(trackSummary)
disp(truthSummary)

 TrackID AssignedTruthID Surviving TotalLength DivergenceStatus
 _______ _______________ _________ ___________ ________________

 1 3 true 191 false
 2 2 true 191 false

 TruthID AssociatedTrackID TotalLength BreakCount EstablishmentLength
 _______ _________________ ___________ __________ ___________________

 2 2 192 1 1
 3 1 192 1 2

6 Featured Examples

6-178

The tracking accuracy is on par with what is obtained with trackerGNN and trackerTOMHT.

disp(trackMetrics)
disp(truthMetrics)

 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 1 44.918 29.911 5.1894 3.5599
 2 58.904 31.484 7.0023 3.0944

 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 47.304 29.606 5.4677 3.5093
 3 56.106 31.564 6.5976 3.1815

Joint Probabilistic Data Association Tracker with Interacting Multiple Models

As seen with the other two trackers, the turn before the ambiguity region is better addressed with
interacting multiple models. trackerJPDA can also be used with trackingIMM, using the same
FilterInitializationFcn as before.

tracker = trackerJPDA(...
 'FilterInitializationFcn',@initIMMFilter,...
 'MaxNumTracks', numTracks, ...
 'MaxNumSensors', 1, ...
 'AssignmentThreshold',gate, ...
 'TrackLogic','Integrated',...
 'DetectionProbability', pd, ...
 'ClutterDensity', far/vol, ...
 'NewTargetDensity', beta,...
 'TimeTolerance',0.05);

[trackSummary, truthSummary, trackMetrics, truthMetrics,timeJPDAIMM] = helperRunTracker(dataLog,tracker,true);

 Tracking Closely Spaced Targets Under Ambiguity

6-179

The results are comparable to trackerTOMHT, thanks to the Interacting Multiple Models, the targets
are more precisely tracked during the turn and are sufficiently separated before entering the
ambiguity region. Both tracks 1 and 2 are assigned to a target with zero break counts.

disp(trackSummary)
disp(truthSummary)

 TrackID AssignedTruthID Surviving TotalLength DivergenceStatus
 _______ _______________ _________ ___________ ________________

 1 2 true 191 false
 2 3 true 191 false

 TruthID AssociatedTrackID TotalLength BreakCount EstablishmentLength
 _______ _________________ ___________ __________ ___________________

 2 1 192 0 1
 3 2 192 0 2

6 Featured Examples

6-180

Again, tracking accuracy results are similar to what is obtained previously using trackerGNN and
trackerTOMHT.

disp(trackMetrics)
disp(truthMetrics)

 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 1 57.172 27.523 7.6831 6.2685
 2 39.21 29.184 6.1317 4.769

 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 57.172 27.523 7.6831 6.2685
 3 39.21 29.184 6.1317 4.769

Time Performance Comparison

Another point of comparison for each tracker and filter combination is the runtime. The plot below
shows records of the tracking loop duration. The results are normalized based on the runtime value of
the GNN tracker with CV model.

figure
c1 = categorical({'CV','IMM'});
timeData = [timeGNNCV timeJPDACV timeTOMHTCV ; timeGNNIMM timeJPDAIMM timeTOMHTIMM]/timeGNNCV;
bar(c1,timeData)
legend('GNN','JPDA','TOMHT','Location','northwest')
ylabel('Normalized Time (x timeGNN-CV)')
title('Time Performance Comparison')
ax = gca;
ax.YGrid = 'on';

 Tracking Closely Spaced Targets Under Ambiguity

6-181

The results show that GNN and JPDA can track the targets 5 to 6 times faster than MHT depending
on the motion model. The IMM motion model makes all three trackers run 3 to 4 times slower. Note
that each tracker processing time varies differently depending on the scenario's number of target,
density of false alarms, density of targets, etc. This example does not guarantee similar performance
comparison in different use cases.

Summary

In this example, you created a scenario in which two maneuvering targets are detected by a single
sensor, where some of their motion is within an area of ambiguity. You used six combinations of
trackers and filters to show the contribution of each to the overall tracking. You observed that the
constant velocity filter was less accurate in tracking the targets during their maneuver, which
required an interacting multiple-model filter. You also observed the ability of MHT and JPDA to handle
the case of ambiguous association of detections to tracks, and how it can be used to maintain
continuous tracking while a single-hypothesis tracker cannot do that. Finally, you noticed the trade-
offs between tracking results and processing time when choosing a tracker. In this case JPDA proves
to be the best option. In different scenarios, you may require the more complex MHT when neither
GNN nor JPDA gives acceptable tracking results. You may as well prefer GNN if there are less
ambiguity regions or low clutter density.

6 Featured Examples

6-182

Visual-Inertial Odometry Using Synthetic Data
This example shows how to estimate the pose (position and orientation) of a ground vehicle using an
inertial measurement unit (IMU) and a monocular camera. In this example, you:

1 Create a driving scenario containing the ground truth trajectory of the vehicle.
2 Use an IMU and visual odometry model to generate measurements.
3 Fuse these measurements to estimate the pose of the vehicle and then display the results.

Visual-inertial odometry estimates pose by fusing the visual odometry pose estimate from the
monocular camera and the pose estimate from the IMU. The IMU returns an accurate pose estimate
for small time intervals, but suffers from large drift due to integrating the inertial sensor
measurements. The monocular camera returns an accurate pose estimate over a larger time interval,
but suffers from a scale ambiguity. Given these complementary strengths and weaknesses, the fusion
of these sensors using visual-inertial odometry is a suitable choice. This method can be used in
scenarios where GPS readings are unavailable, such as in an urban canyon.

Create a Driving Scenario with Trajectory

Create a drivingScenario (Automated Driving Toolbox) object that contains:

• The road the vehicle travels on
• The buildings surrounding either side of the road
• The ground truth pose of the vehicle
• The estimated pose of the vehicle

The ground truth pose of the vehicle is shown as a solid blue cuboid. The estimated pose is shown as
a transparent blue cuboid. Note that the estimated pose does not appear in the initial visualization
because the ground truth and estimated poses overlap.

Generate the baseline trajectory for the ground vehicle using the waypointTrajectory System
object™. Note that the waypointTrajectory is used in place of drivingScenario/trajectory
since the acceleration of the vehicle is needed. The trajectory is generated at a specified sampling
rate using a set of waypoints, times of arrival, and velocities.

% Create the driving scenario with both the ground truth and estimated
% vehicle poses.
scene = drivingScenario;
groundTruthVehicle = vehicle(scene, 'PlotColor', [0 0.4470 0.7410]);
estVehicle = vehicle(scene, 'PlotColor', [0 0.4470 0.7410]);

% Generate the baseline trajectory.
sampleRate = 100;
wayPoints = [0 0 0;
 200 0 0;
 200 50 0;
 200 230 0;
 215 245 0;
 260 245 0;
 290 240 0;
 310 258 0;
 290 275 0;
 260 260 0;
 -20 260 0];

 Visual-Inertial Odometry Using Synthetic Data

6-183

t = [0 20 25 44 46 50 54 56 59 63 90].';
speed = 10;
velocities = [speed 0 0;
 speed 0 0;
 0 speed 0;
 0 speed 0;
 speed 0 0;
 speed 0 0;
 speed 0 0;
 0 speed 0;
 -speed 0 0;
 -speed 0 0;
 -speed 0 0];

traj = waypointTrajectory(wayPoints, 'TimeOfArrival', t, ...
 'Velocities', velocities, 'SampleRate', sampleRate);

% Add a road and buildings to scene and visualize.
helperPopulateScene(scene, groundTruthVehicle);

Create a Fusion Filter

Create the filter to fuse IMU and visual odometry measurements. This example uses a loosely coupled
method to fuse the measurements. While the results are not as accurate as a tightly coupled method,
the amount of processing required is significantly less and the results are adequate. The fusion filter
uses an error-state Kalman filter to track orientation (as a quaternion), position, velocity, and sensor
biases.

6 Featured Examples

6-184

The insfilterErrorState object has the following functions to process sensor data: predict and
fusemvo.

The predict function takes the accelerometer and gyroscope measurements from the IMU as inputs.
Call the predict function each time the accelerometer and gyroscope are sampled. This function
predicts the state forward by one time step based on the accelerometer and gyroscope
measurements, and updates the error state covariance of the filter.

The fusemvo function takes the visual odometry pose estimates as input. This function updates the
error states based on the visual odometry pose estimates by computing a Kalman gain that weighs
the various inputs according to their uncertainty. As with the predict function, this function also
updates the error state covariance, this time taking the Kalman gain into account. The state is then
updated using the new error state and the error state is reset.

filt = insfilterErrorState('IMUSampleRate', sampleRate, ...
 'ReferenceFrame', 'ENU')
% Set the initial state and error state covariance.
helperInitialize(filt, traj);

filt =

 insfilterErrorState with properties:

 IMUSampleRate: 100 Hz
 ReferenceLocation: [0 0 0] [deg deg m]
 State: [17x1 double]
 StateCovariance: [16x16 double]

 Process Noise Variances
 GyroscopeNoise: [1e-06 1e-06 1e-06] (rad/s)²
 AccelerometerNoise: [0.0001 0.0001 0.0001] (m/s²)²
 GyroscopeBiasNoise: [1e-09 1e-09 1e-09] (rad/s)²
 AccelerometerBiasNoise: [0.0001 0.0001 0.0001] (m/s²)²

Specify the Visual Odometry Model

Define the visual odometry model parameters. These parameters model a feature matching and
tracking-based visual odometry system using a monocular camera. The scale parameter accounts
for the unknown scale of subsequent vision frames of the monocular camera. The other parameters
model the drift in the visual odometry reading as a combination of white noise and a first-order
Gauss-Markov process.

% The flag useVO determines if visual odometry is used:
% useVO = false; % Only IMU is used.
useVO = true; % Both IMU and visual odometry are used.

paramsVO.scale = 2;
paramsVO.sigmaN = 0.139;
paramsVO.tau = 232;
paramsVO.sigmaB = sqrt(1.34);
paramsVO.driftBias = [0 0 0];

 Visual-Inertial Odometry Using Synthetic Data

6-185

Specify the IMU Sensor

Define an IMU sensor model containing an accelerometer and gyroscope using the imuSensor
System object. The sensor model contains properties to model both deterministic and stochastic noise
sources. The property values set here are typical for low-cost MEMS sensors.

% Set the RNG seed to default to obtain the same results for subsequent
% runs.
rng('default')

imu = imuSensor('SampleRate', sampleRate, 'ReferenceFrame', 'ENU');

% Accelerometer
imu.Accelerometer.MeasurementRange = 19.6; % m/s^2
imu.Accelerometer.Resolution = 0.0024; % m/s^2/LSB
imu.Accelerometer.NoiseDensity = 0.01; % (m/s^2)/sqrt(Hz)

% Gyroscope
imu.Gyroscope.MeasurementRange = deg2rad(250); % rad/s
imu.Gyroscope.Resolution = deg2rad(0.0625); % rad/s/LSB
imu.Gyroscope.NoiseDensity = deg2rad(0.0573); % (rad/s)/sqrt(Hz)
imu.Gyroscope.ConstantBias = deg2rad(2); % rad/s

Set Up the Simulation

Specify the amount of time to run the simulation and initialize variables that are logged during the
simulation loop.

% Run the simulation for 60 seconds.
numSecondsToSimulate = 60;
numIMUSamples = numSecondsToSimulate * sampleRate;

% Define the visual odometry sampling rate.
imuSamplesPerCamera = 4;
numCameraSamples = ceil(numIMUSamples / imuSamplesPerCamera);

% Preallocate data arrays for plotting results.
[pos, orient, vel, acc, angvel, ...
 posVO, orientVO, ...
 posEst, orientEst, velEst] ...
 = helperPreallocateData(numIMUSamples, numCameraSamples);

% Set measurement noise parameters for the visual odometry fusion.
RposVO = 0.1;
RorientVO = 0.1;

Run the Simulation Loop

Run the simulation at the IMU sampling rate. Each IMU sample is used to predict the filter's state
forward by one time step. Once a new visual odometry reading is available, it is used to correct the
current filter state.

There is some drift in the filter estimates that can be further corrected with an additional sensor such
as a GPS or an additional constraint such as a road boundary map.

cameraIdx = 1;
for i = 1:numIMUSamples
 % Generate ground truth trajectory values.

6 Featured Examples

6-186

 [pos(i,:), orient(i,:), vel(i,:), acc(i,:), angvel(i,:)] = traj();

 % Generate accelerometer and gyroscope measurements from the ground truth
 % trajectory values.
 [accelMeas, gyroMeas] = imu(acc(i,:), angvel(i,:), orient(i));

 % Predict the filter state forward one time step based on the
 % accelerometer and gyroscope measurements.
 predict(filt, accelMeas, gyroMeas);

 if (1 == mod(i, imuSamplesPerCamera)) && useVO
 % Generate a visual odometry pose estimate from the ground truth
 % values and the visual odometry model.
 [posVO(cameraIdx,:), orientVO(cameraIdx,:), paramsVO] = ...
 helperVisualOdometryModel(pos(i,:), orient(i,:), paramsVO);

 % Correct filter state based on visual odometry data.
 fusemvo(filt, posVO(cameraIdx,:), RposVO, ...
 orientVO(cameraIdx), RorientVO);

 cameraIdx = cameraIdx + 1;
 end

 [posEst(i,:), orientEst(i,:), velEst(i,:)] = pose(filt);

 % Update estimated vehicle pose.
 helperUpdatePose(estVehicle, posEst(i,:), velEst(i,:), orientEst(i));

 % Update ground truth vehicle pose.
 helperUpdatePose(groundTruthVehicle, pos(i,:), vel(i,:), orient(i));

 % Update driving scenario visualization.
 updatePlots(scene);
 drawnow limitrate;
end

 Visual-Inertial Odometry Using Synthetic Data

6-187

Plot the Results

Plot the ground truth vehicle trajectory, the visual odometry estimate, and the fusion filter estimate.

figure
if useVO
 plot3(pos(:,1), pos(:,2), pos(:,3), '-.', ...
 posVO(:,1), posVO(:,2), posVO(:,3), ...
 posEst(:,1), posEst(:,2), posEst(:,3), ...
 'LineWidth', 3)
 legend('Ground Truth', 'Visual Odometry (VO)', ...
 'Visual-Inertial Odometry (VIO)', 'Location', 'northeast')
else
 plot3(pos(:,1), pos(:,2), pos(:,3), '-.', ...
 posEst(:,1), posEst(:,2), posEst(:,3), ...
 'LineWidth', 3)
 legend('Ground Truth', 'IMU Pose Estimate')
end
view(-90, 90)
title('Vehicle Position')
xlabel('X (m)')
ylabel('Y (m)')
grid on

6 Featured Examples

6-188

The plot shows that the visual odometry estimate is relatively accurate in estimating the shape of the
trajectory. The fusion of the IMU and visual odometry measurements removes the scale factor
uncertainty from the visual odometry measurements and the drift from the IMU measurements.

Supporting Functions

helperVisualOdometryModel

Compute visual odometry measurement from ground truth input and parameters struct. To model the
uncertainty in the scaling between subsequent frames of the monocular camera, a constant scaling
factor combined with a random drift is applied to the ground truth position.

function [posVO, orientVO, paramsVO] ...
 = helperVisualOdometryModel(pos, orient, paramsVO)

% Extract model parameters.
scaleVO = paramsVO.scale;
sigmaN = paramsVO.sigmaN;
tau = paramsVO.tau;
sigmaB = paramsVO.sigmaB;
sigmaA = sqrt((2/tau) + 1/(tau*tau))*sigmaB;
b = paramsVO.driftBias;

% Calculate drift.
b = (1 - 1/tau).*b + randn(1,3)*sigmaA;
drift = randn(1,3)*sigmaN + b;
paramsVO.driftBias = b;

 Visual-Inertial Odometry Using Synthetic Data

6-189

% Calculate visual odometry measurements.
posVO = scaleVO*pos + drift;
orientVO = orient;
end

helperInitialize

Set the initial state and covariance values for the fusion filter.

function helperInitialize(filt, traj)

% Retrieve the initial position, orientation, and velocity from the
% trajectory object and reset the internal states.
[pos, orient, vel] = traj();
reset(traj);

% Set the initial state values.
filt.State(1:4) = compact(orient(1)).';
filt.State(5:7) = pos(1,:).';
filt.State(8:10) = vel(1,:).';

% Set the gyroscope bias and visual odometry scale factor covariance to
% large values corresponding to low confidence.
filt.StateCovariance(10:12,10:12) = 1e6;
filt.StateCovariance(end) = 2e2;
end

helperPreallocateData

Preallocate data to log simulation results.

function [pos, orient, vel, acc, angvel, ...
 posVO, orientVO, ...
 posEst, orientEst, velEst] ...
 = helperPreallocateData(numIMUSamples, numCameraSamples)

% Specify ground truth.
pos = zeros(numIMUSamples, 3);
orient = quaternion.zeros(numIMUSamples, 1);
vel = zeros(numIMUSamples, 3);
acc = zeros(numIMUSamples, 3);
angvel = zeros(numIMUSamples, 3);

% Visual odometry output.
posVO = zeros(numCameraSamples, 3);
orientVO = quaternion.zeros(numCameraSamples, 1);

% Filter output.
posEst = zeros(numIMUSamples, 3);
orientEst = quaternion.zeros(numIMUSamples, 1);
velEst = zeros(numIMUSamples, 3);
end

helperUpdatePose

Update the pose of the vehicle.

6 Featured Examples

6-190

function helperUpdatePose(veh, pos, vel, orient)

veh.Position = pos;
veh.Velocity = vel;
rpy = eulerd(orient, 'ZYX', 'frame');
veh.Yaw = rpy(1);
veh.Pitch = rpy(2);
veh.Roll = rpy(3);
end

References

• Sola, J. "Quaternion Kinematics for the Error-State Kalman Filter." ArXiv e-prints,
arXiv:1711.02508v1 [cs.RO] 3 Nov 2017.

• R. Jiang, R., R. Klette, and S. Wang. "Modeling of Unbounded Long-Range Drift in Visual
Odometry." 2010 Fourth Pacific-Rim Symposium on Image and Video Technology. Nov. 2010, pp.
121-126.

 Visual-Inertial Odometry Using Synthetic Data

6-191

Tracking Maneuvering Targets
This example shows how to track maneuvering targets using various tracking filters. The example
shows the difference between filters that use a single motion model and multiple motion models.

Define a Scenario

In this example, you define a single target that initially travels at a constant velocity of 200 m/s for 33
seconds, then enters a constant turn of 10 deg/s. The turn lasts for 33 seconds, then the target
accelerates in a straight line at 3 m/s^2.

[trueState, time, fig1] = helperGenerateTruthData;
dt = diff(time(1:2));
numSteps = numel(time);
figure(fig1)

Define the measurements to be the position and add normal random noise with a standard deviation
of 1 to the measurements.

% Set the RNG seed for repeatable results
s = rng;
rng(2018);
positionSelector = [1 0 0 0 0 0;0 0 1 0 0 0;0 0 0 0 1 0]; % Position from state
truePos = positionSelector * trueState;
measNoise = randn(size(truePos));
measPos = truePos + measNoise;

6 Featured Examples

6-192

Track Using a Constant-Velocity Filter

You define a trackingEKF with a constant-velocity motion model. You use the first measurement to
define the initial state and state covariance, and set the process noise to be non-additive, to define
the process noise in terms of the unknown acceleration in the x, y, and z components. This definition
is similar to how the function initcvekf works.

initialState = positionSelector' * measPos(:,1);
initialCovariance = diag([1,1e4,1,1e4,1,1e4]); % Velocity is not measured
cvekf = trackingEKF(@constvel, @cvmeas, initialState, ...
 'StateTransitionJacobianFcn', @constveljac, ...
 'MeasurementJacobianFcn', @cvmeasjac, ...
 'StateCovariance', initialCovariance, ...
 'HasAdditiveProcessNoise', false, ...
 'ProcessNoise', eye(3));

For each measurement, you predict the filter, calculate the distance of the predicted state from the
true position, and correct the filter using the measurement to obtain the filtered estimate of the
position.

dist = zeros(1,numSteps);
estPos = zeros(3,numSteps);
for i = 2:size(measPos,2)
 predict(cvekf, dt);
 dist(i) = distance(cvekf,truePos(:,i)); % Distance from true position
 estPos(:,i) = positionSelector * correct(cvekf, measPos(:,i));
end
figure(fig1);
plot(estPos(1,:),estPos(2,:),'.g','DisplayName','CV Low PN')
title('True and Estimated Positions')
axis([5000 8000 -500 2500])

 Tracking Maneuvering Targets

6-193

As depicted in the figure, the filter is able to track the constant velocity part of the motion very well,
but when the target executes the turn, the filter estimated position diverges from the true position.
You can see the distance of the estimate from the truth in the following plot. During the turn, at 33-66
seconds, the normalized distance jumps to very high values, which means that the filter is unable to
track the maneuvering target.

fig2 = figure;
hold on
plot((1:numSteps)*dt,dist,'g','DisplayName', 'CV Low PN')
title('Normalized Distance From Estimated Position to True Position')
xlabel('Time (s)')
ylabel('Normalized Distance')
legend

6 Featured Examples

6-194

Increase the Process Noise

One possible solution is to increase the process noise. The process noise represents the unmodeled
terms in the motion model. For a constant velocity model, these are the unknown acceleration terms.
By increasing the process noise, you allow for larger uncertainty in the motion model, which causes
the filter to rely on the measurements more than on the model. The following lines create a constant
velocity filter, with high process noise values that correspond to about 5-G turn.

cvekf2 = trackingEKF(@constvel, @cvmeas, initialState, ...
 'StateTransitionJacobianFcn', @constveljac, ...
 'MeasurementJacobianFcn', @cvmeasjac, ...
 'StateCovariance', initialCovariance, ...
 'HasAdditiveProcessNoise', false, ...
 'ProcessNoise', diag([50,50,1])); % Large uncertainty in the horizontal acceleration
dist = zeros(1,numSteps);
estPos = zeros(3,numSteps);
for i = 2:size(measPos,2)
 predict(cvekf2, dt);
 dist(i) = distance(cvekf2,truePos(:,i)); % Distance from true position
 estPos(:,i) = positionSelector * correct(cvekf2, measPos(:,i));
end
figure(fig1)
plot(estPos(1,:),estPos(2,:),'.c','DisplayName','CV High PN')
axis([5000 8000 -500 2500])

 Tracking Maneuvering Targets

6-195

Increasing the process noise significantly improves the filter's ability to track the target during the
turn. However, there is a cost: the filter is less capable of smoothing out the measurement noise
during the constant velocity period of the motion. Even though the normalized distance during the
turn was significantly reduced, the normalized distance increased in the first 33 seconds, during the
constant velocity period of the motion.

figure(fig2)
plot((1:numSteps)*dt,dist,'c','DisplayName', 'CV High PN')
axis([0 100 0 50])

6 Featured Examples

6-196

Use an Interacting Motion-Model Filter

Another solution is to use a filter that can consider all motion models at the same time, called an
interacting multiple-model (IMM) filter. The IMM filter can maintain as many motion models as you
want, but typically is used with 2-5 motion models. For this example, three models are sufficient: a
constant velocity model, a constant turn model, and a constant acceleration model.

imm = trackingIMM('TransitionProbabilities', 0.99); % The default IMM has all three models
% Initialize the state and state covariance in terms of the first model
initialize(imm, initialState, initialCovariance);

You use the IMM filter in the same way that the EKF was used.

dist = zeros(1,numSteps);
estPos = zeros(3,numSteps);
modelProbs = zeros(3,numSteps);
modelProbs(:,1) = imm.ModelProbabilities;
for i = 2:size(measPos,2)
 predict(imm, dt);
 dist(i) = distance(imm,truePos(:,i)); % Distance from true position
 estPos(:,i) = positionSelector * correct(imm, measPos(:,i));
 modelProbs(:,i) = imm.ModelProbabilities;
end
figure(fig1)
plot(estPos(1,:),estPos(2,:),'.m','DisplayName','IMM')

 Tracking Maneuvering Targets

6-197

The trackingIMM filter is able to track the maneuvering target in all three parts of the motion.

Examining the distance between the filter's predicted state and the true position, you see that the
IMM filter is able to reduce the distance for all portions of the motion. In fact, the IMM filter is better
at tracking the motion than both other constant velocity models used earlier.

figure(fig2)
hold on
plot((1:numSteps)*dt,dist,'m','DisplayName', 'IMM')
axis([0 100 0 50])

6 Featured Examples

6-198

To better understand how the IMM filter works, plot the model probabilities as a function of time. The
figure shows that filter is initialized with the three models having the same probability. As the filter is
updated, it quickly converges to a very high probability that the model is a constant velocity model.
After 33 seconds of motion, the constant velocity model is no longer true, and the probability of the
constant turn model becomes very high for the duration of the turn. In the last section of the motion,
during the constant acceleration maneuver, the IMM filter assigns a high probability that the motion
is constant acceleration, but the filter is less certain about the correct motion model, and there is
about 0.3 probability of a constant velocity motion.

figure
plot((1:numSteps)*dt, modelProbs)
title('Model Probabilities vs. Time')
xlabel('Time (s)')
ylabel('Model Probabilities')
legend('IMM-CV','IMM-CA','IMM-CT')
% Return the RNG to its previous state
rng(s)

 Tracking Maneuvering Targets

6-199

Summary

This example showed you how to track a target maneuvering with constant turn and constant
acceleration motion. The example showed how you can increase the process noise to capture the
unknown maneuver with a constant velocity model. You also saw how to improve the tracking of a
maneuvering target by using an IMM filter.

Supporting Functions

helperGenerateTruthData

This function generates the ground truth trajectory.

function [Xgt, tt, figs] = helperGenerateTruthData
% Generate ground truth
vx = 200; % m/s
omega = 10; % deg/s
acc = 3; % m/s/s
dt = 0.1;
tt = (0:dt:floor(1000*dt));
figs = [];

Xgt = NaN(9,numel(tt));
Xgt(:,1) = 0;

% Constant velocity
seg1 = floor(numel(tt)/3);

6 Featured Examples

6-200

Xgt(2,1) = vx;
slct = eye(9);
slct(3:3:end,:) = [];
for m = 2:seg1
 X0 = slct*Xgt(:,m-1);
 X1 = constvel(X0, dt);
 X1 = slct'*X1;
 Xgt(:,m) = X1;
end

% Constant turn
seg2 = floor(2*numel(tt)/3);
slct = eye(9);
slct(3:3:end,:) = [];
for m = seg1+1:seg2
 X0 = slct*Xgt(:,m-1);
 X0 = [X0(1:4);omega];
 X1 = constturn(X0, dt);
 X1 = X1(1:4);
 X1 = [X1(1:2);0;X1(3:4);0;zeros(3,1)];
 Xgt(:,m) = X1;
end

% Constant acceleration
first = true;
for m = seg2+1:numel(tt)
 X0 = Xgt(:,m-1);
 if first
 vel = X0(2:3:end);
 ua = vel/norm(vel);
 va = acc*ua;
 X0(3:3:end) = va;
 first = false;
 end
 X1 = constacc(X0, dt);
 Xgt(:,m) = X1;
end

% Drop acceleration dimension
slct = eye(9);
slct(3:3:end,:) = [];
Xgt = slct*Xgt;

figs = [figs figure];
plot(Xgt(1,1:seg1),Xgt(3,1:seg1),'.-');
hold on;
plot(Xgt(1,seg1+1:seg2),Xgt(3,seg1+1:seg2),'.-');
plot(Xgt(1,seg2+1:end),Xgt(3,seg2+1:end),'.-');
grid on;
xlabel('X Position (m)');
ylabel('Y Position (m)');
title('True Position')
axis equal;
legend('Constant Velocity', 'Constant Turn', 'Constant Acceleration')
end

 Tracking Maneuvering Targets

6-201

Multiplatform Radar Detection Fusion
This example shows how to fuse radar detections from a multiplatform radar network. The network
includes two airborne and one ground-based long-range radar platforms. See the “Multiplatform
Radar Detection Generation” on page 6-214 example for details. A central tracker processes the
detections from all platforms at a fixed update interval. This enables you to evaluate the network's
performance against target types, platform maneuvers, as well as platform configurations and
locations..

Load a recording of a tracking scenario

The MultiplatformRadarDetectionGeneration MAT-file contains a tracking scenario recording
previously generated using the following command

recording = record(scene,'IncludeSensors',true,'InitialSeed',2018,'RecordingFormat','Recording')

where scene is the tracking scenario created in the Multiplatform Radar Detection Generation
example.

load('MultiplatformScenarioRecording.mat');

Define Central Tracker

Use the trackerGNN as a central tracker that processes detections received from all radar platforms
in the scenario.

The tracker uses the initFilter supporting function to initialize a constant velocity extended
Kalman filter for each new track. initFilter modifies the filter returned by initcvekf to match
the high target velocities. The filter's process noise is set to 1g (g = 9 . 8 m/s2) to enable tracking of
maneuvering targets in the scenario.

The tracker's AssignmentThreshold is set to 50 to enable detections with large range biases (due
to atmospheric refraction effects at long detection ranges) to be associated with tracks in the tracker.
The DeletionThreshold is set to 3 to delete redundant tracks quickly.

Enable the HasDetectableTrackIDsInput to specify the tracks that are within the field of view of
at least one radar since the last update. Track logic is only evaluated on tracks which had a detection
opportunity since the last tracker update.

tracker = trackerGNN('FilterInitializationFcn', @initFilter, ...
 'AssignmentThreshold', 50, 'DeletionThreshold', 3, ...
 'HasDetectableTrackIDsInput', true);

Track Targets by Fusing Detections in a Central Tracker

The following loop runs the tracking scenario recording until the end of the scenario. For each step
forward in the scenario, detections are collected for processing by the central tracker. The tracker is
updated with these detections every 2 seconds.

trackUpdateRate = 0.5; % Update the tracker every 2 seconds

% Create a display to show the true, measured, and tracked positions of the
% detected targets and platforms.
theaterDisplay = helperMultiPlatFusionDisplay(recording,'PlotAssignmentMetrics', true);

% Construct an object to analyze assignment and error metrics

6 Featured Examples

6-202

https://www.mathworks.com/help/fusion/examples/multi-patform-radar-detection-generation.html

tam = trackAssignmentMetrics('DistanceFunctionFormat','custom',...
 'AssignmentDistanceFcn',@truthAssignmentDistance,...
 'DivergenceDistanceFcn',@truthAssignmentDistance);

% Initialize buffers
detBuffer = {};
sensorConfigBuffer = [];
allTracks = [];
detectableTrackIDs = uint32([]);
assignmentTable = [];

% Initialize next tracker update time
nextTrackUpdateTime = 2;

while ~isDone(recording)
 % Read the next record of the recording.
 [time, truePoses, covcon, dets, senscon, sensPlatIDs] = read(recording);

 % Buffer all detections and sensor configurations until the next tracker update
 detBuffer = [detBuffer ; dets]; %#ok<AGROW>
 sensorConfigBuffer = [sensorConfigBuffer ; senscon']; %#ok<AGROW>

 % Follow the trackUpdateRate to update the tracker
 if time >= nextTrackUpdateTime || isDone(recording)

 if isempty(detBuffer)
 lastDetectionTime = time;
 else
 lastDetectionTime = detBuffer{end}.Time;
 end

 if isLocked(tracker)
 % Collect list of tracks which fell within at least one radar's field
 % of view since the last tracker update
 predictedtracks = predictTracksToTime(tracker, 'all', lastDetectionTime);
 detectableTrackIDs = detectableTracks(allTracks, predictedtracks, sensorConfigBuffer);
 end

 % Update tracker. Only run track logic on tracks that fell within at
 % least one radar's field of view since the last tracker update
 [confirmedTracks, ~, allTracks] = tracker(detBuffer, lastDetectionTime, detectableTrackIDs);

 % Analyze and retrieve the current track-to-truth assignment metrics
 tam(confirmedTracks, truePoses);

 % Store assignment metrics in a table
 currentAssignmentTable = trackMetricsTable(tam);
 rowTimes = seconds(time*ones(size(currentAssignmentTable,1),1));
 assignmentTable = cat(1,assignmentTable,table2timetable(currentAssignmentTable,'RowTimes',rowTimes));

 % Update display with detections, coverages, and tracks
 theaterDisplay(detBuffer, covcon, confirmedTracks, assignmentTable, truePoses, sensPlatIDs);

 % Empty buffers
 detBuffer = {};
 sensorConfigBuffer = [];

 % Update next track update time

 Multiplatform Radar Detection Fusion

6-203

 nextTrackUpdateTime = nextTrackUpdateTime + 1/trackUpdateRate;
 end

end

At the end of the scenario, you see that multiple tracks have been dropped and replaced. You can also
see the association of tracks to platforms for the duration of the scenario. The plot has seven rows for
seven platforms in the scenario. Each track is shown as a horizontal line. Track numbers are
annotated at the beginning of the lines. Whenever a track is deleted, its line stops. Whenever a new
track is assigned to a platform, a new line is added to the platform's row, when multiple lines are
shown at the same time for a single platform, the platform has multiple tracks assigned to it. In these
cases, the newer track associated with the platform is considered as redundant.

endTime = assignmentTable.Time(end);
assignmentTable(endTime,{'TrackID','AssignedTruthID','TotalLength','DivergenceCount','RedundancyCount','RedundancyLength'})

ans=9×6 timetable
 Time TrackID AssignedTruthID TotalLength DivergenceCount RedundancyCount RedundancyLength

6 Featured Examples

6-204

 ______ _______ _______________ ___________ _______________ _______________ ________________

 60 sec 1 2 27 0 0 0
 60 sec 7 4 27 0 0 0
 60 sec 8 5 26 0 0 0
 60 sec 9 1 22 0 0 0
 60 sec 11 NaN 10 0 0 0
 60 sec 12 6 20 0 0 0
 60 sec 24 7 19 0 1 4
 60 sec 32 NaN 7 0 1 7
 60 sec 41 3 10 0 0 0

Notice that the platforms which have difficulties in maintaining tracks (platforms 4 and 7) are also
the platforms furthest from the radars. This poor tracking performance is attributed to the Gaussian
distribution assumption for the measurement noise. The assumption works well for targets at short
ranges, but at long ranges, the measurement uncertainty deviates from a Gaussian distribution. The
following figure compares the 1-sigma covariance ellipses corresponding to actual target distribution
and the distribution of the target given by a radar sensor. The sensor is 5 km away from the target
with an angular resolution of 5 degrees. The actual measurement uncertainty has a concave shape
resulting from the spherical sensor detection coordinate frame in which the radar estimates the
target's position.

maxCondNum = 300;
figure;
helperPlotLongRangeCorrection(maxCondNum)

 Multiplatform Radar Detection Fusion

6-205

To account for the concave shape of the actual covariance at long ranges, the
longRangeCorrection supporting function constrains the condition number of the reported
measurement noise. The corrected measurement covariance shown above is constrained to a
maximum condition number of 300. In other words, no eigenvalue in the measurement covariance
can be more than 300 times smaller than the covariance's largest eigenvalue. This treatment expands
the measurement noise along the range dimension to better match the concavity of the actual
measurement uncertainty.

Simulate with Long-Range Covariance Correction

Rerun the previous simulation using the longRangeCorrection supporting function to correct the
reported measurement noise at long ranges.

[confirmedTracks,correctedAssignmentTable,ctheaterDisplay] = ...
 runMultiPlatFusionSim(recording,tracker,@longRangeCorrection);

endTime = correctedAssignmentTable.Time(end);
correctedAssignmentTable(endTime,{'TrackID','AssignedTruthID','TotalLength','DivergenceCount','RedundancyCount','RedundancyLength'})

6 Featured Examples

6-206

ans=7×6 timetable
 Time TrackID AssignedTruthID TotalLength DivergenceCount RedundancyCount RedundancyLength
 ______ _______ _______________ ___________ _______________ _______________ ________________

 60 sec 1 2 27 0 0 0
 60 sec 7 4 27 0 0 0
 60 sec 8 5 26 0 0 0
 60 sec 9 1 22 0 0 0
 60 sec 11 7 25 0 0 0
 60 sec 12 6 20 0 0 0
 60 sec 38 3 10 0 0 0

The preceding figure shows that by applying the long-range correction, no track-drops or multiple
tracks are generated for the entire scenario. In this case, there is exactly one track for each platform
detected by the surveillance network.

allDetections = vertcat(recording.RecordedData.Detections);
ctheaterDisplay(allDetections,covcon,confirmedTracks,correctedAssignmentTable,truePoses, sensPlatIDs)
axes(ctheaterDisplay.TheaterPlot.Parent)
legend('off')
xlim([-1000 5000]); ylim([-41000 -36000]); zlim([-5000 0]);
view([-90 90])
axis square
title('Jet Executing Horizontal Turn')

 Multiplatform Radar Detection Fusion

6-207

Zoom in the view in which the jet is executing a horizontal turn, the track follows the maneuvering
target relatively well, even though the motion model used in this example is constant velocity.
Tracking the maneuver could be further improved by using an interacting multiple-model (IMM) filter
such as the trackingIMM filter.

view([-60 25])

6 Featured Examples

6-208

From another view in which the jet is executing a horizontal turn, you can see that the altitude is
estimated correctly, despite the inaccurate altitude measurements from the sensors. One of the
sensors does not report altitude at all, as seen by the large vertical ellipsoids, while the other two
sensors underestimate their uncertainty in the altitude.

xlim([-25000 -9000]); ylim([-31000 -19000]); zlim([-9000 -2000]);
view([-45 10])
title('Crossing Airliners')

 Multiplatform Radar Detection Fusion

6-209

Switching the point of view to focus on the crossing airliners, the same inaccurate altitude
measurements are depicted. Note how the red detections are centered at an altitude of 8 km, while
the two airliners fly at altitudes of 3 and 4 km, respectively. The use of a very large covariance in the
altitude allows the tracker to ignore the erroneous altitude reading from the red detections and keep
track of the altitude using the other two radars. Observing the uncertainty covariance of tracks T07
and T08, you can see that they provide a consistent estimate of platforms P04 and P05, respectively.

xlim([-10000 10000]); ylim([-0 10000]); zlim([-12000 -5000]);
view([-15 10])
title('Airborne Radar Platforms')

6 Featured Examples

6-210

The last plot focuses on the two airborne radar platforms. Each platform is detected by the other
platform as well as by the ground radar. The platform trajectories cross each other, separated by
1000 m in altitude, and their tracks are consistent with the ground truth.

Summary

This example shows how to process detections collected across multiple airborne and ground-based
radar platforms in a central tracker. In this example, you learned how the measurement noise at long
ranges is not accurately modeled by a Gaussian distribution. The concavity of the 1-sigma ellipse of
the measurement noise at these long ranges results in poor tracking performance with dropped
tracks and multiple tracks assigned to a single platform. You also learned how to correct the
measurement noise for detections at long ranges to improve the continuity of the reported tracks.

Supporting Functions

initFilter This function modifies the function initcvekf to handle higher velocity targets such
as the airliners in the scenario.

 Multiplatform Radar Detection Fusion

6-211

function filter = initFilter(detection)
filter = initcvekf(detection);
classToUse = class(filter.StateCovariance);

% Airliners can move at speeds around 900 km/h. The velocity is initialized
% to 0, but will need to be able to quickly adapt to aircraft moving at
% these speeds. Use 900 km/h as 1 standard deviation for the velocity
% noise.
spd = 900*1e3/3600; % m/s
velCov = cast(spd^2,classToUse);
cov = filter.StateCovariance;
cov(2,2) = velCov;
cov(4,4) = velCov;
filter.StateCovariance = cov;

% Set filter's process noise to allow for some horizontal maneuver
scaleAccel = cast(10,classToUse);
Q = blkdiag(scaleAccel^2, scaleAccel^2, 1);
filter.ProcessNoise = Q;
end

detectableTracks This function returns the IDs for tracks that fell within at least one sensor's field
of view. The sensor's field of view and orientation relative to the coordinate frame of the tracks is
stored in the array of sensor configuration structs. The configuration structs are returned by the
radar sensor and can be used to transform track positions and velocities to the sensor's coordinate
frame.

function trackIDs = detectableTracks(tracks,predictedtracks,configs)
% Identify which tracks fell within a sensor's field of view

numTrks = size(tracks,1);
[numsteps, numSensors] = size(configs);
allposTrack = zeros(3,numsteps);
isDetectable = false(numTrks,1);
for iTrk = 1:numTrks
 % Interpolate track positions between current position and predicted
 % positions for each simulation step
 posTrack = tracks(iTrk).State(1:2:end);
 posPreditedTrack = predictedtracks(iTrk).State(1:2:end);
 for iPos = 1:3
 allposTrack(iPos,:) = linspace(posTrack(iPos),posPreditedTrack(iPos),numsteps);
 end
 for iSensor = 1:numSensors
 thisConfig = configs(:,iSensor);
 for k = 1:numsteps
 if thisConfig(k).IsValidTime
 pos = trackToSensor(allposTrack(:,k),thisConfig(k));
 % Check if predicted track position is in sensor field of
 % view
 [az,el] = cart2sph(pos(1),pos(2),pos(3));
 az = az*180/pi;
 el = el*180/pi;
 inFov = abs(az)<thisConfig(k).FieldOfView(1)/2 && abs(el) < thisConfig(k).FieldOfView(2)/2;
 if inFov
 isDetectable(iTrk) = inFov;
 k = numsteps; %#ok<FXSET>
 iSensor = numSensors; %#ok<FXSET>
 end

6 Featured Examples

6-212

 end
 end
 end

end

trackIDs = [tracks.TrackID]';
trackIDs = trackIDs(isDetectable);
end

trackToSensor This function returns the track's position in the sensor's coordinate frame. The
track structure is returned by the trackerGNN object and the config structure defining the sensor's
orientation relative to the track's coordinate frame is returned by the radar object.

function pos = trackToSensor(pos,config)

frames = config.MeasurementParameters;
for m = numel(frames):-1:1
 rotmat = frames(m).Orientation;
 if ~frames(m).IsParentToChild
 rotmat = rotmat';
 end
 offset = frames(m).OriginPosition;
 pos = bsxfun(@minus,pos,offset);
 pos = rotmat*pos;
end
end

longRangeCorrection This function limits the measurement noise accuracy reported by the radar
to not exceed a maximum condition number. The condition number is defined as the ratio of the
eigenvalues of the measurement noise to the largest eigenvalue.

When targets are detected at long ranges from a radar, the surface curvature of the uncertainty of
the measurement is no longer well approximated by an ellipsoid but takes on that of a concave
ellipsoid. The measurement noise must be increased along the range dimension to account for the
concavity, producing a planar ellipse which encompasses the concave ellipsoid. There are several
techniques in the literature to address this. Here, the maximum condition number of the
measurement noise is limited by increasing the smallest eigenvalues to satisfy the maximum
condition number constraint. This has the effect of increasing the uncertainty along the range
dimension, producing an ellipse which better encloses the concave uncertainty.

function dets = longRangeCorrection(dets,maxCond)
for m = 1:numel(dets)
 R = dets{m}.MeasurementNoise;
 [Q,D] = eig(R);
 Q = real(Q);
 d = real(diag(D));
 dMax = max(d);
 condNums = dMax./d;
 iFix = condNums>maxCond;
 d(iFix) = dMax/maxCond;
 R = Q*diag(d)*Q';
 dets{m}.MeasurementNoise = R;
end
end

 Multiplatform Radar Detection Fusion

6-213

Multiplatform Radar Detection Generation
This example shows how to generate radar detections from a multiplatform radar network. The
network includes three long-range platforms: two airborne and one ground-based. Such synthetic
data can be used to test the performance of tracking architectures for different target types and
maneuvers.

The radar platforms and targets are modeled in the scenario as platforms. Simulation of the motion
of the platforms in the scenario is managed by trackingScenario.

% Create a tracking scenario to manage the movement of the platforms.
scene = trackingScenario; % Create tracking scenario
scene.UpdateRate = 0; % Use continuous update rate to handle sensors with different update rates
sceneDuration = 60; % Duration of scenario in seconds
scene.StopTime = sceneDuration;

Airborne Platform with Rotating Radar Array

Add an airborne platform to the scenario traveling north at 650 km/hr at a cruising altitude of 10 km.
Generate the platform trajectory from waypoints using waypointTrajectory.

ht = 10e3; % Altitude in meters
spd = 650*1e3/3600; % Speed in m/s
start = [-spd*sceneDuration/2 5e3 -ht];
stop = [spd*sceneDuration/2 5e3 -ht];
traj = waypointTrajectory('Waypoints',[start;stop],'TimeOfArrival',[0; sceneDuration]);

% Create the airborne platform with its trajectory.
plat1 = platform(scene,'Trajectory',traj);

Add a planar array radar to the platform. Mount the radar in a radome 5 meters above the platform.
Model the radar as a mechanically rotating phased array. The radar electronically stacks beams in
elevation along the array's boresight. The specifications for the modeled radar are tabulated below:

• Sensitivity: 0 dBsm @ 375 km
• Mechanical Scan: Azimuth only
• Mechanical Scan Limits: 0 to 360 deg
• Electronic Scan: Elevation only
• Electronic Scan Limits: -2 to 45 deg
• Field of View: 1 deg azimuth, 47 deg elevation
• Measurements: Azimuth, elevation, range
• Azimuth Resolution: 1 deg
• Elevation Resolution: 5 deg
• Range Resolution: 30 m

Model the mechanically rotating radar using fusionRadarSensor.

sensorIndex = 1; % Identifies originating sensor of each detection
radar = fusionRadarSensor(sensorIndex,'Rotator', ...
 'MountingLocation', [0 0 -5], ... % m
 'UpdateRate', 12.5, ... % Hz
 'ReferenceRCS', 0, ... % dBsm
 'ReferenceRange', 375e3, ... % m

6 Featured Examples

6-214

 'ScanMode', 'Mechanical and electronic', ...
 'MechanicalAzimuthLimits', [0 360], ... % deg
 'MechanicalElevationLimits', [0 0], ... % deg
 'ElectronicAzimuthLimits', [0 0], ...
 'ElectronicElevationLimits', [-2 45], ... % deg
 'FieldOfView',[1;47.1], ... % deg
 'HasElevation', true, ...
 'AzimuthResolution', 1, ... % deg
 'ElevationResolution', 5, ... % deg
 'RangeResolution', 30, ... % m
 'HasINS', true);

% Attach the radar to its airborne platform.
plat1.Sensors = radar;

Airborne Platform with Two Radar Arrays

Add a second airborne platform to the scenario traveling south at 550 km/hr at a cruising altitude of
8 km.

ht = 8e3; % Altitude in meters
spd = 550*1e3/3600; % Speed in m/s
start = [spd*sceneDuration/2 5e3 -ht];
stop = [-spd*sceneDuration/2 5e3 -ht];
traj = waypointTrajectory('Waypoints',[start;stop],'TimeOfArrival',[0; sceneDuration]);
plat2 = platform(scene,'Trajectory',traj);

Multiple sensors can be mounted on a platform. Add a radar composed of two linear phased arrays
mounted 5 meters above the platform. Mount the arrays so that one array looks over the right side of
the airframe and the other array looks over the left side of the airframe. Both arrays provide coverage
over a 150 degree azimuth sector on either side of the platform. Elevation is not measured by the
linear arrays. The specifications for this radar are tabulated below:

• Sensitivity: 0 dBsm @ 350 km
• Mechanical Scan: No
• Electronic Scan: Azimuth only
• Electronic Scan Limits: -75 to 75 deg
• Field of View: 1 deg azimuth, 60 deg elevation
• Measurements: Azimuth, range
• Azimuth Resolution: 1 deg
• Range Resolution: 30 m

Model the linear phased array radar using the fusionRadarSensor.

% Create right facing radar by setting radar's yaw to 90 degrees.
sensorIndex = sensorIndex+1;
rightRadar = fusionRadarSensor(sensorIndex,'Sector', ...
 'MountingLocation', [0 0 -5], ... % m
 'MountingAngles', [90 0 0], ... % deg, look over right side
 'UpdateRate', 12.5, ... % Hz
 'ReferenceRCS', 0, ... % dBsm
 'ReferenceRange', 350e3, ... % m
 'ScanMode','Electronic', ...
 'ElectronicAzimuthLimits',[-75 75], ... % deg

 Multiplatform Radar Detection Generation

6-215

 'FieldOfView',[1;60], ... % deg
 'HasElevation', false, ...
 'AzimuthResolution', 1, ... % deg
 'RangeResolution', 30, ... % m
 'HasINS', true);

% Create an identical radar looking over the left side of the airframe.
leftRadar = clone(rightRadar);
sensorIndex = sensorIndex+1;
leftRadar.SensorIndex = sensorIndex;
leftRadar.MountingAngles(1) = -90; % Look over the left side

% Attach the two linear radar arrays to the airborne platform.
plat2.Sensors = {leftRadar, rightRadar};

Ground-Based Platform with Rectangular Radar Array

Add a ground-based radar using a rectangular phased array mounted 5 meters above its trailer. The
radar electronically surveys a 60 degree azimuth span and 20 degrees of elevation above the ground
using an electronic raster scan pattern.

• Sensitivity: 0 dBsm @ 350 km
• Mechanical Scan: No
• Electronic Scan: Azimuth and elevation
• Electronic Scan Limits: -30 to 30 deg azimuth, -20 to 0 deg elevation
• Field of View: 1 deg azimuth, 5 deg elevation
• Measurements: Azimuth, elevation, range
• Azimuth Resolution: 1 deg
• Elevation Resolution: 5 deg
• Range Resolution: 30 m

Model the rectangular phased array radar using the fusionRadarSensor.

% Create an electronically scanning rectangular array radar.
sensorIndex = sensorIndex+1;
radar = fusionRadarSensor(sensorIndex,'Raster', ...
 'MountingLocation', [0 0 -5], ... % m
 'UpdateRate', 25, ... % Hz
 'ReferenceRCS', 0, ... % dBsm
 'ReferenceRange', 350e3, ... % m
 'ScanMode','Electronic', ...
 'ElectronicAzimuthLimits', [-30 30],... % deg
 'ElectronicElevationLimits', [-20 0],... % deg
 'FieldOfView', [1;5], ... % deg
 'HasElevation', true, ...
 'AzimuthResolution', 1, ... % deg
 'ElevationResolution', 5, ... % deg
 'RangeResolution', 30, ... % m
 'HasINS', true);

% Attach the rectangular radar array to the trailer platform.
plat3 = platform(scene,'Sensors',radar);
plat3.Trajectory.Position = [-30e3 30e3 0];
plat3.Trajectory.Orientation = quaternion([-60 0 0],'eulerd','zyx','frame');

6 Featured Examples

6-216

Airborne Targets

Add four airborne targets within the surveillance region.

1 Airliner traveling northeast at 700 km/hr at a 3,000 m altitude
2 Crossing airliner traveling southeast at 900 km/hr at a 4,000 m altitude
3 Airliner traveling east at 600 km/hr at a 9,000 m altitude
4 Jet traveling at 300 km/hr and executing a 90 degree turn at a 3,000 m altitude

% Add airliner traveling northeast.
ht = 3e3; % Altitude in meters
spd = 700*1e3/3600; % Speed in m/s
ang = 45;
rot = [cosd(ang) sind(ang) 0;-sind(ang) cosd(ang) 0; 0 0 1];
offset = [-15e3 -25e3 -ht];
start = offset - [spd*sceneDuration/2 0 0]*rot;
stop = offset + [spd*sceneDuration/2 0 0]*rot;
traj = waypointTrajectory('Waypoints',[start;stop],'TimeOfArrival',[0; sceneDuration]);

rcs = rcsSignature('Pattern', [10 10; 10 10], ...
 'Azimuth', [-180 180], 'Elevation', [-90 90], ...
 'Frequency', [0 10e9]); % Define custom RCS signature of target
platform(scene,'Trajectory',traj,'Signatures',rcs);

% Add crossing airliner traveling southeast.
ht = 4e3; % Altitude in meters
spd = 900*1e3/3600; % Speed in m/s
offset = [(start(1)+stop(1))/2 (start(2)+stop(2))/2 -ht];
start = offset + [0 -spd*sceneDuration/2 0]*rot;
stop = offset + [0 spd*sceneDuration/2 0]*rot;
traj = waypointTrajectory('Waypoints',[start;stop],'TimeOfArrival',[0; sceneDuration]);
rcs = rcsSignature; % Default 10 dBsm RCS at all viewing angles
platform(scene,'Trajectory',traj,'Signatures',rcs);

% Add eastbound airliner.
ht = 9e3; % Altitude in meters
spd = 600*1e3/3600; % Speed in m/s
start = [30e3 -spd*sceneDuration/2-20e3 -ht];
stop = [30e3 spd*sceneDuration/2-20e3 -ht];
traj = waypointTrajectory('Waypoints',[start;stop],'TimeOfArrival',[0; sceneDuration]);
platform(scene,'Trajectory',traj); % Default 10 dBsm RCS at all viewing angles

% Add jet turning with horizontal acceleration of 0.3 G.
ht = 3e3; % Altitude in meters
spd = 300*1e3/3600; % Speed in m/s
accel = 0.3*9.8; % Centripetal acceleration m/s^2
radius = spd^2/accel; % Turn radius in meters
t0 = 0;
t1 = t0+5;
t2 = t1+pi/2*radius/spd;
t3 = sceneDuration;
start = [0e4 -4e4 -ht];
wps = [...
 0 0 0; ... % Begin straight segment
 spd*t1 0 0; ... % Begin horizontal turn
 spd*t1+radius radius 0; ... % End of horizontal turn
 spd*t1+radius radius+spd*(t3-t2) 0]; % End of second straight segment

 Multiplatform Radar Detection Generation

6-217

traj = waypointTrajectory('Waypoints',start+wps,'TimeOfArrival',[t0; t1; t2; t3]);
platform(scene,'Trajectory',traj);

Generation of Radar Detections

The following loop advances the platform and target positions until the end of the scenario. For each
step forward in the scenario, detections are generated from each platform.

The trackingScenario can advance at a fixed time interval or automatically determine the next
update time. Set the UpdateRate to 0 to let trackingScenario determine the next update time.

rng(2018); % Set random seed for repeatable results

% Create a theaterPlot to show the true and measured positions of the detected targets and platforms.
theaterDisplay = helperMultiPlatDisplay(scene);

title('Multiplatform Radar Scenario');
legend('show');

% Show 3D view of the scenario.
view(-60,10);

% Log all the detections
detLog = {};
timeLog = [];

while advance(scene)
 % Generate detections from radars on each platform.
 [dets,configs] = detect(scene);

 % Update display with current beam positions and detections.
 theaterDisplay(dets);

 % Log sensor data and ground truth.
 detLog = [detLog; dets]; %#ok<AGROW>
 timeLog = [timeLog; scene.SimulationTime];%#ok<AGROW>
end

6 Featured Examples

6-218

Notice the wide beams from the airborne platforms and the narrow beam from the ground-based
radar executing a raster scan. You can visualize the ground truth trajectories in the 2D view below.
The four targets are represented by triangles. Around 30 km on the x-axis is the airliner traveling
east (left to right). Around 2 km on the x-axis is the jet executing a turn clockwise. Further south are
two crossing airliners.

view(-90,90); % 2D view

 Multiplatform Radar Detection Generation

6-219

Plot the logged detections with their measurement uncertainties. Each color corresponds to the
platform generating the detections. The legend from the previous display applies to all the following
plots. Notice that the radars generate false alarms, which are detection far away from the target
trajectories.

theaterDisplay(detLog);
title([num2str(numel(detLog)) ' Detections Logged from ' num2str(numel(timeLog)) ' Simulation Steps']);
legend('hide');

6 Featured Examples

6-220

The following 3D view shows how these detections are distributed in elevation. For platforms with 3D
sensors (the blue and yellow platforms), the detections closely follow the target trajectories. The 2D-
view platform's detections (the red platform) are offset in elevation from the target trajectories
because its radar is unable to measure in elevation. The 1-sigma measurement uncertainty is shown
for each detection as a gray ellipsoid centered on the measured target positions (shown as filled
circles).

view([-60 25]); % 3D view

 Multiplatform Radar Detection Generation

6-221

Zoom in on the jet executing the 90 degree horizontal turn. The 1-sigma measurement uncertainty is
reported by the radar according to the radar's resolution and the signal-to-noise ratio (SNR) for each
detection. Targets at longer ranges or with smaller SNR values will have larger measurement
uncertainties than targets at closer ranges or with larger SNR values. Notice that the blue detections
have smaller measurement uncertainties than the yellow detections. This is because the blue
detections originate from the airborne platform (Platform 1) that is much closer to the target than the
ground-based platform (Platform 3) generating the yellow detections.

xlim([-3000 9000]); ylim([-44000 -32000]); zlim([-12000 0000]);
axis('square');
title('Jet Executing Horizontal Turn');

6 Featured Examples

6-222

Notice the large uncertainty in elevation of the red detections generating from the airborne platform
(Platform 2) that uses two linear arrays. The ellipsoids have small axes in the range and azimuth
directions but have very large axes along the elevation direction. This is because the linear arrays on
this platform are unable to provide estimates in elevation. In this case, the platform's radar reports
detections at 0 degrees with an uncertainty in elevation corresponding to the elevation field of view.

Zoom in on the two crossing airliners. The blue airborne radar with the rotating array generates the
fewest number of detections (only 4 detections for these two targets), but these detections are the
most precise (smallest ellipses). The small number of detections from this platform is due to its
radar's 360 mechanical scan, which limits how frequently its beam can revisit a target in the
scenario. The other platforms have radars with smaller scan regions, allowing them to revisit the
targets at a higher rate.

view([-55 20]);
xlim([-22000 -10000]); ylim([-31000 -19000]);
title('Crossing Airliners');

 Multiplatform Radar Detection Generation

6-223

Zoom in on the airliner traveling east. Same observations on the number of detections and accuracy
from different radar platforms apply.

view([-70 10]);
xlim([24000 36000]); ylim([-26000 -14000]); zlim([-15000 -3000])
title('Airliner Traveling East');

6 Featured Examples

6-224

Summary

This example shows how to model a radar surveillance network and simulate detections generated by
multiple airborne and ground-based radar platforms. In this example, you learned how to define
scenarios, including targets and platforms that can be stationary or in motion. You also learned how
to visualize the ground truth trajectories, sensor beams, detections, and associated measurement
uncertainties. You can process this synthetic data through your tracking and fusion algorithms to
assess their performance for this scenario. You can also modify this example to exercise your multi-
target tracker against different target types and maneuvers.

 Multiplatform Radar Detection Generation

6-225

Tracking Using Distributed Synchronous Passive Sensors
This example illustrates the tracking of objects using measurements from spatially-distributed and
synchronous passive sensors. In the “Passive Ranging Using a Single Maneuvering Sensor” on page
6-240, you learned that passive measurements provide incomplete observability of a target's state
and how a single sensor can be maneuvered to gain range information. Alternatively, multiple
stationary sensors can also be used to gain observability. In this example, you will learn how to track
multiple objects by fusing multiple detections from passive synchronous sensors.

Introduction

In the synchronized multisensor-multitarget tracking problem, detections from multiple passive
sensors are collected synchronously and are used to estimate the following:

• Number of targets in the scenario
• Position and velocity of those targets

This example demonstrates the use of the Static Fusion Before Tracking [1] architecture for tracking
using passive measurements. The Static Fusion part of the architecture aims to triangulate the most
likely set of detections and output fused detections containing estimated positions of targets. As
measurements need to be fused together by static fusion, the sensors must report measurements
synchronously.

With measurements containing only line-of-sight (LOS) information, at least 2 sensors are needed to
find the position. However, with 2 sensors, the problem of ghosting (intersections at points with no
targets) occurs when multiple targets lie in the same plane. With 2 targets and 2 sensors, it is
impossible to identify the correct pair from a single frame of measurements as demonstrated in the
figure below:

6 Featured Examples

6-226

Therefore, one must use 3 or more sensors to reduce the problem of ghosting. Due to the presence of
measurement noise and false measurements, it is difficult to eliminate the problem of ghosting
completely. Ghost triangulations returned by static association are likely to be discarded by the
dynamic association blocks as the geometry of targets and sensors changes during the scenario.

Define Scenario

The relative placement of sensors and targets in the scenario used here is taken from an example in
[1]. The scenario consists of five equally-spaced targets observed by three to five passive sensors. The
passive detections are modeled using radarEmitter and fusionRadarSensor with
DetectionMode set to ESM. The HasNoise property of the sensors is set to false to generate noise-
free detections along with false alarms. Noise is added to measurements in this example via a user-
controlled variable. This is to simulate the effect of sensor noise on static fusion. Each sensor has a
field of view of 180 degrees in azimuth and a FalseAlarmRate of 1e-3 per azimuth resolution cell.
This results in 2 to 3 false alarms per scan. The scenario definition is wrapped inside the helper
function helperGenerateFusionScenarioData.

[detectionBuffer,truthLog,theaterDisplay] = helperGenerateStaticFusionScenarioData;
showScenario(theaterDisplay);

 Tracking Using Distributed Synchronous Passive Sensors

6-227

showGrabs(theaterDisplay,[]);

Track with Three Sensors

In this section, only measurements from the inner three sensors are considered and measurement
noise covariance for each sensor is set to 0.01 degrees squared.

The detections from each sensor are passed to a staticDetectionFuser. The
MeasurementFusionFcn for passive triangulation is specified as triangulateLOS. The
MeasurementFusionFcn allows specifying a function to fuse a given combination of detections (at
most one detection from each sensor) and return the fused position and its error covariance. The
parameters FalseAlarmRate, Volume and DetectionProbability are specified to reflect the
parameters of sensors simulated in this scenario. These parameters are used to calculate the
likelihood of feasible associations. The UseParallel property, when set to true, allows the fuser to
evaluate the feasible associations using parallel processors.

The tracking is performed by GNN data association by using a trackerGNN.

The tracking performance is evaluated using trackAssignmentMetrics and
trackErrorMetrics.

Setup

% Number of sensors
numSensors = 3;

6 Featured Examples

6-228

% Create a detection fuser using triangulateLOS function as the
% MeasurementFusionFcn and specify parameters of sensors.
fuser = staticDetectionFuser('MeasurementFusionFcn',@triangulateLOS,...
 'MaxNumSensors',numSensors,...
 'UseParallel',true,...
 'FalseAlarmRate',1e-3,...
 'Volume',0.0716,...
 'DetectionProbability',0.99);

% Tracking using a GNN tracker
tracker = trackerGNN('AssignmentThreshold',45,...
 'ConfirmationThreshold',[3 5],'DeletionThreshold',[4 5]);

% Use assignment and error metrics to compute accuracy.
trackingMetrics = trackAssignmentMetrics('DistanceFunctionFormat','custom',...
 'AssignmentDistanceFcn',@trueAssignment,'DivergenceDistanceFcn',@trueAssignment);
errorMetrics = trackErrorMetrics;

Run simulation with three sensors

% Measurement noise
measNoise = 0.01;

time = 0; % simulation time
dT = 1; % 1 Hz update rate of scenario.

% Loop through detections and track targets
for iter = 1:numel(detectionBuffer)

 % Truth information
 sensorPlatPoses = truthLog{iter}(1:numSensors);
 targetPlatPoses = truthLog{iter}(6:end);
 groundTruth = [sensorPlatPoses;targetPlatPoses];

 % Generate noisy detections using recorded detections
 thisBuffer = detectionBuffer{iter};
 availableDetections = vertcat(thisBuffer{1:numSensors});
 noiseDetections = addNoise(availableDetections,measNoise);

 % Fuse noisy detections using fuser
 fusedDetections = fuser(noiseDetections);

 % Run a tracker on fused detections
 confTracks = tracker(fusedDetections,time);

 % Update track and assignment metrics
 trackingMetrics(confTracks,targetPlatPoses);
 [trackIDs,truthIDs] = currentAssignment(trackingMetrics);
 errorMetrics(confTracks,trackIDs,targetPlatPoses,truthIDs);

 % Update theater display
 detsToPlot = [noiseDetections(:);fusedDetections(:)];
 theaterDisplay(confTracks,detsToPlot,groundTruth);

 % Increment simulation time
 time = time + dT;
end
axes(theaterDisplay.TheaterPlot.Parent);

 Tracking Using Distributed Synchronous Passive Sensors

6-229

ylim([0 1.5]);

6 Featured Examples

6-230

Results from tracking using three sensors with 0.01 degrees-squared of noise covariance can be
summarized using the assignment metrics. Note that all tracks were assigned to the correct truths
and no false tracks were confirmed by the tracker. These results indicates good static association
accuracy.

assignmentTable = trackMetricsTable(trackingMetrics);
assignmentTable(:,{'TrackID','AssignedTruthID','TotalLength','FalseTrackStatus'})

ans =

 5×4 table

 TrackID AssignedTruthID TotalLength FalseTrackStatus
 _______ _______________ ___________ ________________

 3 10 59 false
 6 7 59 false
 7 6 59 false
 10 9 58 false
 11 8 58 false

The error in estimated position and velocity of the targets can be summarized using the error
metrics. The errors in position and velocity are within 7 meters and 2 meters/sec respectively for all
targets and the normalized errors are close to 1. The error metrics indicate good dynamic association
and tracking performance.

 Tracking Using Distributed Synchronous Passive Sensors

6-231

disp(cumulativeTrackMetrics(errorMetrics));

 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 3 6.8821 1.595 2.51 0.80396
 6 3.9895 1.1149 1.6409 0.5416
 7 5.8195 1.3356 1.9041 0.66745
 10 4.2425 1.2514 1.6719 0.62374
 11 3.6443 1.1453 1.375 0.55326

Effect of measurement accuracy

The fusion of passive detections to eliminate ghosting is highly dependent on the accuracy of passive
measurements. As measurement noise increases, the distinction between ghost associations and true
associations becomes less prominent, resulting in a significant drop in the accuracy of static
association. With closely spaced targets, incorrect association of fused detections to tracks may also
occur. In the next section, a helper function helperRunStaticFusionSimulation is used to re-run
the scenario with a measurement noise covariance of 2 degrees squared.

Run the scenario again with a high measurement noise

numSensors = 3;
measNoise = 2; %standard deviation of sqrt(2) degrees
[trackingMetrics,errorMetrics] = helperRunStaticFusionSimulation(detectionBuffer,truthLog,numSensors,measNoise,theaterDisplay,false);
axes(theaterDisplay.TheaterPlot.Parent);

6 Featured Examples

6-232

ylim([0 1.5]);

Note that a few tracks were confirmed and then dropped in this simulation. Poor static association
accuracy leads to ghost target triangulations more often, which results in tracker deleting these
tracks due to multiple misses.

assignmentTable = trackMetricsTable(trackingMetrics);
assignmentTable(:,{'TrackID','AssignedTruthID','TotalLength','FalseTrackStatus'})

ans =

 9×4 table

 TrackID AssignedTruthID TotalLength FalseTrackStatus
 _______ _______________ ___________ ________________

 1 10 59 false
 3 NaN 4 true
 4 NaN 5 false
 6 7 59 false
 7 6 59 false
 10 9 57 false
 11 8 56 false
 13 NaN 5 false
 18 NaN 5 true

 Tracking Using Distributed Synchronous Passive Sensors

6-233

The estimated error for each truth is higher. Notice that the track jumps in the theater display above.

disp(cumulativeTruthMetrics(errorMetrics));

 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 6 261.26 7.498 82.824 1.4568
 7 54.822 3.226 3.9109 0.92307
 8 50.606 4.6234 2.8907 1.1096
 9 83.002 5.0335 7.1213 1.6252
 10 206.17 7.0411 47.227 1.8917

The association accuracy can be improved by increasing the number of sensors. However, the
computational requirements increase exponentially with the addition of each sensor. The static fusion
algorithm spends most of the time computing the feasibility of each triangulation. This part of the
algorithm is parallelized when the UseParallel property of the staticDetectionFuser is set to
true, which provides a linear speed-up proportional to the number of processors. To further
accelerate execution, you can also generate C/C++ code which will also run in parallel execution on
multiple processors. You can learn the basics of code generation using MATLAB® Coder™ at “Get
Started with MATLAB Coder” (MATLAB Coder).

Accelerate MATLAB Code Through Parallelization and Code Generation

To accelerate MATLAB Code for simulation, the algorithm must be restructured as a MATLAB
function, which can be compiled into a MEX file or a shared library. For this purpose, the static fusion
algorithm is restructured into a function. To preserve the state of the fuser between multiple calls, it
is defined as a persistent variable.

type('mexFuser');

function [superDets,info] = mexFuser(detections)

%#codegen
persistent fuser

if isempty(fuser)
 fuser = staticDetectionFuser('MeasurementFusionFcn',@triangulateLOS,...
 'MaxNumSensors',5,...
 'UseParallel',true,...
 'FalseAlarmRate',1e-3,...
 'Volume',0.0716,...
 'DetectionProbability',0.99);
end

[superDets,info] = fuser(detections);

MATLAB® Coder™ requires specifying the properties of all the input arguments. An easy way to do
this is by defining the input properties by example at the command line using the -args option. For
more information, see “Define Input Properties by Example at the Command Line” (MATLAB Coder).
To allow variable number of detections, you will use the coder.typeof function to allocate data
types and sizes for the inputs.

% Get a sample detection from the stored buffer
sampleDetection = detectionBuffer{1}{1}{1};

6 Featured Examples

6-234

% Use the coder.typeof function to allow variable-size inputs for
% detections.
maxNumDets = 500;
inputDets = coder.typeof({sampleDetection},[maxNumDets,1],[1 0]);

h = msgbox({'Generating code for function. This may take a few minutes...';...
 'This message box will close when done.'},'Codegen Message');

% Use the codegen command to generate code by specifying input arguments
% via example by using the |-args| option.
codegen mexFuser -args {inputDets};

close(h);

Code generation successful.

You can verify the speed-up achieved by code generation by comparing the time taken by them for
fusing one frame of detections

testDetections = addNoise(vertcat(detectionBuffer{1}{1:5}),1);
tic;mexFuser(testDetections);t_ML = toc;
tic;mexFuser_mex(testDetections);t_Mex = toc;
disp(['MATLAB Code Execution time = ',num2str(t_ML)]);
disp(['MEX Code Execution time = ',num2str(t_Mex)]);

MATLAB Code Execution time = 37.9316
MEX Code Execution time = 0.4011

 Tracking Using Distributed Synchronous Passive Sensors

6-235

Track with Five Sensors

In this section, detections from all five sensors are used for tracking and a measurement noise of 2
degrees squared is used.

measNoise = 2; % Same noise as 3 sensors
numSensors = 5;
[trackingMetrics,errorMetrics] = helperRunStaticFusionSimulation(detectionBuffer,truthLog,numSensors,measNoise,theaterDisplay,true);
axes(theaterDisplay.TheaterPlot.Parent);

6 Featured Examples

6-236

ylim([0 1.5]);

 Tracking Using Distributed Synchronous Passive Sensors

6-237

The assignment results from tracking using five sensors show that all truths were assigned a track
during the entire simulation. There were also no track drops in the simulation as compared to 4 track
drops in the low-accuracy three sensor simulation.

assignmentTable = trackMetricsTable(trackingMetrics);
assignmentTable(:,{'TrackID','AssignedTruthID','TotalLength','FalseTrackStatus'})

ans =

 5×4 table

 TrackID AssignedTruthID TotalLength FalseTrackStatus
 _______ _______________ ___________ ________________

 2 10 59 false
 3 9 59 false
 4 8 59 false
 5 7 59 false
 6 6 59 false

The estimated errors for positions are much lower for each true target as compared to the three
sensor simulation. Notice that the estimation results for position and velocity do degrade as
compared to three sensors with high-accuracy measurements.

disp(cumulativeTruthMetrics(errorMetrics))

6 Featured Examples

6-238

 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 6 34.74 3.0009 3.0358 0.75358
 7 16.415 2.7014 1.3547 0.53336
 8 16.555 2.5768 1.5645 0.49951
 9 16.361 2.5381 1.474 0.55633
 10 26.137 4.0457 2.3739 1.0349

Summary

This example showed how to track objects using a network of distributed passive sensors. You
learned how to use staticDetectionFuser to statically associate and fuse detections from
multiple sensors. The example demonstrated how this architecture is depends parameters like
number of sensors in the network and the accuracy of sensor measurements. The example also
showed how to accelerate performance by utilizing parallel computing and automatically generating
C code from MATLAB code.

Supporting Functions

trueAssignment Use ObjectAttributes of track to assign it to the right truth.

function distance = trueAssignment(track,truth)
tIDs = [track.ObjectAttributes.TargetIndex];
tIDs = tIDs(tIDs > 0);
if numel(tIDs) > 1 && all(tIDs == truth.PlatformID)
 distance = 0;
else
 distance = inf;
end
end

addNoise Add noise to detections

function dets = addNoise(dets,measNoise)
for i = 1:numel(dets)
 dets{i}.Measurement(1) = dets{i}.Measurement(1) + sqrt(measNoise)*randn;
 dets{i}.MeasurementNoise(1) = measNoise;
end
end

References

[1] Bar-Shalom, Yaakov, Peter K. Willett, and Xin Tian. "Tracking and Data Fusion: A Handbook of
Algorithms." (2011).

 Tracking Using Distributed Synchronous Passive Sensors

6-239

Passive Ranging Using a Single Maneuvering Sensor
This example illustrates how to track targets using passive angle-only measurements from a single
sensor. Passive angle-only measurements contain azimuth and elevation of a target with respect to
the sensor. The absence of range measurements makes the problem challenging as the targets to be
tracked are fully observable only under certain conditions.

In this example, you learn about some possible solutions to this problem by using a passive infrared
sensor mounted on a maneuvering platform.

Introduction

The absence of range measurements from a target implies incomplete observability of the target
state. The following figure depicts that angle-only measurements obtained by an observer traveling at
a constant velocity results in multiple possible trajectories of a (presumed constant velocity) target.

Theoretical results imply that the target state is unobservable until the following conditions are met
[1].

• The sensor must out-maneuver the target i.e. the sensor motion must be at least 1 order higher
than the target. For example, if a target is traveling at constant velocity, the observer must have at
least a constant acceleration.

• The component of sensor maneuver perpendicular to line of sight must be non-zero.

Define Scenario

A helper function helperCreatePassiveRangingScenario is used to define a single infrared
sensor mounted on a platform. The sensing platform, often termed as ownship, travels at constant
velocity in the beginning and then performs a maneuver to observe the range of the target. The
target is assumed to be non-maneuvering and travels at a constant velocity in the scenario.

6 Featured Examples

6-240

% Setup
exPath = fullfile(matlabroot,'examples','fusion','main');
addpath(exPath);
[scene,ownship,theaterDisplay] = helperCreatePassiveRangingScenario;
showScenario(theaterDisplay);

Track Using an EKF in Cartesian Coordinates

The problem of tracking a target using angle-only measurements can be formulated using an
extended Kalman filter with a non-linear measurement model in Cartesian coordinates. In this
section, a constant velocity trackingEKF, describing the state in global Cartesian coordinates is
used to track the target.

% Set random seed for reproducible results
rng(50);

% Create a |trackerGNN| to track the targets using the
% FilterInitializationFcn as @initCartesianEKF.

 Passive Ranging Using a Single Maneuvering Sensor

6-241

tracker = trackerGNN('FilterInitializationFcn',@initCartesianEKF,...
 'AssignmentThreshold',50,...
 'MaxNumTracks',5);

[tem, tam] = helperPassiveRangingErrorMetrics(ownship,false);

theaterDisplay.ErrorMetrics = tem;

tracks = [];

% Advance scenario, simulate detections and track
while advance(scene)
 % Get time information from tracking scenario.
 truths = platformPoses(scene);
 time = scene.SimulationTime;

 % Generate detections from the ownship
 detections = detect(ownship,time);

 % Pass detections to tracker
 if ~isempty(detections)
 tracks = tracker(detections,time);
 elseif isLocked(tracker)
 tracks = predictTracksToTime(tracker,'confirmed',time);
 end
 % Update error and assignment metrics
 tam(tracks,truths);
 [trackIDs, truthIDs] = currentAssignment(tam);
 tem(tracks,trackIDs,truths,truthIDs);

 % Update display
 theaterDisplay(tracks,detections,tracker);
end

The track is initialized using a high covariance in range to account for the missing measurement.
Notice the covariance in range of the track just after initialization in the theater plot. As angular
estimates are fairly accurate, the target uncertainty is described by a thin covariance ellipse.

showGrabs(theaterDisplay,1);

6 Featured Examples

6-242

The following figure shows the filter performance after the sensor starts maneuvering in the scenario.
The range and range-rate estimate plots are created using errorbar and show the (standard
deviation) bounds of the track's estimate.

showGrabs(theaterDisplay,2);

 Passive Ranging Using a Single Maneuvering Sensor

6-243

Stability of EKF in Cartesian Coordinates

Tracking in Cartesian coordinates using an extended Kalman filter is appealing due to the ease of
problem formulation. The state dynamics are represented by a set of linear equations and the non-
linearities are embedded using two (relatively) simple equations for azimuth and elevation.

That said, the behavior of the extended Kalman filter is shown to be erratic and can often be unstable.
This is because the states (position and velocity) and unobservable range are highly coupled. When
range is unobservable, i.e., during the constant velocity phase of the sensing platform motion, the
filter "falsely" estimates the range of the target depending on the history of measurement and
associated noise values. This can result in a premature collapse of the covariance ellipse, which can
cause the filter to take a very long time to converge (or even diverge) [2] even after sufficient
observability conditions are met.

Use a different random seed to observe premature convergence of an extended Kalman filter in
Cartesian coordinates.

% set random seed
rng(2015);

6 Featured Examples

6-244

% Reset the theaterDisplay to capture snapshots with new scenario.
release(theaterDisplay);
theaterDisplay.GrabFigureFcn = @(fig,scene)helperGrabPassiveRangingDisplay(fig,scene,'CartEKF2');
helperRunPassiveRangingSimulation(scene,theaterDisplay,@initCartesianEKF);

After 2 seconds, the covariance in the range has already collapsed, making the filter falsely confident
about its estimate of the range. Notice that target lies outside the covariance ellipse of the track's
state and so does the zero-error line in the range estimation plot.

showGrabs(theaterDisplay,3);

Because the filter remains confident about it estimate of the range, it takes much longer to converge
closer to actual range values.

showGrabs(theaterDisplay,4);

 Passive Ranging Using a Single Maneuvering Sensor

6-245

Track Using an EKF in Modified Spherical Coordinates (MSC-EKF)

The modified spherical coordinates (MSC) present a stable coordinate system for tracking using
angle-only measurements. By decoupling the state into observable and unobservable parts, the filter
overcomes the limitations imposed by the EKF in Cartesian coordinates. The state in modified
spherical coordinates is defined in a relative manner i.e. [target - observer] and hence an input from
the observer is required to predict the state in future. This can be seen in the following equations
where higher order terms refer to observer motion not captured by a constant velocity model.

% Set the same random seed to compare with the same detections
rng(2015);

6 Featured Examples

6-246

% restart the scene
restart(scene);
release(theaterDisplay);
theaterDisplay.GrabFigureFcn = @(fig,scene)helperGrabPassiveRangingDisplay(fig,scene,'MSCEKF');

[tem, tam] = helperPassiveRangingErrorMetrics(ownship,true);
theaterDisplay.ErrorMetrics = tem;

% Create a tracker using |trackerGNN| and MSC-EKF filter initialization.
tracker = trackerGNN('FilterInitializationFcn',@initMSCEKF,...
 'AssignmentThreshold',50);

% The tracks carry a state which is non-linearly dependent on position.
% Inform the theaterDisplay that tracks have non-linear state and position
% can be extracted using a function_handle.
theaterDisplay.HasNonLinearState = true;
theaterDisplay.NonLinearTrackPositionFcn = @getTrackPositionsMSC;

% Initialization for MSC-EKF.
prevPose = pose(ownship,'true');
lastCorrectionTime = 0;
allTracks = [];

% Advance scenario, simulate detections and track
while advance(scene)

 time = scene.SimulationTime;
 truths = platformPoses(scene);

 % Generate detections from ownship
 detections = detect(ownship,time);

 % Update the input from the ownship i.e. it's maneuver since last
 % correction time.
 currentPose = pose(ownship,'true');
 dT = time - lastCorrectionTime;
 observerManeuver = calculateManeuver(currentPose,prevPose,dT);

 for i = 1:numel(allTracks)
 % Set the ObserverInput property using |setTrackFilterProperties|
 % function of the tracker
 setTrackFilterProperties(tracker,allTracks(i).TrackID,'ObserverInput',observerManeuver);
 end

 % Pass detections to tracker
 if ~isempty(detections)
 lastCorrectionTime = time;
 % Store the previous pose to calculate maneuver
 prevPose = currentPose;
 [tracks,~,allTracks] = tracker(detections,time);
 elseif isLocked(tracker)
 tracks = predictTracksToTime(tracker,'confirmed',time);
 end

 % Update error and assignment metrics
 tam(tracks,truths);
 [trackIDs, truthIDs] = currentAssignment(tam);
 tem(tracks,trackIDs,truths,truthIDs);

 Passive Ranging Using a Single Maneuvering Sensor

6-247

 % Update display
 theaterDisplay.NonLinearStateInput = currentPose.Position(:);
 theaterDisplay(detections,tracks,tracker);
end

The MSC-EKF tries to maintain the covariance in range till the sensor has not made a maneuver. This
is essentially due to decoupled observable and unobservable parts in the state.

showGrabs(theaterDisplay,5);

The filter converges closer to true values faster than the EKF in Cartesian coordinates and the
bounds provide a true, unbiased estimate of the error.

showGrabs(theaterDisplay,6);

6 Featured Examples

6-248

Track Using a Range-Parameterized MSC-EKF

The MSC-EKF approach uses linearization techniques to project covariances in the prediction step.
The covariance in range at initialization is typically high and the state transition dynamics is highly
non-linear, which can cause issues with filter convergence.

This section demonstrates the use of a Gaussian-sum filter, trackingGSF, to describe the state with
a bank of filters, each initialized at different range assumptions. This technique is commonly termed
as range-parameterization [3].

% Set random seed
rng(2015);

% restart the scene
restart(scene);
release(theaterDisplay);
theaterDisplay.GrabFigureFcn = @(fig,scene)helperGrabPassiveRangingDisplay(fig,scene,'MSCRPEKF');

% Create error and assignment metrics.
[tem, tam] = helperPassiveRangingErrorMetrics(ownship,true);
theaterDisplay.ErrorMetrics = tem;

 Passive Ranging Using a Single Maneuvering Sensor

6-249

% Create a tracker using |trackerGNN| and range-parameterized MSC-EKF
% filter initialization.
tracker = trackerGNN('FilterInitializationFcn',@initMSCRPEKF,...
 'AssignmentThreshold',50);

theaterDisplay.HasNonLinearState = true;
theaterDisplay.NonLinearTrackPositionFcn = @getTrackPositionsMSC;

% Initialization for MSC-RPEKF
prevPose = pose(ownship,'true');
lastCorrectionTime = 0;
allTracks = [];

% Advance scenario, simulate detections and track
while advance(scene)

 time = scene.SimulationTime;
 truths = platformPoses(scene);

 % Generate detections from ownship
 detections = detect(ownship,time);

 % Update the input from the ownship i.e. it's maneuver since last
 % correction time.
 currentPose = pose(ownship,'true');
 dT = time - lastCorrectionTime;
 observerManeuver = calculateManeuver(currentPose,prevPose,dT);

 % Get each filter from the trackingGSF property TrackingFilters using
 % the |getTrackFilterProperties| function of the tracker.
 for i = 1:numel(allTracks)
 trackingFilters = getTrackFilterProperties(tracker,allTracks(i).TrackID,'TrackingFilters');
 % Set the ObserverInput for each tracking filter
 for m = 1:numel(trackingFilters{1})
 trackingFilters{1}{m}.ObserverInput = observerManeuver;
 end
 end

 % Pass detections to tracker
 if ~isempty(detections)
 lastCorrectionTime = time;
 % Store the previous pose to calculate maneuver
 prevPose = currentPose;
 [tracks,~,allTracks] = tracker(detections,time);
 elseif isLocked(tracker)
 tracks = predictTracksToTime(tracker,'confirmed',time);
 end

 % Update error and assignment metrics
 tam(tracks,truths);
 [trackIDs, truthIDs] = currentAssignment(tam);
 tem(tracks,trackIDs,truths,truthIDs);

 % Update display
 theaterDisplay.NonLinearStateInput = currentPose.Position(:);
 theaterDisplay(detections,tracks,tracker);
end

6 Featured Examples

6-250

The following figures show the range-parameterized filter after track is initialized and the tracking
performance of the filter. The range-parameterization process allows each filter to carry a relatively
small covariance in range and hence is less susceptible to linearization issues. The time-to-converge
for range-parametrized filter in this scenario is similar to the MSC-EKF. However, the filter
demonstrated less transient behavior as the sensor moves into the second major maneuvering phase
of the trajectory, i.e., 35 to 40 seconds into simulation. Notice, the MSC-EKF range estimation plot
above, which produced an error of 10+ km in range. The estimation error was about 5 km for the
range-parametrized filter.

showGrabs(theaterDisplay,[7 8]);

 Passive Ranging Using a Single Maneuvering Sensor

6-251

Close displays

showGrabs(theaterDisplay,[]);

Multi-Target Scenarios

The demonstrated approach using MSC-EKF and range-parameterized MSC-EKF is applicable for
more than 1 target. To observe each target, the sensor must out-maneuver each one of them. As
filters like MSC-EKF can maintain range-covariance during non-maneuvering stages, each track's
estimate should converge closer to the targets as the sensor makes maneuvers with respect to them.

MSC-EKF

% Set random seed
rng(2015);

% Create a two-target scenario and theater display.
[sceneTwo,~,theaterDisplayTwo] = helperCreatePassiveRangingScenario(2);

% Use the helper function to run the simulation using @initMSCEKF.
helperRunPassiveRangingSimulation(sceneTwo,theaterDisplayTwo,@initMSCEKF);

6 Featured Examples

6-252

% Show results
showGrabs(theaterDisplayTwo,1);

Range-parameterized MSC-EKF

% Set random seed
rng(2015);
release(theaterDisplayTwo);

% Run the simulation using range-parameterized MSC-EKF
helperRunPassiveRangingSimulation(sceneTwo,theaterDisplayTwo,@initMSCRPEKF);

% Show results
showGrabs(theaterDisplayTwo,2);

rmpath(exPath);

 Passive Ranging Using a Single Maneuvering Sensor

6-253

Summary

This example illustrates the challenges associated with single-sensor angle-only tracking problem and
demonstrates how to use different tracking algorithms to estimate target's range and range-rate. You
learned how to use initcvekf, initcvmscekf and trackingGSF to define customized Cartesian-
EKF, MSC-EKF and range-parameterized MSC-EKF for passive ranging. You also learned how to use
the defined filters with a GNN tracker, trackerGNN.

Supporting Functions

Filter initialization Functions

The following section lists all the FilterInitializationFcn used for the trackerGNN object in
this Example.

initCartesianEKF Initialize trackingEKF from an angle-only detection

function filter = initCartesianEKF(detection)

% Create a full detection with high covariance in range estimate.
rangeEstimate = 5e4;

6 Featured Examples

6-254

rangeCov = 16e8;
fullDetection = detection;
fullDetection.Measurement = [fullDetection.Measurement;rangeEstimate];
fullDetection.MeasurementNoise = blkdiag(fullDetection.MeasurementNoise,rangeCov);

% Update the MeasurementParameters to include range.
fullDetection.MeasurementParameters(1).HasRange = true;

% Use the initcvekf function to initialize a trackingEKF using the
% fullDetection.
fullFilter = initcvekf(fullDetection);

% |initcvekf| defines the StateCovariance in velocity with 100. This
% defines a standard deviation uncertainty in velocity as 10 m/s. Scale
% the velocity covariance with 400 i.e. an equivalent velocity standard
% deviation of 200 m/s
velCov = fullFilter.StateCovariance(2:2:end,2:2:end);
fullFilter.StateCovariance(2:2:end,2:2:end) = 400*velCov;

% fullFilter can only be corrected with [az el r] measurements.
% Create a |trackingEKF| using the State and StateCovariance from
% fullFilter.
filter = trackingEKF(@constvel,@cvmeas,fullFilter.State,...
 'StateCovariance',fullFilter.StateCovariance,...
 'StateTransitionJacobianFcn',@constveljac,...
 'MeasurementJacobianFcn',@cvmeasjac,...
 'HasAdditiveProcessNoise',false);

% Unit standard deviation acceleration noise
filter.ProcessNoise = eye(3);

end

initMSCEKF Initialize a MSC-EKF from an angle-only detection

function filter = initMSCEKF(detection)
% Use the second input of the |initcvmscekf| function to provide an
% estimate of range and standard deviation in range.
rangeEstimate = 5e4;
rangeSigma = 4e4;
filter = initcvmscekf(detection,[rangeEstimate,rangeSigma]);
% The initcvmscekf assumes a velocity standard deviation of 10 m/s, which
% is linearly transformed into azimuth rate, elevation rate and vr/r.
% Scale the velocity covariance by 400 to specify that target can move 20
% times faster.
filter.StateCovariance(2:2:end,2:2:end) = 400*filter.StateCovariance(2:2:end,2:2:end);
filter.ProcessNoise = eye(3);
end

initMSCRPEKF Initialize a range-parameterized MSC-EKF from an angle-only detection

function filter = initMSCRPEKF(detection)
% A range-parameterized MSC-EKF can be defined using a Gaussian-sum filter
% (trackingGSF) containing multiple |trackingMSCEKF| as TrackingFilters.

% Range-parametrization constants
rMin = 3e4;
rMax = 8e4;

 Passive Ranging Using a Single Maneuvering Sensor

6-255

numFilters = 10;
rho = (rMax/rMin)^(1/numFilters);
Cr = 2*(rho - 1)/(rho + 1)/sqrt(12);
indFilters = cell(numFilters,1);
for i = 1:numFilters
 range = rMin/2*(rho^i + rho^(i-1));
 rangeSigma = Cr*range;
 % Use initcvmscekf function to create a trackingMSCEKF with provided
 % range and rangeSigma.
 indFilters{i} = initcvmscekf(detection,[range rangeSigma]);
 % Update the velocity covariance of each filter.
 indFilters{i}.StateCovariance(2:2:end,2:2:end) = 400*indFilters{i}.StateCovariance(2:2:end,2:2:end);
end
filter = trackingGSF(indFilters);

end

Utility functions calculateManeuver

function maneuver = calculateManeuver(currentPose,prevPose,dT)
% Calculate maneuver i.e. 1st order+ motion of the observer. This is
% typically obtained using sensors operating at much higher rate.
v = prevPose.Velocity;
prevPos = prevPose.Position;
prevVel = prevPose.Velocity;
currentPos = currentPose.Position;
currentVel = currentPose.Velocity;

% position change apart from constant velocity motion
deltaP = currentPos - prevPos - v*dT;
% Velocity change
deltaV = currentVel - prevVel;

maneuver = zeros(6,1);
maneuver(1:2:end) = deltaP;
maneuver(2:2:end) = deltaV;
end

getTrackPositionsMSC

function [pos,cov] = getTrackPositionsMSC(tracks,observerPosition)

if isstruct(tracks) || isa(tracks,'objectTrack')
 % Track struct
 state = [tracks.State];
 stateCov = cat(3,tracks.StateCovariance);
elseif isa(tracks,'trackingMSCEKF')
 % Tracking Filter
 state = tracks.State;
 stateCov = tracks.StateCovariance;
end

% Get relative position using measurement function.
relPos = cvmeasmsc(state,'rectangular');

% Add observer position
pos = relPos + observerPosition;
pos = pos';

6 Featured Examples

6-256

if nargout > 1
 cov = zeros(3,3,numel(tracks));

 for i = 1:numel(tracks)
 % Jacobian of position measurement
 jac = cvmeasmscjac(state(:,i),'rectangular');
 cov(:,:,i) = jac*stateCov(:,:,i)*jac';
 end
end

end

References

[1] Fogel, Eli, and Motti Gavish. "Nth-order dynamics target observability from angle measurements."
IEEE Transactions on Aerospace and Electronic Systems 24.3 (1988): 305-308.

[2] Aidala, Vincent, and Sherry Hammel. "Utilization of modified polar coordinates for bearings-only
tracking." IEEE Transactions on Automatic Control 28.3 (1983): 283-294.

[3] Peach, N. "Bearings-only tracking using a set of range-parameterised extended Kalman filters."
IEE Proceedings-Control Theory and Applications 142.1 (1995): 73-80.

 Passive Ranging Using a Single Maneuvering Sensor

6-257

Benchmark Trajectories for Multi-Object Tracking
This example shows how to generate and visualize trajectories of multiple aircraft using
trackingScenario and waypointTrajectory.

Introduction

The six aircraft trajectories modeled in this example are described in [1]. The aircraft fly in an
arrangement intended to be received by a radar located at the origin.

Choice of Interpolant

Conceptually speaking, a trajectory is a curve through space which an object travels as a function of
time. To define the curve, you may think of a curve through space that passes through a set of points
called waypoints connected by an interpolating function called an interpolant. An interpolant allows
you to define the path between waypoints via a continuous function. Common interpolants are
polynomial based (for example, piecewise linear or cubic splines). For a rapidly changing trajectory,
more waypoints are required to keep the interpolated curve as close to the true curve as possible;
however, we can reduce the number of required points by choosing interpolants carefully.

Many motion models used in track filters consist of "constant velocity," "constant turn," or "constant
acceleration" profiles. To accommodate these motion models, the interpolant used in the
waypointTrajectory object is based on a piecewise clothoid spline (horizontally) and a cubic
spline (vertically). The curvature of a clothoid spline varies linearly with respect to distance traveled;
this lets us model straight and constant turns with ease, having one extra degree of freedom to
transition smoothly between straight and curved segments. Similarly, objects in the air experience the
effects of gravity, following a parabolic (quadratic) path. Having a cubic spline to model vertical
elevation allows us to model the path with a similar extra degree of freedom.

Once the physical path through space of an object is known (and set), the speed of the object as a
function of distance traveled is determined via cubic Hermite interpolation. This is useful for
modeling trajectories of objects that accelerate through turns or straight segments.

The benchmark trajectories we are using consist of straight, constant-g turns, and turns with
acceleration.

Waypoint Construction

The following file contains tables of waypoints and velocities (in units of meters and meters per
second) that can be used to reconstruct six aircraft trajectories. Load it into MATLAB and examine
the table containing the first trajectory.

load('benchmarkTrajectoryTables.mat', 'trajTable');
trajTable{1}

ans =

 14x3 table

 Time Waypoints Velocities
 _____ _________________________ _____________________________

 0 72947 29474 -1258 -258.9 -129.69 0
 60 57413 21695 -1258 -258.9 -129.66 0

6 Featured Examples

6-258

 62 56905 21417 -1258 -245.3 -153.89 0
 78.1 54591 17566 -1258 -20.635 -288.86 0
 80 54573 17016 -1258 -2.8042 -289.59 0
 83 54571 16147 -1258 -0.061 -289.56 0
 110 54571 8329 -1258 0 -289.56 0
 112.7 54634 7551.5 -1258 58.979 -283.56 0
 120 55718 5785.5 -1258 226.41 -180.59 0
 129 58170 5172.8 -1258 284.74 52.88 0
 132 59004 5413.9 -1258 274.26 93.05 0
 137.8 60592 5962.2 -1258 273.62 94.76 0
 147.8 63328 6909.9 -1258 273.62 94.76 0
 185 73508 10435 -1258 273.62 94.76 0

Scenario Generation

The table contains a set of waypoints and velocities that the aircraft passes through at the
corresponding time.

To use the control points, you can create a scenario with six platforms and assign a trajectory to each:

scene = trackingScenario('UpdateRate',10);

for n=1:6
 plat = platform(scene);
 traj = trajTable{n};
 plat.Trajectory = waypointTrajectory(traj.Waypoints, traj.Time, 'Velocities', traj.Velocities);
end

Trajectory Visualization

Once you have the scenario and plotter set up, you can set up a theaterPlot to create an animated
view of the locations of the aircraft as time progresses.

helperPlot = helperBenchmarkPlotter(numel(scene.Platforms));

while advance(scene)
 % extract the pose of each of the six aircraft
 poses = platformPoses(scene);

 % update the plot
 update(helperPlot, poses, scene.SimulationTime);
end

 Benchmark Trajectories for Multi-Object Tracking

6-259

The trajectories plotted above are three-dimensional. You can rotate the plot so that the elevation of
the trajectories is readily visible. You can use the view and axis commands to adjust the plot.
Because the trajectories use a NED (north-east-down) coordinate system, elevation above ground has
a negative z component.

view(60,10);
axis square
grid minor
set(gca,'ZDir','reverse');

6 Featured Examples

6-260

Trajectory 1

It may be instructive to view the control points used to generate the trajectories. The following figure
shows the first trajectory, which is representative of a large aircraft.

The control points used to construct the path are plotted on the leftmost plot. Only a few waypoints
are needed to mark the changes in curvature as the plane takes a constant turn.

The plots on the right show the altitude, magnitude of velocity (speed), and magnitude of
acceleration, respectively. The speed stays nearly constant throughout despite the abrupt change in
curvature. This is an advantage of using the clothoid interpolant.

[time, position, velocity, acceleration] = cumulativeHistory(helperPlot);
helperTrajectoryViewer(1, time, position, velocity, acceleration, trajTable);

 Benchmark Trajectories for Multi-Object Tracking

6-261

Trajectory 2

The second trajectory, shown below, represents the trajectory of a small maneuverable aircraft. It
consists of two turns, having several changes in acceleration immediately after the first turn and
during the second turn. More waypoints are needed to adjust for these changes, however the rest of
the trajectory requires fewer points.

helperTrajectoryViewer(2, time, position, velocity, acceleration, trajTable);

6 Featured Examples

6-262

Trajectory 3

The third trajectory, shown below is representative of a higher speed aircraft. It consists of two
constant turns, where the aircraft decelerates midway throughout the second turn. You can see the
control points that were used to mark the changes in velocity and acceleration in the x-y plot on the
left.

helperTrajectoryViewer(3, time, position, velocity, acceleration, trajTable);

 Benchmark Trajectories for Multi-Object Tracking

6-263

Trajectory 4

The fourth trajectory, also representative of a higher speed aircraft, is shown below. It consists of two
turns, where the aircraft accelerates and climbs to a higher altitude.

helperTrajectoryViewer(4, time, position, velocity, acceleration, trajTable);

6 Featured Examples

6-264

Trajectory 5

The fifth trajectory is representative of a maneuverable high-speed aircraft. It consists of three
constant turns; however it accelerates considerably throughout the duration of the flight. After the
third turn the aircraft ascends to a level flight.

helperTrajectoryViewer(5, time, position, velocity, acceleration, trajTable);

 Benchmark Trajectories for Multi-Object Tracking

6-265

Trajectory 6

The sixth trajectory is also representative of a maneuverable high-speed aircraft. It consists of four
turns. After the second turn the aircraft decreases altitude and speed and enters the third turn. After
the third turn it accelerates rapidly and enters the fourth turn, continuing with straight and level
flight.

helperTrajectoryViewer(6, time, position, velocity, acceleration, trajTable);

6 Featured Examples

6-266

Summary

This example shows how to use waypointTrajectory and trackingScenario to create a multi-
object tracking scenario. In this example you learned the concepts behind the interpolant used inside
waypointTrajectory and were shown how a scenario could be reproduced with a small number of
waypoints.

Reference

1 W.D. Blair, G. A. Watson, T. Kirubarajan, Y. Bar-Shalom, "Benchmark for Radar Allocation and
Tracking in ECM." Aerospace and Electronic Systems IEEE Trans on, vol. 34. no. 4. 1998

 Benchmark Trajectories for Multi-Object Tracking

6-267

Tracking with Range-Only Measurements
This example illustrates the use of particle filters and Gaussian-sum filters to track a single object
using range-only measurements.

Introduction

Sensors that can only observe range information cannot provide a complete understanding of the
object's state from a single detection. In addition, the uncertainty of a range-only measurement, when
represented in a Cartesian coordinate frame, is non-Gaussian and creates a concave shape. For
range-only sensors with a narrow field of view (FOV), the angular uncertainty is small and can be
approximated by an ellipsoid, that is, a Gaussian distribution. However, for range-only sensors with a
wide FOV, the uncertainty, when represented in a Cartesian frame, is described by a concave ring
shape, which cannot be easily approximated by an ellipsoid. This is illustrated in the image shown
below.

This phenomenon is also observed with long-range radars, which provide both azimuth and range
information. When the FOV of each azimuth resolution cell spans a large region in space, the
distribution of state becomes non-Gaussian. Techniques like long-range corrections are often
employed to make use of Gaussian filters like extended Kalman filters (trackingEKF) and Unscented
Kalman filters (trackingUKF) in those scenarios. This is demonstrated in detail in the “Multiplatform
Radar Detection Fusion” on page 6-202 example.

In this example, you will learn how to use a particle filter and a Gaussian-sum filter to represent the
non-Gaussian uncertainty in state caused by range measurements from large FOV sensors.

Define Scenario

The scenario models a single object traveling at a constant velocity in the X-Y plane. The object
crosses through the coverage areas of three equally spaced sensors, with FOV of 60 degrees in
azimuth. The sensors FOV overlap, which enhances observability when the object crosses through the
overlapping regions. Each sensor reports range measurement with a measurement accuracy of 5
centimeters.

s = rng;
rng(2018);
exPath = fullfile(matlabroot,'examples','fusion','main');
addpath(exPath);
[scene,theaterDisplay] = helperCreateRangeOnlySensorScenario;
showScenario(theaterDisplay)

6 Featured Examples

6-268

showGrabs(theaterDisplay,[]);

Track Using a Particle Filter

In this section, a particle filter, trackingPF is used to track the object. The tracking is performed by
a single-hypothesis tracker using trackerGNN. The tracker is responsible for maintaining the track
while reducing the number of false alarms.

The function initRangeOnlyCVPF initializes a constant velocity particle filter. The function is similar
to the initcvpf function, but limits the angles from [-180 180] in azimuth and [-90 90] in elevation
for initcvpf to the known sensor FOV in this problem.

% Tracker
tracker = trackerGNN('FilterInitializationFcn',@initRangeOnlyCVPF,'MaxNumTracks',5);

% Update display to plot particle data
theaterDisplay.FilterType = 'trackingPF';

 Tracking with Range-Only Measurements

6-269

% Advance scenario and track object
while advance(scene)
 % Current time
 time = scene.SimulationTime;

 % Generate detections
 [detections, configs] = generateRangeDetections(scene);

 % Pass detections to tracker
 if ~isempty(detections)
 [confTracks,~,allTracks] = tracker(detections,time);
 elseif isLocked(tracker)
 confTracks = predictTracksToTime(tracker,'confirmed',time);
 end

 % Update display
 theaterDisplay(detections,configs,confTracks,tracker);
end

Notice that the particles carry a non-Gaussian uncertainty in state along the arc of range-only
measurement till the target gets detected by the next sensor. As the target moves through the
boundaries of the sensor coverage areas, the likelihood of particles at the boundary increases as
compared to other particles. This increase in likelihood triggers a resampling step in the particle
filter and the particles collapse to the true target location.

showGrabs(theaterDisplay,[1 2]);

6 Featured Examples

6-270

Using the particle filter, the tracker maintains the track for the duration of the scenario.

showGrabs(theaterDisplay,3);

 Tracking with Range-Only Measurements

6-271

Track Using a Gaussian-Sum Filter

In this section, a Gaussian-sum filter, trackingGSF, is used to track the object. For range-only
measurements, you can initialize a trackingGSF using initapekf. The initapekf function
initializes an angle-parameterized extended Kalman filter. The function initRangeOnlyGSF defined
in this example modifies the initapekf function to track slow moving objects.

% restart scene
restart(scene);
release(theaterDisplay);

% Tracker
tracker = trackerGNN('FilterInitializationFcn',@initRangeOnlyGSF);

% Update display to plot Gaussian-sum components
theaterDisplay.FilterType = 'trackingGSF';

while advance(scene)
 % Current time
 time = scene.SimulationTime;

6 Featured Examples

6-272

 % Generate detections
 [detections, configs] = generateRangeDetections(scene);

 % Pass detections to tracker
 if ~isempty(detections)
 [confTracks,~,allTracks] = tracker(detections,time);
 elseif isLocked(tracker)
 confTracks = predictTracksToTime(tracker,'confirmed',time);
 end

 % Update display
 theaterDisplay(detections,configs,confTracks,tracker);
end

You can use the TrackingFilters property of the trackingGSF to see the state of each extended
Kalman filter. Represented by "Individual Filters" in the next figure, notice how the filters are aligned
along the arc generated by range-only measurement until the target reaches the overlapping region.
Immediately after crossing the boundary, the likelihood of the filter at the boundary increases and the
track converges to that individual filter. The weight, ModelProbabilities, of other individual
filters drop as compared to the one closest to the boundary, and their contribution to the estimation of
state reduces.

showGrabs(theaterDisplay,[4 5]);

 Tracking with Range-Only Measurements

6-273

Using the Gaussian-sum filter, the tracker maintains the track during for the duration of the scenario.

showGrabs(theaterDisplay,6);
rng(s)
rmpath(exPath);

6 Featured Examples

6-274

Summary

In this example, you learned how to use a particle filter and a Gaussian-sum filter to track an object
using range-only measurements. Both particle filters and Gaussian-sum filters offer capabilities to
track objects that follow a non-Gaussian state distribution. While the Gaussian-sum filter
approximates the distribution by a weighted sum of Gaussian-components, a particle filter represents
this distribution by a set of samples. The particle filter offers a more natural approach to represent
any arbitrary distribution as long as samples can be generated from it. However, to represent the
distribution perfectly, a large number of particles may be required, which increases computational
requirements of using the filter. As state is described by samples, a particle filter architecture allows
using any process noise distribution as well as measurement noise. In contrast, the Gaussian-sum
filter uses a Gaussian process and measurement noise for each component. One of the major
shortcoming of particles is the problem of "sample impoverishment". After resampling, the particles
may collapse to regions of high likelihood, not allowing the filter to recover from an "incorrect"
association. As no resampling is performed in Gaussian-sum filter and each state is Gaussian, the
Gaussian-sum filters offers some capability to recover from such an association. However, this
recovery is often dependent on the weights and covariances of each Gaussian-component.

 Tracking with Range-Only Measurements

6-275

Supporting Functions

generateRangeDetections This function generates range-only detection

function [detections,config] = generateRangeDetections(scene)
detections = [];
config = [];
time = scene.SimulationTime;
for i = 1:numel(scene.Platforms)
 [thisDet, thisConfig] = detectOnlyRange(scene.Platforms{i},time);
 config = [config;thisConfig]; %#ok<AGROW>
 detections = [detections;thisDet]; %#ok<AGROW>
end
end

detectOnlyRange This function remove az and el from a spherical detection

function [rangeDetections,config] = detectOnlyRange(observer,time)
 [fullDetections,numDetections,config] = detect(observer,time);
 for i = 1:numel(config)
 % Populate the config correctly for plotting
 config(i).FieldOfView = observer.Sensors{i}.FieldOfView;
 config(i).MeasurementParameters(1).OriginPosition = observer.Sensors{i}.MountingLocation(:);
 config(i).MeasurementParameters(1).Orientation = rotmat(quaternion(observer.Sensors{i}.MountingAngles(:)','eulerd','ZYX','frame'),'frame');
 config(i).MeasurementParameters(1).IsParentToChild = true;
 end

 % Remove all except range information
 rangeDetections = fullDetections;
 for i = 1:numDetections
 rangeDetections{i}.Measurement = rangeDetections{i}.Measurement(end);
 rangeDetections{i}.MeasurementNoise = rangeDetections{i}.MeasurementNoise(end);
 rangeDetections{i}.MeasurementParameters(1).HasAzimuth = false;
 rangeDetections{i}.MeasurementParameters(1).HasElevation = false;
 end
end

initRangeOnlyGSF This function initializes an angle-parameterized Gaussian-sum filter. It uses
angle limits of [-30 30] to specify FOV and sets the number of filters as 10. It also modifies the state
covariance and process noise for slow moving object in 2-D.

function filter = initRangeOnlyGSF(detection)
filter = initapekf(detection,10,[-30 30]);
for i = 1:numel(filter.TrackingFilters)
 filterK = filter.TrackingFilters{i};
 filterK.ProcessNoise = 0.01*eye(3);
 filterK.ProcessNoise(3,3) = 0;
 % Small covariance for slow moving targets
 filterK.StateCovariance(2,2) = 0.1;
 filterK.StateCovariance(4,4) = 0.1;
 % Low standard deviation in z as v = 0;
 filterK.StateCovariance(6,6) = 0.01;
end
end

initRangeOnlyCVPF This function initializes a constant velocity particle filter with particles limited
to the FOV of [-30 30].

6 Featured Examples

6-276

function filter = initRangeOnlyCVPF(detection)
filter = initcvpf(detection);

% Uniform az in FOV
az = -pi/6 + pi/3*rand(1,filter.NumParticles);
% no elevation;
el = zeros(1,filter.NumParticles);
% Samples of range from Gaussian range measurement
r = detection.Measurement + sqrt(detection.MeasurementNoise)*randn(1,filter.NumParticles);

% x,y,z in sensor frame
[x,y,z] = sph2cart(az,el,r);

% Rotate from sensor to scenario frame.
senToPlat = detection.MeasurementParameters(1).Orientation';
senPosition = detection.MeasurementParameters(1).OriginPosition;
platToScenario = detection.MeasurementParameters(2).Orientation';
platPosition = detection.MeasurementParameters(2).OriginPosition;
posPlat = senToPlat*[x;y;z] + senPosition;
posScen = platToScenario*posPlat + platPosition;

% Position particles
filter.Particles(1,:) = posScen(1,:);
filter.Particles(3,:) = posScen(2,:);
filter.Particles(5,:) = posScen(3,:);

% Velocity particles
% uniform distribution
filter.Particles([2 4],:) = -1 + 2*rand(2,filter.NumParticles);

% Process Noise is set to a low number for slow moving targets. Larger than
% GSF to add more noise to particles preventing them from collapsing.
filter.ProcessNoise = 0.1*eye(3);

% Zero z-velocity
filter.Particles(6,:) = 0;
filter.ProcessNoise(3,3) = 0;
end

 Tracking with Range-Only Measurements

6-277

Adaptive Tracking of Maneuvering Targets with Managed Radar
This example shows how to use radar resource management to efficiently track multiple maneuvering
targets. Tracking maneuvering targets requires the radar to revisit the targets more frequently than
tracking non-maneuvering targets. An interacting multiple model (IMM) filter estimates when the
target is maneuvering. This estimate helps to manage the radar revisit time and therefore enhances
the tracking. This example uses the Radar Toolbox™ for the radar model and Sensor Fusion and
Tracking Toolbox™ for the tracking.

Introduction

Multifunction radars can search for targets, confirm new tracks, and revisit tracks to update the
state. To perform these functions, a multifunction radar is often managed by a resource manager that
creates radar tasks for search, confirmation, and tracking. These tasks are scheduled according to
priority and time so that, at each time step, the multifunction radar can point its beam in a desired
direction. The “Search and Track Scheduling for Multifunction Phased Array Radar” (Radar Toolbox)
example shows a multifunction phased-array radar managed with a resource manager.

In this example, we extend the “Search and Track Scheduling for Multifunction Phased Array Radar”
(Radar Toolbox) example to the case of multiple maneuvering targets. There are two conflicting
requirements for a radar used to track maneuvering targets:

1 The number of targets and their initial location are typically not known in advance. Therefore,
the radar must continuously search the area of interest to find the targets. Also, the radar needs
to detect and establish a track on each target as soon as it enters the radar coverage area.

2 The time period of target maneuvering is unknown in advance. If it is known that targets are not
maneuvering, the radar can revisit the targets infrequently. However, since the maneuver start
and end times are unknown, the radar must revisit each track frequently enough to be able to
recognize when the maneuver starts and ends.

The radar must balance between providing enough beams centered on the tracked targets and
leaving enough time to search for new targets. One approach is to simply define a revisit rate on each
tracked target regardless of its maneuvering status and leave the remaining time for new target
searching. This radar management scheme is sometimes referred to as Active Tracking [1]. As more
targets become tracked, the radar can either perform fewer search tasks or it can track each target
less frequently. Clearly, if the number of targets is large, the radar can be overwhelmed.

Active tracking treats all the tracks in the same way, which makes it a mode-based resource
management algorithm. A more sophisticated way to manage the radar is based on the properties of
each track. For example, use track properties such as the size of state uncertainty covariance,
whether the track is maneuvering, and how fast it is moving towards an asset the radar site protects.
When such properties are used, the radar resource management is referred to as Adaptive Tracking
[1].

In this example, you compare the results of Active Tracking and Adaptive Tracking when the radar
adapts based on estimated track maneuver.

Define Scenario and Radar Model

You define a scenario and a radar with an update rate of 20 Hz, which means that the radar has 20
beams per second allocated for either search, confirmation, or tracking. You load the benchmark
trajectories used in the “Benchmark Trajectories for Multi-Object Tracking” on page 6-258 example.
There are six benchmark trajectories and you define a trajectory for each one. The six platforms in

6 Featured Examples

6-278

the figure follow non-maneuvering legs interspersed with maneuvering legs. You can view the
trajectories in the figure.

% Create scenario
updateRate = 20;
scenario = trackingScenario('UpdateRate',updateRate);
% Add the benchmark trajectories
load('BenchmarkTrajectories.mat','-mat');
platform(scenario,'Trajectory',v1Trajectory);
platform(scenario,'Trajectory',v2Trajectory);
platform(scenario,'Trajectory',v3Trajectory);
platform(scenario,'Trajectory',v4Trajectory);
platform(scenario,'Trajectory',v5Trajectory);
platform(scenario,'Trajectory',v6Trajectory);

% Create visualization
f = figure;
mp = uipanel('Parent',f,'Title','Theater Plot','FontSize',12,...
 'BackgroundColor','white','Position',[.01 .25 .98 .73]);
tax = axes(mp,'ZDir','reverse');

% Visualize scenario
thp = theaterPlot('Parent',tax,'AxesUnits',["km","km","km"],'XLimits',[0 85000],'YLimits',[-45000 70000],'ZLimits',[-10000 1000]);
plp = platformPlotter(thp, 'DisplayName', 'Platforms');
pap = trajectoryPlotter(thp, 'DisplayName', 'Trajectories', 'LineWidth', 1);
dtp = detectionPlotter(thp, 'DisplayName', 'Detections');
cvp = coveragePlotter(thp, 'DisplayName', 'Radar Coverage');
trp = trackPlotter(thp, 'DisplayName', 'Tracks', 'ConnectHistory', 'on', 'ColorizeHistory', 'on');
numPlatforms = numel(scenario.Platforms);
trajectoryPositions = cell(1,numPlatforms);
for i = 1:numPlatforms
 trajectoryPositions{i} = lookupPose(scenario.Platforms{i}.Trajectory,(0:0.1:185));
end
plotTrajectory(pap, trajectoryPositions);
view(tax,3)

 Adaptive Tracking of Maneuvering Targets with Managed Radar

6-279

A probabilistic radar model is defined using the radarDataGenerator System object™. Setting the
'ScanMode' property of this object to 'Custom' allows the resource manager to control the radar
look angle. This enables scheduling of the radar for searching, confirming, and tracking targets. The
radar is mounted on a new platform in the scenario.

radar = radarDataGenerator(1, ...
 'ScanMode', 'Custom', ...
 'UpdateRate', updateRate, ...
 'MountingLocation', [0 0 -15], ...
 'FieldOfView', [3;10], ...
 'AzimuthResolution', 1.5, ...
 'HasElevation', true, ...
 'DetectionCoordinates', 'Sensor spherical');
platform(scenario,'Position',[0 0 0],'Sensors',radar);

Define Tracker

After the radar detects objects, it feeds the detections to a tracker, which performs several
operations. The tracker maintains a list of tracks that are estimates of target states in the area of
interest. If a detection cannot be assigned to any track already maintained by the tracker, the tracker
initiates a new track. In most cases, whether the new track represents a true target or false target is
unclear. At first, a track is created with a tentative status. If enough detections are obtained, the
track becomes confirmed. Similarly, if no detections are assigned to a track, the track is coasted
(predicted without correction). If the track has a few missed updates, the tracker deletes the track.

In this example, you use a tracker that associates the detections to the tracks using a global nearest
neighbor (GNN) algorithm. To track the maneuvering targets, you define a

6 Featured Examples

6-280

FilterInitializationFcn function that initializes an IMM filter. The initMPARIMM function uses
two motion models: a constant-velocity model and a constant-turn rate model. The trackingIMM
filter is responsible for estimating the probability of each model, which you can access from its
ModelProbabilities property. In this example, you classify a target as maneuvering when the
probability of the constant-turn rate model is higher than 0.6.

tracker = trackerGNN('FilterInitializationFcn',@initMPARIMM,...
 'ConfirmationThreshold',[2 3], 'DeletionThreshold',[5 5],...
 'HasDetectableTrackIDsInput',true,'AssignmentThreshold',150,...
 'MaxNumTracks',10,'MaxNumSensors',1);
posSelector = [1 0 0 0 0 0; 0 0 1 0 0 0; 0 0 0 0 1 0];

Radar Resource Management

This section only briefly outlines the radar resource management. For more details, see the “Adaptive
Tracking of Maneuvering Targets with Managed Radar” (Radar Toolbox) example.

Search Tasks

In this example, you assign search tasks deterministically. A raster scan is used to cover the desired
airspace. The azimuth scanning limits are set to [-90 60] degrees and the elevation limits to [-9.9 0]
degrees. If no other tasks exist, the radar scans the space one angular cell at a time. The size of an
angular cell is determined by the radar's FieldOfView property. Negative elevation angles mean
that the radar points the beam from the horizon up.

AzimuthLimits = [-90 60];
ElevationLimits = [-9.9 0];
azscanspan = diff(AzimuthLimits);
numazscan = floor(azscanspan/radar.FieldOfView(1))+1;
azscanangles = linspace(AzimuthLimits(1),AzimuthLimits(2),numazscan)+radar.MountingAngles(1);
elscanspan = diff(ElevationLimits);
numelscan = floor(elscanspan/radar.FieldOfView(2))+1;
elscanangles = linspace(ElevationLimits(1),ElevationLimits(2),numelscan)+radar.MountingAngles(2);
[elscangrid,azscangrid] = meshgrid(elscanangles,azscanangles);
scanangles = [azscangrid(:) elscangrid(:)].';
searchq = struct('JobType','Search','BeamDirection',num2cell(scanangles,1),...
 'Priority',1000,'WaveformIndex',1);
current_search_idx = 1;

Track Tasks

Unlike search tasks, track tasks cannot be planned in advance. Instead, the resource manager creates
confirmation and tracking tasks based on the changing scenario. The main difference in this example
from the “Adaptive Tracking of Maneuvering Targets with Managed Radar” (Radar Toolbox) example
is that the JobType for each track task can be either "TrackNonManeuvering" or
"TrackManeuvering". The distinction between the two types of tracking tasks enables you to
schedule tasks for each type of track at different revisit rates, making it an adaptive tracking
algorithm. Similar to search tasks, tracking tasks are also managed in a job queue.

trackq = repmat(struct('JobType',[],'BeamDirection',[],'Priority',3000,'WaveformIndex',[],...
 'Time',[],'Range',[],'TrackID',[]), 10, 1);
num_trackq_items = 0;

Group search and tracking queues together in a structure for easier reference in the simulation loop.

jobq.SearchQueue = searchq;
jobq.SearchIndex = current_search_idx;

 Adaptive Tracking of Maneuvering Targets with Managed Radar

6-281

jobq.TrackQueue = trackq;
jobq.NumTrackJobs = num_trackq_items;
jobq.PositionSelector = posSelector;
% Keep a reset state of jobq
resetJobQ = jobq;

Task Scheduling

In this example, for simplicity, the multifunction radar executes only one type of job within a small
time period, often referred to as a dwell, but can switch tasks at the beginning of each dwell. For
each dwell, the radar looks at all tasks that are due for execution and picks a confirmation or track
task if its time to run has come. Otherwise, the radar picks a search task. To control the time to run
tasks, you set the managerPreferences structure defined below. The highest revisit rate, which is
equal to the radar update rate, is given to the confirm task to guarantee that a confirmation beam
follows every new tentative track that exists. Similarly, you can control the revisit rate for non-
maneuvering and maneuvering targets. In this case, you choose the values of 0.8 Hz and 4 Hz for
non-maneuvering and maneuvering targets, respectively. Since there are 6 targets, the resource
manager will use 6 ⋅ 0 . 8 ≈ 5 updates per second on tracking targets if all of them are not
maneuvering. Given the radar update rate is 20 Hz, the radar manager will perform approximately
one target update in every four updates. Thus, the radar will be spending about 75% of the time in
the search mode and 25% of the time in the tracking mode. When new tracks are initialized and when
the tracker considers that the targets are maneuvering, the resource manager allocates more
tracking beams at the expense of search beams.

The Analyze Results section shows the results of other options.

managerPreferences = struct(...
 'Type', {"Search","Confirm","TrackNonManeuvering","TrackManeuvering"}, ...
 'RevisitRate', {0, updateRate, 0.8, 4}, ...
 'Priority', {1000, 3000, 1500, 2500});

Run the Scenario

During the simulation, the radar beam is depicted by blue or purple colors representing search and
track-related beams, respectively. You can also see the distribution of tasks between search and
specific tracks for the last second of simulation using the Resource Allocation in the Last Second
panel at the bottom of the figure. In the Theater Plot part of the figure, you can see the history of
each track and compare it to the trajectory.

% Create a radar resource allocation display
rp = uipanel('Parent',f,'Title','Resource Allocation in the Last Second','FontSize',12,...
 'BackgroundColor','white','Position',[.01 0.01 0.98 0.23]);
rax = axes(rp);

% Run the scenario
allocationType = helperAdaptiveTrackingSim(scenario, thp, rax, tracker, resetJobQ, managerPreferences);

6 Featured Examples

6-282

Analyze Results

Analyze the radar task load and its division between search, confirmation, and tracking jobs. The
graph shows that most of the time the radar allocates about 75% search jobs and 25% tracking jobs,
which is as expected when the targets are not maneuvering. When the targets are maneuvering, the
resource manager adapts to allocate more tracking jobs. When more tracks are maneuvering at the
same time, there are more tracking jobs, as seen near the 700th time step. The confirmation jobs
occupy very little of the radar time because the tracker is configured to confirm tracks after two
detection associations in three attempts. Therefore, the confirmation or rejection of tentative tracks
is swift.

numSteps = numel(allocationType);
allocationSummary = zeros(3,numSteps);
for i = 1:numSteps
 for jobType = 1:3
 allocationSummary(jobType,i) = sum(allocationType(1,max(1,i-2*updateRate+1):i)==jobType)/min(i-1,2*updateRate);
 end
end
figure;
plot(1:numSteps,allocationSummary(:,1:numSteps))
title('Radar Allocation vs. Time Step');
xlabel('Time Step');
ylabel('Fraction of step in the last two seconds in each mode');
legend('Search','Confirmation','Tracking');
grid on

 Adaptive Tracking of Maneuvering Targets with Managed Radar

6-283

Compare this result with the result of Active Tracking at 0.8 Hz track revisit rate. The following
figures show the tracking results and radar allocation graph for the Active Tracking case. The
tracking results show that some tracks were lost and broken, but the radar resource allocation graph
shows a similar 75% search and 25% tracking task division as in the case of the Adaptive Tracking.
You can obtain these results by executing the code sample below.

clearData(plp);
clearData(dtp);
clearData(trp);
reset(tracker);
restart(scenario);

% Modify manager preferences to 1 Hz revisit rate for both non-maneuvering and maneuvering targets
managerPreferences = struct(...
 'Type', {"Search","Confirm","TrackNonManeuvering","TrackManeuvering"}, ...
 'RevisitRate', {0, updateRate, 0.8, 0.8}, ...
 'Priority', {1000, 3000, 1500, 2500});
% Run the scenario
allocationType = helperAdaptiveTrackingSim(scenario, thp, rax, tracker, resetJobQ, managerPreferences);

6 Featured Examples

6-284

 Adaptive Tracking of Maneuvering Targets with Managed Radar

6-285

Clearly, a higher tracking revisit rate is needed for Active Tracking. The following two graphs show
that increasing the track revisit rate to 2 Hz improves the tracking of maneuvering targets. However,
the cost is that the radar dedicates more than 50% of its time to tracking tasks even when the tracks
are not maneuvering. If the number of targets were greater, the radar would become overwhelmed.

6 Featured Examples

6-286

 Adaptive Tracking of Maneuvering Targets with Managed Radar

6-287

The previous results show that it is enough to revisit the maneuvering targets at a rate of 2 Hz.
However, can Adaptive Tracking be used to lower the revisit rate of non-maneuvering targets beyond
0.8 Hz? The following graphs present results for 0.6 Hz and 4 Hz for non-maneuvering and
maneuvering targets, respectively. With this setting, the radar resource allocation allows for
80%-85% of the time in search mode, leaving the radar with capacity to search and track even more
targets.

6 Featured Examples

6-288

 Adaptive Tracking of Maneuvering Targets with Managed Radar

6-289

Summary

This example shows how to use the combination of tracking and radar resource management to adapt
the revisit rate for maneuvering tracks. Adaptive tracking allows you to select revisit rate that is
appropriate for each target type and maneuvering status. As a result, the radar becomes more
efficient and can track a larger number of maneuvering targets.

References

[1] Charlish, Alexander, Folker Hoffmann, Christoph Degen, and Isabel Schlangen. “The Development
From Adaptive to Cognitive Radar Resource Management.” IEEE Aerospace and Electronic Systems
Magazine 35, no. 6 (June 1, 2020): 8–19. https://doi.org/10.1109/MAES.2019.2957847.

Supporting Functions

getCurrentRadarTask

Returns the radar task that is used for pointing the radar beam.

type('getCurrentRadarTask.m')

function [currentjob,jobq] = getCurrentRadarTask(jobq,current_time)

searchq = jobq.SearchQueue;
trackq = jobq.TrackQueue;
searchidx = jobq.SearchIndex;
num_trackq_items = jobq.NumTrackJobs;

% Update search queue index
searchqidx = mod(searchidx-1,numel(searchq))+1;

% Find the track job that is due and has the highest priority
readyidx = find([trackq(1:num_trackq_items).Time]<=current_time);
[~,maxpidx] = max([trackq(readyidx).Priority]);
taskqidx = readyidx(maxpidx);

% If the track job found has a higher priority, use that as the current job
% and increase the next search job priority since it gets postponed.
% Otherwise, the next search job due is the current job.
if ~isempty(taskqidx) % && trackq(taskqidx).Priority >= searchq(searchqidx).Priority
 currentjob = trackq(taskqidx);
 for m = taskqidx+1:num_trackq_items
 trackq(m-1) = trackq(m);
 end
 num_trackq_items = num_trackq_items-1;
 searchq(searchqidx).Priority = searchq(searchqidx).Priority+100;
else
 currentjob = searchq(searchqidx);
 searchidx = searchqidx+1;

end

jobq.SearchQueue = searchq;
jobq.SearchIndex = searchidx;
jobq.TrackQueue = trackq;
jobq.NumTrackJobs = num_trackq_items;

helperAdaptiveRadarSim

6 Featured Examples

6-290

https://doi.org/10.1109/MAES.2019.2957847

Runs the simulation

type('helperAdaptiveTrackingSim.m')

function allocationType = helperAdaptiveTrackingSim(scenario, thp, rax, tracker, resetJobQ, managerPreferences)
% Initialize variables
radar = scenario.Platforms{end}.Sensors{1};
updateRate = radar.UpdateRate;
resourceAllocation = nan(1,updateRate);
h = histogram(rax,resourceAllocation,'BinMethod','integers');
xlabel(h.Parent,'TrackID')
ylabel(h.Parent,'Num beams');
numSteps = updateRate * 185;
allocationType = nan(1,numSteps);
currentStep = 1;
restart(scenario);
reset(tracker);
% Return to a reset state of jobq
jobq = resetJobQ;

% Plotters and axes
plp = thp.Plotters(1);
dtp = thp.Plotters(3);
cvp = thp.Plotters(4);
trp = thp.Plotters(5);

% For repeatable results, set the random seed and revert it when done
s = rng(2020);
oc = onCleanup(@() rng(s));

% Main loop
tracks = {};

while advance(scenario)
 time = scenario.SimulationTime;

 % Update ground truth display
 poses = platformPoses(scenario);
 plotPlatform(plp, reshape([poses.Position],3,[])');

 % Point the radar based on the scheduler current job
 [currentJob,jobq] = getCurrentRadarTask(jobq,time);
 currentStep = currentStep + 1;
 if currentStep > updateRate
 resourceAllocation(1:end-1) = resourceAllocation(2:updateRate);
 end
 if strcmpi(currentJob.JobType,'Search')
 detectableTracks = zeros(0,1,'uint32');
 resourceAllocation(min([currentStep,updateRate])) = 0;
 allocationType(currentStep) = 1;
 cvp.Color = [0 0 1];
 else
 detectableTracks = currentJob.TrackID;
 resourceAllocation(min([currentStep,updateRate])) = currentJob.TrackID;
 cvp.Color = [1 0 1];
 if strcmpi(currentJob.JobType,'Confirm')
 allocationType(currentStep) = 2;
 else

 Adaptive Tracking of Maneuvering Targets with Managed Radar

6-291

 allocationType(currentStep) = 3;
 end
 end
 ra = resourceAllocation(~isnan(resourceAllocation));
 h.Data = ra;
 h.Parent.YLim = [0 updateRate];
 h.Parent.XTick = 0:max(ra);
 radar.LookAngle = currentJob.BeamDirection;
 plotCoverage(cvp, coverageConfig(scenario));

 % Collect detections and plot them
 detections = detect(scenario);
 if isempty(detections)
 meas = zeros(0,3);
 else
 dets = [detections{:}];
 meassph = reshape([dets.Measurement],3,[])';
 [x,y,z] = sph2cart(deg2rad(meassph(1)),deg2rad(meassph(2)),meassph(3));
 meas = (detections{1}.MeasurementParameters.Orientation*[x;y;z]+detections{1}.MeasurementParameters.OriginPosition)';
 end
 plotDetection(dtp, meas);

 % Track and plot tracks
 if isLocked(tracker) || ~isempty(detections)
 [confirmedTracks,tentativeTracks,~,analysisInformation] = tracker(detections, time, detectableTracks);
 pos = getTrackPositions(confirmedTracks,jobq.PositionSelector);
 plotTrack(trp,pos,string([confirmedTracks.TrackID]));

 tracks.confirmedTracks = confirmedTracks;
 tracks.tentativeTracks = tentativeTracks;
 tracks.analysisInformation = analysisInformation;
 tracks.PositionSelector = jobq.PositionSelector;
 end

 % Manage resources for next jobs
 jobq = manageResource(detections,jobq,tracker,tracks,currentJob,time,managerPreferences);
end

initMPARIMM

Initializes the IMM filter used by the tracker.

type('initMPARIMM.m')

function imm = initMPARIMM(detection)

cvekf = initcvekf(detection);
cvekf.StateCovariance(2,2) = 1e6;
cvekf.StateCovariance(4,4) = 1e6;
cvekf.StateCovariance(6,6) = 1e6;

ctekf = initctekf(detection);
ctekf.StateCovariance(2,2) = 1e6;
ctekf.StateCovariance(4,4) = 1e6;
ctekf.StateCovariance(7,7) = 1e6;
ctekf.ProcessNoise(3,3) = 1e6; % Large noise for unknown angular acceleration

6 Featured Examples

6-292

imm = trackingIMM('TrackingFilters', {cvekf;ctekf}, 'TransitionProbabilities', [0.99, 0.99]);

manageResources

Manages the job queue and creates new tasks based on the tracking results.

type('manageResource.m')

function jobq = manageResource(detections,jobq,tracker,tracks,current_job,current_time,managerPreferences)

trackq = jobq.TrackQueue;
num_trackq_items = jobq.NumTrackJobs;
if ~isempty(detections)
 detection = detections{1};
else
 detection = [];
end

% Execute current job
switch current_job.JobType
 case 'Search'
 % For search job, if there is a detection, establish tentative
 % track and schedule a confirmation job
 if ~isempty(detection)
 % A search task can still find a track we already have. Define
 % a confirmation task only if it's a tentative track. There
 % could be more than one if there are false alarms. Create
 % confirm jobs for tentative tracks created at this update.

 numTentative = numel(tracks.tentativeTracks);
 for i = 1:numTentative
 if tracks.tentativeTracks(i).Age == 1 && tracks.tentativeTracks(i).IsCoasted == 0
 trackid = tracks.tentativeTracks(i).TrackID;
 job = revisitTrackJob(tracker, trackid, current_time, managerPreferences, 'Confirm', tracks.PositionSelector);
 num_trackq_items = num_trackq_items+1;
 trackq(num_trackq_items) = job;
 end
 end
 end

 case 'Confirm'
 % For a confirm job, if the track ID is within the tentative
 % tracks, it means that we need to run another confirmation job
 % regardless of having a detection. If the track ID is within the
 % confirmed tracks, it means that we must have gotten a detection,
 % and the track passed the confirmation logic test. In this case we
 % need to schedule a track revisit job.
 trackid = current_job.TrackID;
 tentativeTrackIDs = [tracks.tentativeTracks.TrackID];
 confirmedTrackIDs = [tracks.confirmedTracks.TrackID];
 if any(trackid == tentativeTrackIDs)
 job = revisitTrackJob(tracker, trackid, current_time, managerPreferences, 'Confirm', tracks.PositionSelector);
 num_trackq_items = num_trackq_items+1;
 trackq(num_trackq_items) = job;
 elseif any(trackid == confirmedTrackIDs)
 job = revisitTrackJob(tracker, trackid, current_time, managerPreferences, 'TrackNonManeuvering', tracks.PositionSelector);
 num_trackq_items = num_trackq_items+1;

 Adaptive Tracking of Maneuvering Targets with Managed Radar

6-293

 trackq(num_trackq_items) = job;
 end

 otherwise % Covers both types of track jobs
 % For track job, if the track hasn't been dropped, update the track
 % and schedule a track job corresponding to the revisit time
 % regardless of having a detection. In the case when there is no
 % detection, we could also predict and schedule a track job sooner
 % so the target is not lost. This would require defining another
 % job type to control the revisit rate for this case.

 trackid = current_job.TrackID;
 confirmedTrackIDs = [tracks.confirmedTracks.TrackID];
 if any(trackid == confirmedTrackIDs)
 jobType = 'TrackNonManeuvering';
 mdlProbs = getTrackFilterProperties(tracker, trackid, 'ModelProbabilities');
 if mdlProbs{1}(2) > 0.6
 jobType = 'TrackManeuvering';
 end

 job = revisitTrackJob(tracker, trackid, current_time, managerPreferences, jobType, tracks.PositionSelector);
 num_trackq_items = num_trackq_items+1;
 trackq(num_trackq_items) = job;
 end
end

jobq.TrackQueue = trackq;
jobq.NumTrackJobs = num_trackq_items;
end

function job = revisitTrackJob(tracker, trackID, currentTime, managerPreferences, jobType, positionSelector)
 types = [managerPreferences.Type];
 inTypes = strcmpi(jobType,types);
 revisitTime = 1/managerPreferences(inTypes).RevisitRate + currentTime;
 predictedTrack = predictTracksToTime(tracker,trackID,revisitTime);

 xpred = getTrackPositions(predictedTrack,positionSelector);

 [phipred,thetapred,rpred] = cart2sph(xpred(1),xpred(2),xpred(3));
 job = struct('JobType',jobType,'Priority',managerPreferences(inTypes).Priority,...
 'BeamDirection',rad2deg([phipred thetapred]),'WaveformIndex',1,'Time',revisitTime,...
 'Range',rpred,'TrackID',trackID);

end

6 Featured Examples

6-294

How to Generate C Code for a Tracker
This example shows how to generate C code for a MATLAB function that processes detections and
outputs tracks. The function contains a trackerGNN, but any tracker can be used instead.

Automatic generation of code from MATLAB code has two key benefits:

1 Prototypes can be developed and debugged in the MATLAB environment. Once the MATLAB
work is done, automatic C code generation makes the algorithms deployable to various targets.
Additionally, the C code can be further tested by running the compiled MEX file in a MATLAB
environment using the same visualization and analysis tools that were available during the
prototyping phase.

2 After generating C code, you can generate executable code, which in many cases runs faster than
the MATLAB code. The improved run time can be used to develop and deploy real-time sensor
fusion and tracking systems. It also provides a better way to batch test the tracking systems on a
large number of data sets.

The example explains how to modify the MATLAB code in the “Air Traffic Control” on page 6-2
example to support code generation. This example requires a MATLAB Coder license for generating C
code.

Modify and Run MATLAB Code

To generate C code, MATLAB Coder requires MATLAB code to be in the form of a function.
Furthermore, the arguments of the function cannot be MATLAB classes.

In this example, the code for the air traffic control (ATC) example has been restructured such that the
trackerGNN that performs sensor fusion and tracking resides in a separate file, called
tracker_kernel.m. Review this file for important information about memory allocation for code
generation.

To preserve the state of the trackerGNN between calls to tracker_kernel.m, the tracker is
defined as a persistent variable.

This function takes a cell array of objectDetection objects, generated by the
fusionRadarSensor object, and time as input arguments.

Similarly, the outputs from a function that supports code generation cannot be objects. The outputs
from tracker_kernel.m are:

1 Confirmed tracks - A struct array that contains a variable number of tracks.
2 Number of tracks - An integer scalar.
3 Information about the tracker processing at the current update.

By restructuring the code this way, you can reuse the same display tools used in the ATC example.
These tools still run in MATLAB and do not require code generation.

% If a previous tracker is defined, clear it.
clear tracker_kernel

% Create the ATC scene with radar and platforms.
[scenario,tower,radar] = helperCreateATCScenario;

% Create a display to show the true, measured, and tracked positions of the

 How to Generate C Code for a Tracker

6-295

% airliners.
[theater,fig] = helperTrackerCGExample('Create Display',scenario);
helperTrackerCGExample('Update Display',theater,scenario,tower);

Now run the example by calling the tracker_kernel function in MATLAB. This initial run provides
a baseline to compare the results and enables you to collect some metrics about the performance of
the tracker when it runs in MATLAB or as a MEX file.

Simulate and Track Airliners

The following loop advances the platform positions until the end of the scenario. For each step
forward in the scenario, the radar generates detections from targets in its field of view. The tracker is
updated with these detections after the radar has completed a 360 degree scan in azimuth.

% Set simulation to advance at the update rate of the radar.
scenario.UpdateRate = radar.UpdateRate;

% Create a buffer to collect the detections from a full scan of the radar.
scanBuffer = {};

% Initialize the track array.

6 Featured Examples

6-296

tracks = [];

% Set random seed for repeatable results.
rng(2020)

% Allocate memory for number of tracks and time measurement in MATLAB.
numSteps = 12;
numTracks = zeros(1, numSteps);
runTimes = zeros(1, numSteps);
index = 0;
while advance(scenario) && ishghandle(fig)

 % Generate detections on targets in the radar's current field of view.
 [dets,config] = detect(scenario);

 scanBuffer = [scanBuffer;dets]; %#ok<AGROW> Allow the buffer to grow.

 % Update tracks when a 360 degree scan is complete.
 if config.IsScanDone
 % Update tracker
 index = index + 1;
 tic
 [tracks, numTracks(index), info] = tracker_kernel(scanBuffer,scenario.SimulationTime);
 runTimes(index) = toc; % Gather MATLAB run time data

 % Clear scan buffer for next scan.
 scanBuffer = {};
 end

 % Update display with current beam position, buffered detections, and
 % track positions.
 helperTrackerCGExample('Update Display',theater,scenario,tower,scanBuffer,tracks);
end

 How to Generate C Code for a Tracker

6-297

Compile the MATLAB Function into a MEX File

Use the codegen function to compile the tracker_kernel function into a MEX file. You can specify
the -report option to generate a compilation report that shows the original MATLAB code and the
associated files that were created during C code generation. Consider creating a temporary directory
where MATLAB Coder can store generated files. Note that unless you use the -o option to specify the
name of the executable, the generated MEX file has the same name as the original MATLAB file with
_mex appended.

MATLAB Coder requires that you specify the properties of all the input arguments. The inputs are
used by the tracker to create the correct data types and sizes for objects used in the tracking. The
data types and sizes must not change between data frames. One easy way to do this is to define the
input properties by example at the command line using the -args option. For more information, see
“Input Specification” (MATLAB Coder).

% Define the properties of the input. First define the detections buffer as
% a variable-sized cell array that contains objectDetection objects. Then
% define the second argument as simTime, which is a scalar double.
dets = coder.typeof(scanBuffer(1), [inf 1], [1 0]);
compInputs = {dets scenario.SimulationTime};

6 Featured Examples

6-298

% Code generation may take some time.
h = msgbox({'Generating code. This may take a few minutes...';'This message box will close when done.'},'Codegen Message');
% Generate code.
try
 codegen tracker_kernel -args compInputs;
 close(h)
catch ME
 close(h)
 throw(ME)
end

Code generation successful.

Run the Generated Code

Now that the code has been generated, run the exact same scenario with the generated MEX file
tracker_kernel_mex. Everything else remains the same.

% If a previous tracker is defined, clear it.
clear tracker_kernel_mex

% Allocate memory for number of tracks and time measurement
numTracksMex = zeros(1, numSteps);
runTimesMex = zeros(1, numSteps);

% Reset the scenario, data counter, plotters, scanBuffer, tracks, and rng.
index = 0;
restart(scenario)
scanBuffer = {};
clearPlotterData(theater);
tracks = [];
rng(2020)
while advance(scenario) && ishghandle(fig)

 % Generate detections on targets in the radar's current field of view.
 [dets,config] = detect(scenario);

 scanBuffer = [scanBuffer;dets]; %#ok<AGROW> Allow the buffer to grow.

 % Update tracks when a 360 degree scan is complete.
 if config.IsScanDone
 % Update tracker.
 index = index + 1;
 tic
 [tracks, numTracksMex(index), info] = tracker_kernel_mex(scanBuffer,scenario.SimulationTime);
 runTimesMex(index) = toc; % Gather MEX run time data

 % Clear scan buffer for next scan.
 scanBuffer = {};
 end

 % Update display with current beam position, buffered detections, and
 % track positions.
 helperTrackerCGExample('Update Display',theater,scenario,tower,scanBuffer,tracks);
end

 How to Generate C Code for a Tracker

6-299

Compare the Results of the Two Runs

Compare the results and the performance of the generated code vs. the MATLAB code. The following
plots compare the number of tracks maintained by the trackers at each time step. They also show the
amount of time it took to process each call to the function.

figure(2)
subplot(2,1,1)
plot(2:numSteps, numTracks(2:numSteps), 's:', 2:numSteps, numTracksMex(2:numSteps), 'x-.')
title('Number of Tracks at Each Step');
legend('MATLAB', 'MEX')
grid
subplot(2,1,2)
plot(2:numSteps, runTimesMex(2:numSteps)*1e3);
title('MEX Processing Time at Each Step')
grid
xlabel('Time Step')
ylabel('MEX Processing Time [ms]')

6 Featured Examples

6-300

The top plot shows that the number of tracks that were maintained by each tracker are the same. It
measures the size of the tracking problem in terms of number of tracks. Even though there were 3
confirmed tracks throughout the tracking example, the total number of all tracks maintained by the
tracker varies based on the number of tentative tracks, that were created by false detections.

The bottom plot shows the time required for the generated code function to process each step. The
first step was excluded from the plot, because it takes a disproportionately longer time to instantiate
all the tracks on the first step.

The results show the number of milliseconds required by the MEX code to perform each update step
on your computer. In this example, the time required for the MEX code to run an update step is
measured in a few milliseconds.

Summary

This example showed how to generate C code from MATLAB code for sensor fusion and tracking.

The main benefits of automatic code generation are the ability to prototype in the MATLAB
environment, and generate a MEX file that can run in the MATLAB environment. The generated C
code can be deployed to a target. In most cases, the generated code is faster than the MATLAB code,
and can be used for batch testing of algorithms and generating real-time tracking systems.

 How to Generate C Code for a Tracker

6-301

How to Efficiently Track Large Numbers of Objects
This example shows how to use the trackerGNN to track large numbers of targets. Similar
techniques can be applied to the trackerJPDA and trackerTOMHT as well.

Introduction

In many applications, trackers are required to track hundreds or thousands of objects. Increasing the
number of tracks maintained by a tracker is a challenge, caused by the computational complexity of
the algorithm at the core of every tracker. In particular, two common stages in the tracker update
step are not easily scalable: calculating the assignment cost and performing the assignment.
Assignment cost calculation is common to trackerGNN, trackerJPDA, and trackerTOMHT, and the
techniques shown in this example can be applied when using any of these trackers. The way each
tracker performs the assignment is unique to each tracker, and may require tailored solutions to
improve the tracker performance, which are beyond the scope of this example.

Scenario

For the purposes of this example, you define a scenario that contains 900 platforms, organized in a
15-by-15 grid, with each grid cell containing 4 platforms. The purpose of the grid cells is to
demonstrate the benefit of coarse cost calculation, explained later in the example.

The following code arranges the 900 objects in the grid cell and creates the visualization. On the left,
the entire scenario is shown. On the right, the visualization zooms in on 4 grid cells. Note each cell
contains 4 platforms.

[platforms,tp,zoomedtp] = createPlatforms;

6 Featured Examples

6-302

Use the Default Assignment Cost Calculation

This section shows the results of tracking the platforms defined above using a trackerGNN with
default AssignmentThreshold. The AssignmentThreshold property contains two values: [C1
C2], where C1 is the threshold used for the assignment and C2 is a threshold for coarse calculation
explained in the next section.

When the tracker is updated with a new set of detections, it calculates the cost of assigning every
detection to every track. The accurate cost calculation must take into account the measurement and
uncertainty of each detection as well as the expected measurement and expected uncertainty from
each track, as depicted below.

By default, C2 is set to Inf, which requires that the costs of all combinations of track and detection
are calculated. This leads to a more accurate assignment, but is more computationally intensive. You
should start with the default setting to make sure the tracker assigns detections to tracks in the best
way, and then consider lowering the value of C2 to reduce the time required for calculating the
assignment cost.

During assignment cost calculation, elements of the cost matrix whose values are higher than C1 are
replaced with Inf. Doing so helps the assignment algorithm to ignore impossible assignments.

Define a tracker that can track up to 1000 tracks. The tracker uses the default constant velocity
extended Kalman filter, and its state is defined as [x;vx;y;vy;z;vz], which is used by the
positionSelector below to get the position components.

tracker = trackerGNN('MaxNumTracks',1000, 'AssignmentThreshold', [30 Inf]);
positionSelector = [1 0 0 0 0 0; 0 0 1 0 0 0; 0 0 0 0 0 0];

On the first call to step, the tracker instantiates all tracks. To isolate the time required to instantiate
the tracks from the processing time required for the first step, you can call setup and reset before
stepping the tracker. See the supporting function runTracker at the end of this example for more
details.

[trkSummary,truSummary,info] = runTracker(platforms,tracker,positionSelector,tp,zoomedtp);

Tracker set up time: 8.3108
Step 1 time: 3.7554
Step 2 time: 15.3029
Step 3 time: 14.1099
Step 4 time: 14.3506
Step 5 time: 14.3963

 How to Efficiently Track Large Numbers of Objects

6-303

All steps from now are without detections.
Step 6 time: 0.53103
Step 7 time: 0.52582
Step 8 time: 0.50639
Step 9 time: 0.50909
Step 10 time: 0.16034
Scenario done. All tracks are now deleted.

You analyze the tracking results by examining the track assignment metrics values. For perfect
tracking the total number of tracks should be equal to the number of platforms and there should be
no false, swapped, or divergent tracks. Similarly, there should be no missing truth or breaks in the
truth summary.

assignmentMetricsSummary(trkSummary,truSummary)

Track assignment metrics summary:
 TotalNumTracks NumFalseTracks MaxSwapCount MaxDivergenceCount MaxDivergenceLength
 ______________ ______________ ____________ __________________ ___________________

 900 0 0 0 0

Truth assignment metrics summary:
 TotalNumTruths NumMissingTruths MaxEstablishmentLength MaxBreakCount
 ______________ ________________ ______________________ _____________

 900 0 1 0

6 Featured Examples

6-304

Use Coarse Assignment Cost Calculation

In the previous section, you saw that the tracker is able to track all the platforms, but every update
step takes a long time. Most of the time was spent on calculating the assignment cost matrix.

Examining the cost matrix, you can see that vast majority of its elements are, in fact, Inf.

cm = info.CostMatrix;
disp("Cost matrix has " + numel(cm) + " elements.");
disp("But the number of finite values is " + numel(cm(isfinite(cm))) + newline)

Cost matrix has 810000 elements.
But the number of finite values is 2700

The above result shows that the cost calculation spends too much time on calculating the assignment
cost of all the combinations of track and detection. However, most of these combinations are too far
to be assigned, as the actual measurement is too far from the track expected measurement based on
the sensor characteristics. To avoid the waste in calculating all the costs, you can use coarse cost
calculation.

Coarse calculation is done to verify which combinations of track and detection may require an
accurate normalized distance calculation. Only combinations whose coarse assignment cost is lower
than C2 are calculated accurately. The coarse cost calculation is depicted in the image below. A

detection is represented by its measurement and measurement noise . Two tracks are
predicted to the time of the detection and projected to the measurement space, depicted by the

points and . Note that the track uncertainty is not projected to the measurement space,
which allows us to vectorize the coarse calculation. This is a rough estimate, because only the
uncertainty around the detection is taken into account. In the depicted example, the first track falls
outside of the coarse calculation gate while the second track falls inside it. Thus, accurate cost
calculation is only done for the combination of this detection and the second track.

 How to Efficiently Track Large Numbers of Objects

6-305

To use coarse cost calculation, release the tracker and modify its AssignmentThreshold to a value
of [30 200]. Then, rerun the tracker.

release(tracker)
tracker.AssignmentThreshold = [30 200];
[trkSummary,truSummary] = runTracker(platforms,tracker,positionSelector,tp,zoomedtp);

Tracker set up time: 6.5846
Step 1 time: 3.5863
Step 2 time: 3.4095
Step 3 time: 2.9347
Step 4 time: 2.8555
Step 5 time: 2.9397

6 Featured Examples

6-306

All steps from now are without detections.
Step 6 time: 0.51446
Step 7 time: 0.52277
Step 8 time: 0.54865
Step 9 time: 0.50941
Step 10 time: 0.19085
Scenario done. All tracks are now deleted.

You observe that the steps 3-5 now require significantly less time to complete. Step 2 is also faster
than it used to be, but still slower than steps 3-5.

To understand why step 2 is slower, consider the track states after the first tracker update. The states
contain position information, but the velocity is still zero. When the tracker calculates the assignment
cost, it predicts the track states to the detection times, but since the tracks have zero velocity, they
remain in the same position. This results in large distances between the detection measurements and
the expected measurements from the predicted track states. These relatively large assignment costs
make it harder for the assignment algorithm to find the best assignment, which causes step 2 to take
more time than steps 3-5.

It's important to verify that the track assignment with coarse cost calculation remains the same as
without it. If the track assignment metrics are not the same, you must increase the size of the coarse
calculation gate. The following shows that the tracking is still perfect as it was in the previous
section, but each processing step took less time.

assignmentMetricsSummary(trkSummary,truSummary)

Track assignment metrics summary:
 TotalNumTracks NumFalseTracks MaxSwapCount MaxDivergenceCount MaxDivergenceLength

 How to Efficiently Track Large Numbers of Objects

6-307

 ______________ ______________ ____________ __________________ ___________________

 900 0 0 0 0

Truth assignment metrics summary:
 TotalNumTruths NumMissingTruths MaxEstablishmentLength MaxBreakCount
 ______________ ________________ ______________________ _____________

 900 0 1 0

Use an External Cost Calculation

Another way to control the time it takes to calculate the cost assignment is by using your own
assignment cost calculation instead of the default the tracker uses.

An external cost calculation can take into account attributes that are not part of the track state and
expected measurement. It can also use different distance metrics, for example Euclidean norm
instead of normalized distance. The choice of which cost calculation to apply depends on the specifics
of the problem, the measurement space, and how you define the state and measurement.

To use an external cost calculation, you release the tracker and set its HasCostMatrixInput
property to true. You must pass your own cost matrix as an additional input with each update to the
tracker. See the supporting function runTracker for more details.

release(tracker);
tracker.HasCostMatrixInput = true;
[trkSummary,truSummary] = runTracker(platforms,tracker,positionSelector,tp,zoomedtp);
assignmentMetricsSummary(trkSummary,truSummary)

Tracker set up time: 6.559
Step 1 time: 3.4394
Step 2 time: 1.7852
Step 3 time: 1.474
Step 4 time: 1.5312
Step 5 time: 1.5152

6 Featured Examples

6-308

All steps from now are without detections.
Step 6 time: 0.60809
Step 7 time: 0.61374
Step 8 time: 0.616
Step 9 time: 0.63798
Step 10 time: 0.22762
Scenario done. All tracks are now deleted.

Track assignment metrics summary:
 TotalNumTracks NumFalseTracks MaxSwapCount MaxDivergenceCount MaxDivergenceLength
 ______________ ______________ ____________ __________________ ___________________

 900 0 0 0 0

Truth assignment metrics summary:
 TotalNumTruths NumMissingTruths MaxEstablishmentLength MaxBreakCount
 ______________ ________________ ______________________ _____________

 900 0 1 0

As expected, the processing time is even lower when using an external cost calculation function.

Change the GNN Assignment Algorithm

Another option to try is using a different GNN assignment algorithm that may be more efficient in
finding the assignment by modifying the Assignment property of the tracker.

release(tracker)
tracker.Assignment = 'Jonker-Volgenant';

 How to Efficiently Track Large Numbers of Objects

6-309

tracker.HasCostMatrixInput = true;
runTracker(platforms,tracker,positionSelector,tp,zoomedtp);

Tracker set up time: 6.494
Step 1 time: 3.5346
Step 2 time: 1.894
Step 3 time: 3.1192
Step 4 time: 3.1212
Step 5 time: 3.1458

All steps from now are without detections.
Step 6 time: 0.61109
Step 7 time: 0.62456
Step 8 time: 0.61849
Step 9 time: 0.60604
Step 10 time: 0.22303
Scenario done. All tracks are now deleted.

The Jonker-Volgenant algorithm performs the assignment in the second step faster relative to the
default Munkres algorithm.

Monte-Carlo Simulation

If you want to run multiple scenarios without modifying the tracker settings, there is no need to call
the release method. Instead, just call the reset method to clear previous track information from
the tracker. This way, you save the time required to instantiate all the tracks. Note the "Tracker set
up time" below relative to previous runs.

6 Featured Examples

6-310

reset(tracker)
runTracker(platforms,tracker,positionSelector,tp,zoomedtp);

Tracker set up time: 0.097531
Step 1 time: 3.4684
Step 2 time: 1.6592
Step 3 time: 3.1429
Step 4 time: 3.1274
Step 5 time: 3.0994

All steps from now are without detections.
Step 6 time: 0.63232
Step 7 time: 0.61857
Step 8 time: 0.61433
Step 9 time: 0.60698
Step 10 time: 0.25301
Scenario done. All tracks are now deleted.

Summary

This example showed how to track large numbers of objects. When tracking many objects, the tracker
spends a large fraction of the processing time on computing the cost assignment for each
combination of track and detection. You saw how to use the cost calculation threshold to improve the
time spent on calculating the assignment cost. In addition, the example showed how to use an
external cost calculation, which may be designed to be more computationally efficient for the
particular tracking problem you have.

You can reduce the cost assignment threshold or use an external cost calculation to improve the
speed of the trackerJPDA and the trackerTOMHT as well.

 How to Efficiently Track Large Numbers of Objects

6-311

Supporting Functions

createPlatforms

This function creates the platforms in a 20x20 grid with 2x2 platforms per grid cell.

function [platforms,tp,zoomedtp] = createPlatforms
% This is a helper function to run the tracker and display the results. It
% may be removed in the future.
nh = 15; % Number of horizontal grid cells
nv = 15; % Number of vertical grid cells
nsq = 2; % 2x2 platforms in a grid cell
nPl = nh*nv*nsq^2; % Overall number of platforms
xgv = sort(-50 + repmat(100 * (1:nh), [1 nsq]));
ygv = sort(-50 + repmat(100 * (1:nv), [1 nsq]));
[X,Y] = meshgrid(xgv,ygv);

npts = nsq/2;
xshift = 10*((-npts+1):npts) -5;
yshift = xshift;

xadd = repmat(xshift, [1 nh]);
yadd = repmat(yshift, [1 nv]);

[Xx, Yy] = meshgrid(xadd,yadd);

X = X + Xx;
Y = Y + Yy;
pos = [X(:),Y(:),zeros(numel(X),1)];

% The following creates an array of struct for the platforms, which are
% used later for track assignment metrics.
vel = [3 1 0]; % Platform velocity
platforms = repmat(struct('PlatformID', 1, 'Position', [0 0 0], 'Velocity', vel),nPl,1);
for i = 1:nPl
 platforms(i).PlatformID = i;
 platforms(i).Position(:) = pos(i,:);
end

% Visualization
f = figure('Position',[1 1 1425 700]);
movegui center;
h1 = uipanel(f,'FontSize',12,'Position',[.01 .01 .48 .98],"Title","Scene View");
a1 = axes(h1,'Position',[0.05 0.05 0.9 0.9]);
tp = theaterPlot('Parent', a1, 'XLimits',[0 nh*100], 'YLimits',[0 nv*100]);
set(a1,'XTick',0:100:nh*100)
set(a1,'YTick',0:100:nv*100)
grid on
pp = trackPlotter(tp,'Tag','Truth','Marker','^','MarkerEdgeColor','k','MarkerSize',4,'HistoryDepth',10);
plotTrack(pp,reshape([platforms.Position],3,[])');
trackPlotter(tp, 'Tag','Tracks','MarkerEdgeColor','b','MarkerSize',6,'HistoryDepth',10);
c = get(a1.Parent,'Children');
for i = 1:numel(c)
 if isa(c(i),'matlab.graphics.illustration.Legend')
 set(c(i),'Visible','off')
 end
end

6 Featured Examples

6-312

h2 = uipanel(f,'FontSize',12,'Position',[.51 .01 .48 .98],'Title','Zoomed View');
a2 = axes(h2,'Position',[0.05 0.05 0.9 0.9]);
zoomedtp = theaterPlot('Parent', a2, 'XLimits',[400 500], 'YLimits',[400 500]);
set(a2,'XTick',400:100:500)
set(a2,'YTick',400:100:500)
grid on
zoomedpp = trackPlotter(zoomedtp,'DisplayName','Truth','Marker','^','MarkerEdgeColor','k','MarkerSize',6,'HistoryDepth',10);
plotTrack(zoomedpp,reshape([platforms.Position],3,[])');
trackPlotter(zoomedtp, 'DisplayName','Tracks','MarkerEdgeColor','b','MarkerSize',8,'HistoryDepth',10,'ConnectHistory','on','FontSize',1);
end

runTracker

This function runs the tracker, updates the plotters, and gathers track assignment metrics.

function [trkSummary,truSummary,info] = runTracker(platforms,tracker,positionSelector,tp,zoomedtp)
% This is a helper function to run the tracker and display the results. It
% may be removed in the future.

pp = findPlotter(tp,'Tag','Truth');
trp = findPlotter(tp, 'Tag','Tracks');
zoomedpp = findPlotter(zoomedtp,'DisplayName','Truth');
zoomedtrp = findPlotter(zoomedtp, 'DisplayName','Tracks');

% To save time, pre-allocate all the detections and assign them on the fly.
nPl = numel(platforms);
det = objectDetection(0,[0;0;0]);
dets = repmat({det},[nPl,1]);

% Define a track assignment metrics object.
tam = trackAssignmentMetrics;

% Bring the visualization back.
set(tp.Parent.Parent.Parent,'Visible','on')

hasExternalCostFunction = tracker.HasCostMatrixInput;

% Measure the time it takes to set the tracker up.
tic
if ~isLocked(tracker)
 if hasExternalCostFunction
 setup(tracker,dets,0,0);
 else
 setup(tracker,dets,0);
 end
end
reset(tracker)
disp("Tracker set up time: " + toc);

% Run 5 steps with detections for all the platforms.
for t = 1:5
 for i = 1:nPl
 dets{i}.Time = t;
 dets{i}.Measurement = platforms(i).Position(:);
 end

 tic
 if hasExternalCostFunction

 How to Efficiently Track Large Numbers of Objects

6-313

 if isLocked(tracker)
 % Use predictTracksToTime to get all the predicted tracks.
 allTracks = predictTracksToTime(tracker,'all',t);
 else
 allTracks = [];
 end
 costMatrix = predictedEuclidean(allTracks,dets,positionSelector);
 [tracks,~,~,info] = tracker(dets,t,costMatrix);
 else
 [tracks,~,~,info] = tracker(dets,t);
 end
 trPos = getTrackPositions(tracks, positionSelector);
 trIDs = string([tracks.TrackID]');
 disp("Step " + t + " time: " + toc)

 % Update the plot.
 plotTrack(pp,reshape([platforms.Position],3,[])');
 plotTrack(trp,trPos);
 plotTrack(zoomedpp,reshape([platforms.Position],3,[])');
 plotTrack(zoomedtrp,trPos,trIDs);
 drawnow

 % Update the track assignment metrics object.
 if nargout
 [trkSummary, truSummary] = tam(tracks,platforms);
 end

 % Update the platform positions.
 for i = 1:nPl
 platforms(i).Position = platforms(i).Position + platforms(i).Velocity;
 end
end
snapnow

% Run steps with no detections until the tracker deletes all the tracks.
disp("All steps from now are without detections.")
while ~isempty(tracks)
 t = t+1;
 tic
 if hasExternalCostFunction
 allTracks = predictTracksToTime(tracker,'all',t);
 costMatrix = predictedEuclidean(allTracks,{},positionSelector);
 tracks = tracker({},t,costMatrix);
 else
 tracks = tracker({},t);
 end
 disp("Step " + t + " time: " + toc)

 % Update the position of the tracks to plot.
 trPos = getTrackPositions(tracks,positionSelector);
 trIDs = string([tracks.TrackID]');

 % Update the plot.
 plotTrack(pp,reshape([platforms.Position],3,[])');
 plotTrack(trp,trPos);
 plotTrack(zoomedpp,reshape([platforms.Position],3,[])');
 plotTrack(zoomedtrp,trPos,trIDs);
 drawnow

6 Featured Examples

6-314

 % Update the platform positions.
 for i = 1:nPl
 platforms(i).Position = platforms(i).Position + platforms(i).Velocity;
 end
end
disp("Scenario done. All tracks are now deleted." + newline)
clearData(pp)
clearData(trp)
clearData(zoomedpp)
clearData(zoomedtrp)
set(tp.Parent.Parent.Parent,'Visible','off') % Prevent excessive snapshots
drawnow
end

predictedEuclidean

The function calculates the Euclidean distance between measured positions from detections and
predicted positions from tracks.

function euclidDist = predictedEuclidean(tracks,detections,positionSelector)
% This is a helper function to run the tracker and display the results. It
% may be removed in the future.

if isempty(tracks) || isempty(detections)
 euclidDist = zeros(numel(tracks),numel(detections));
 return
end

predictedStates = [tracks.State];
predictedPositions = positionSelector * predictedStates;
dets = [detections{:}];
measuredPositions = [dets.Measurement];
euclidDist = zeros(numel(tracks),numel(detections));
for i = 1:numel(detections)
 diffs = bsxfun(@minus, predictedPositions',measuredPositions(:,i)');
 euclidDist(:,i) = sqrt(sum((diffs .* diffs),2));
end
end

assignmentMetricsSummary

The function displays the key assignment metrics in a table form.

function assignmentMetricsSummary(trkSummary,truSummary)
trkSummary = rmfield(trkSummary, {'TotalSwapCount','TotalDivergenceCount',...
 'TotalDivergenceLength','MaxRedundancyCount','TotalRedundancyCount',...
 'MaxRedundancyLength','TotalRedundancyLength'});
truSummary = rmfield(truSummary, {'TotalEstablishmentLength','TotalBreakCount',...
 'MaxBreakLength','TotalBreakLength'});
trkTable = struct2table(trkSummary);
truTable = struct2table(truSummary);
disp("Track assignment metrics summary:")
disp(trkTable)
disp("Truth assignment metrics summary:")
disp(truTable)
end

 How to Efficiently Track Large Numbers of Objects

6-315

Tracking a Flock of Birds
This example shows how to track a large number of objects. A large flock of birds is generated and a
global nearest neighbor multi-object tracker, trackerGNN, is used to estimate the motion of every
bird in the flock.

Scenario Definition

The flock motion is simulated using the behavioral model proposed by Reynolds [1]. In this example,
the flock is comprised of 1000 simulated birds, called boids, whose initial position and velocity was
previously saved. They follow the three rules of flocking: collision avoidance, velocity matching, and
flock centering. Each rule is associated with a weight and the overall behavior of the flock emerges
from the relative weighting of each rule. In this case, weights are chosen that cause the flock to fly
around a certain point and create a dense center. Other weight settings can cause different behaviors
to emerge.

Tracking such a large and dense flock presents two challenges:

1 How to efficiently track 1000 boids?
2 How to be able to track individual boids in such a dense environment?

The following code simulates the flock behavior for 100 steps of 0.1 second. The plot on the left
shows the flock as a whole and the plot on the right is zoomed in on the densest part at the flock
center.

s = rng; % Keep the current state of the random number generator
rng(2019); % Set the random number generator for repeatable results
load("initialFlock.mat","x","v");
flock = helperFlock("NumBoids",size(x,1),"CollisionAviodanceWeight",0.5,...
 "VelocityMatchingWeight",0.1,"FlockCenteringWeight",0.5,"Velocity",v,...
 "Position",x,"BoidAcceleration",1);
truLabels = string(num2str((1:flock.NumBoids)'));
bound = 20;
flockCenter = mean(x,1);
[tp1,tp2] = helperCreateDisplay(x,bound);

% Simulate 100 steps of flocking
numSteps = 100;
allx = repmat(x,[1 1 numSteps]);
dt = 0.1;
for i = 1:numSteps
 [x,v] = move(flock,dt);
 allx(:,:,i) = x;
 plotTrack(tp1.Plotters(1),x)
 inView = findInView(x,-bound+flockCenter,bound+flockCenter);
 plotTrack(tp2.Plotters(1),x(inView,:),truLabels(inView))
 drawnow
end

6 Featured Examples

6-316

Tracker Definition

You define the tracker as shown in the example “How to Efficiently Track Large Numbers of Objects”
on page 6-302.

You observe that the boids follow a curved path and choose a constant turn model defined by
initctekf.

To limit the time required to calculate cost, you reduce the coarse cost calculation threshold in the
AssignmentThreshold to a low value.

Further, you choose the more efficient Jonker-Volgenant as the assignment algorithm, instead of
the default Munkres algorithm.

You want tracks to be quickly confirmed and deleted, and set the confirmation and deletion
thresholds to [2 3] and [2 2], respectively.

Finally, you know that the sensor scans only a fraction of the flock at any given scan, and so you set
the HasDetectableTrackIDsInput to true to be able to pass the detectable track IDs to the
tracker.

The following line shows how the tracker is configured with the above properties. You can see how to
generate code for a tracker in “How to Generate C Code for a Tracker” on page 6-295, and the
tracker for this example is saved in the function flockTracker_kernel.m

% tracker = trackerGNN("FilterInitializationFcn",@initctekf,"MaxNumTracks",1500,...
% "AssignmentThreshold",[50 800],"Assignment","Jonker-Volgenant",...
% "ConfirmationThreshold",[2 3],"DeletionThreshold",[2 2],...
% "HasDetectableTrackIDsInput",true);

 Tracking a Flock of Birds

6-317

Track the Flock

Next, you run the scenario and track the flock.

A simplified sensor model is simulated using the detectFlock supporting function. It simulates a
sensor that scans the flock from left to right, and captures a fifth of the flock span in the x-axis in
every scan. The sensor has a 0.98 probability of detection and the noise is simulated using a normal
distribution with a standard deviation of 0.1 meters about each position component.

The sensor reports its currentScan bounds, which are used to provide the detectable track IDs to
the tracker.

clear flockTracker_kernel
positionSelector = [1 0 0 0 0 0 0; 0 0 1 0 0 0 0; 0 0 0 0 0 1 0];
trackIDs = zeros(0,1,'uint32');
trax = zeros(0,3);
bounds = inf(3,2);
alltrax = zeros(size(allx));
allIDs = repmat({},1,numSteps);
trup2 = tp2.Plotters(1);
trap2 = tp2.Plotters(2);
trup2.HistoryDepth = 2*trap2.HistoryDepth;
clearPlotterData(tp1)
clearPlotterData(tp2)
for i = 1:numSteps
 t = i*dt;
 [detections, currentScan] = detectFlock(allx(:,:,i),t);
 bounds(1,:) = currentScan;
 tracksInScan = findInView(trax,bounds(:,1),bounds(:,2));
 [tracks,info] = flockTracker_kernel(detections,t,trackIDs(tracksInScan,1));
 trax = getTrackPositions(tracks,positionSelector);
 if ~isempty(tracks)
 trackIDs = uint32([tracks.TrackID]');
 else
 trackIDs = zeros(0,1,'uint32');
 end
 alltrax(1:size(trax,1),1:3,i) = trax;
 allIDs{i} = string(trackIDs);
 helperVisualizeDisplay(tp1,tp2,truLabels,allx,allIDs,alltrax,i)
end
rng(s); % Reset the random number generator to its previous state

6 Featured Examples

6-318

Result of the Tracker in Generated Code

The following GIF shows the performance of the tracker in a mex file.

 Tracking a Flock of Birds

6-319

Summary

This example showed how to track a large number of objects in a realistic scenario, where a scanning
sensor only reports a fraction of the objects in each scan. The example showed how to set the tracker
up for large number of objects and how to use the detectable track IDs input to prevent tracks from
being deleted.

References

[1] Craig W. Reynolds, "Flocks, Herds, and Schools: A Behavioral Model", Computer Graphics, Vol. 21,
Number 4, July 1987.

Supporting Functions

helperCreateDisplay

The function creates the example display and returns a handle to both theater plots.

function [tp1,tp2] = helperCreateDisplay(x,bound)
f = figure("Visible", "off");
set(f,"Position",[1 1 1425 700]);
movegui(f,"center")
h1 = uipanel(f,"FontSize",12,"Position",[.01 .01 .48 .98],"Title","Flock View");
h2 = uipanel(f,"FontSize",12,"Position",[.51 .01 .48 .98],"Title","Flock Center");
flockCenter = mean(x,1);

a1 = axes(h1,'Position',[0.05 0.05 0.9 0.9]);
grid(a1,'on')
tp1 = theaterPlot("Parent",a1);

% Flock View (Truncated)
halfspan = 250;
tp1.XLimits = 100*round([-halfspan+flockCenter(1) halfspan+flockCenter(1)]/100);
tp1.YLimits = 100*round([-halfspan+flockCenter(2) halfspan+flockCenter(2)]/100);
tp1.ZLimits = 100*round([-halfspan+flockCenter(3) halfspan+flockCenter(3)]/100);
trackPlotter(tp1,"DisplayName","Truth","HistoryDepth",0,"Marker","^","MarkerSize",4,"ConnectHistory","off");
set(findall(a1,"Type","line","Tag","tpTrackHistory_Truth"),"Color","k");
view(a1,3)
legend('Location','NorthEast')

% Flock center
a2 = axes(h2,'Position',[0.05 0.05 0.9 0.9]);
grid(a2,'on')
tp2 = theaterPlot("Parent",a2);
tp2.XLimits = 10*round([-bound+flockCenter(1) bound+flockCenter(1)]/10);
tp2.YLimits = 10*round([-bound+flockCenter(2) bound+flockCenter(2)]/10);
tp2.ZLimits = 10*round([-bound+flockCenter(3) bound+flockCenter(3)]/10);
trackPlotter(tp2,"DisplayName","Truth","HistoryDepth",0,...
 "Marker","^","MarkerSize",6,"ConnectHistory","off","FontSize",1);
set(findall(a2,"Type","line","Tag","tpTrackHistory_Truth"),"Color","k");

% Track plotters
TrackColor = [0 0.4470 0.7410]; % Blue
TrackLength = 50;
trackPlotter(tp1,"DisplayName","Tracks","HistoryDepth",TrackLength,"ConnectHistory","off",...
 "Marker",".","MarkerSize",3,"MarkerEdgeColor",TrackColor,"MarkerFaceColor",TrackColor);
set(findall(tp1.Parent,"Type","line","Tag","tpTrackHistory_Tracks"),...
 "Color",TrackColor,"MarkerSize",3,"MarkerEdgeColor",TrackColor);

6 Featured Examples

6-320

trackPlotter(tp2,"DisplayName","Tracks","HistoryDepth",TrackLength,"ConnectHistory","on",...
 "Marker","s","MarkerSize",8,"MarkerEdgeColor",TrackColor,"MarkerFaceColor","none","FontSize",1);
set (findall(tp2.Parent,"Type","line","Tag","tpTrackPositions_Tracks"),"LineWidth",2);
set(findall(tp2.Parent,"Type","line","Tag","tpTrackHistory_Tracks"),"Color",TrackColor,"LineWidth",1);

view(a2,3)
legend('Location','NorthEast')
set(f,'Visible','on')
end

detectFlock

The function simulates the sensor model. It returns an array of detections and the current sensor
scan limits.

function [detections,scanLimits] = detectFlock(x,t)
persistent sigma allDetections currentScan numScans
numBoids = size(x,1);
pd = 0.98;
if isempty(sigma)
 sigma = 0.1;
 oneDet = objectDetection(0,[0;0;0],"MeasurementNoise",sigma,'ObjectAttributes',struct);
 allDetections = repmat(oneDet,numBoids,1);
 currentScan = 1;
 numScans = 5;
end

% Vectorized calculation of all the detections
x = x + sigma*randn(size(x));
[allDetections.Time] = deal(t);
y = mat2cell(x',3,ones(1,size(x,1)));
[allDetections.Measurement] = deal(y{:});

% Limit the coverage area based on the number of scans
flockXSpan = [min(x(:,1),[],1),max(x(:,1),[],1)];
spanPerScan = (flockXSpan(2)-flockXSpan(1))/numScans;
scanLimits = flockXSpan(1) + spanPerScan * [(currentScan-1) currentScan];
inds = and(x(:,1)>=scanLimits(1), x(:,1)<=scanLimits(2));

% Add Pd
draw = rand(size(inds));
inds = inds & (draw<pd);
dets = allDetections(inds);
detections = num2cell(dets);

% Promote the scan count
currentScan = currentScan+1;
if currentScan > numScans
 currentScan = 1;
end
end

findInView

The function returns a logical array for positions that fall within the limits of minBound and
maxBound.

function inView = findInView(x,minBound,maxBound)
inView = false(size(x,1),1);

 Tracking a Flock of Birds

6-321

inView(:) = (x(:,1)>minBound(1) & x(:,1)<maxBound(1)) & ...
 (x(:,2)>minBound(2) & x(:,2)<maxBound(2)) & ...
 (x(:,3)>minBound(3) & x(:,3)<maxBound(3));
end

helperVisualizeDisplay

The function displays the flock and tracks after tracking.

function helperVisualizeDisplay(tp1,tp2,truLabels,allx,allIDs,alltrax,i)
trup1 = tp1.Plotters(1);
trap1 = tp1.Plotters(2);
trup2 = tp2.Plotters(1);
trap2 = tp2.Plotters(2);
plotTrack(trup1,allx(:,:,i))
n = numel(allIDs{i});
plotTrack(trap1,alltrax(1:n,:,i))

bounds = [tp2.XLimits;tp2.YLimits;tp2.ZLimits];

inView = findInView(allx(:,:,i),bounds(:,1),bounds(:,2));
plotTrack(trup2,allx(inView,:,i),truLabels(inView))
inView = findInView(alltrax(1:n,:,i),bounds(:,1),bounds(:,2));
plotTrack(trap2,alltrax(inView,:,i),allIDs{i}(inView))
drawnow
end

6 Featured Examples

6-322

Tracking Using Bistatic Range Detections
This example shows you how to simulate bistatic range-only detections using four sensor-emitter
pairs. In addition, this example demonstrates how to localize and track multiple targets using bistatic
range-only measurements.

Introduction

A bistatic radar is a collection of a bistatic emitter or transmitter (), and a bistatic receiver or
sensor (). The geometry of a bistatic system is depicted in the figure below. The sensor receives
signals along the path forming the upper sides of the triangle with bistatic detections
referenced to the emitter range. The relative bistatic range is given by:

where is the range from the emitter to the target, is the range from the target to the sensor,
and , known also as the direct-path or baseline, is the range from the emitter to the sensor.

The emitter-to-target-to-sensor range obtained by the bistatic radar is equal to the sum:

This sum defines an ellipsoid of constant range. The image shown above describes the ellipsoid when
target, transmitter and sensor lie in the same plane. This results in a 2-D ellipse. The target lies
somewhere on the surface of the constant-range ellipsoid with the foci being the emitter and sensor
locations, which are separated by the baseline distance L and with a major axis equal to 2a.

Next, you will define a scenario to generate the bistatic detections and then use the detections to
track the targets.

Define Scenario

You define a tracking scenario which simulates the 3-D area containing multiple platforms. You will
define the bistatic system in this scenario.

% Set the random seed for repeatable results.
rng(2050);

 Tracking Using Bistatic Range Detections

6-323

% Create a tracking scenario to manage the movement of platforms.
scene = trackingScenario;

% Set the duration of the scenario to 30 seconds and the update rate of the
% scenario to 1 Hz.
scene.StopTime = 30; % sec
scene.UpdateRate = 1; % Hz

Set the number of each type of platform. In this example, the following types of platform will be
created for sensing the targets:

• 1 radar emitter
• 4 bistatic radar sensors

% Set the minimum number of sensor-emitter pairs required by the spherical
% intersection algorithm for a better localization of the targets in
% 3-dimensional space.
numSensors = 4;
emitterIdx = 1; % Emitter is added as first platform in scene

Create and mount emitter

In a bistatic system, there are three types of emitters:

• Dedicated: This type of transmitter is intentionally designed and operated to support bistatic
processing.

• Cooperative: This type of transmitter is designed to support other functions but is suitable for
bistatic use. Information about the transmitter such as its transmitted waveform and position are
known.

• Non-Cooperative: This type is a "transmitter of opportunity". Non-cooperative transmitters cannot
be controlled but are deemed suitable for bistatic use.

In this example, the modeled emitter is considered to be a dedicated transmitter. Model an RF
emission using radarEmitter. This emitter is an ideal, isotropic emitter with a 360 degrees field of
view. The waveform type is a user-defined value used to enumerate the various waveform types that
are present in the scenario. For this scenario, use the value 1 to indicate an LFM type waveform.
Mount the emitter to a stationary platform at the origin.

% Define an emitter.
emitter = radarEmitter(emitterIdx,'No scanning', ...
 'FieldOfView',[360 180], ... % [az el] deg
 'CenterFrequency', 300e6, ... % Hz
 'Bandwidth', 30e6, ... % Hz
 'WaveformType', 1); % Use 1 for an LFM-like waveform

% Mount emitter on a platform.
thisPlat = platform(scene,'Trajectory',kinematicTrajectory('Position',[0 0 0],...
 'Velocity',[0 0 0]));
thisPlat.Emitters = {emitter};

Create and mount bistatic radar sensors

Model a bistatic radar sensor using radarSensor. The radar sensor is an ideal, isotropic receiver
with a 360 degrees field of view. Set the DetectionMode to bistatic. Ensure that the sensor is
configured so that its center frequency, bandwidth, and expected waveform types will match the

6 Featured Examples

6-324

emitter configuration. Enable INS for tracking in scenario coordinates and mount the bistatic radar
sensor to platforms.

% Define some random trajectories for the four bistatic radar sensors.
% Circularly distributed with some variance.
r = 2000; % Range, m
theta = linspace(0,pi,numSensors); % Theta, rad
xSen = r*cos(theta) + 100*randn(1,numSensors); % m
ySen = r*sin(theta) + 100*randn(1,numSensors); % m

% To observe the z of the targets, the sensors must have some elevation
% with respect to each other and emitter.
zSen = -1000*rand(1,numSensors); % m

% Define a bistatic radar sensor.
sensor = fusionRadarSensor(1,'No scanning', ...
 'FieldOfView',[360 180], ... % [az el] deg
 'DetectionMode','Bistatic', ... % Bistatic detection mode
 'CenterFrequency', 300e6, ... % Hz
 'Bandwidth', 30e6, ... % Hz
 'WaveformTypes', 1,... % Use 1 for an LFM-like waveform
 'HasINS',true,... % Has INS to enable tracking in scenario
 'AzimuthResolution',360,... % Does not measure azimuth and has a single resolution cell
 'HasElevation',true,... % Enable elevation to set elevation resolution
 'ElevationResolution',180); % Single elevation resolution cell

% Mount bistatic radar sensors on platforms.
for iD = 1:numSensors
 % Create a platform with the trajectory. The sensing platforms are
 % considered stationary, but can be provided with a velocity.
 thisPlat = platform(scene,...
 'Trajectory',kinematicTrajectory('Position',[xSen(iD) ySen(iD) zSen(iD)],...
 'Velocity',[0 0 0]));
 % Clone the bistatic radar sensor and mount to platforms.
 thisPlat.Sensors = {clone(sensor)};
 % Provide the correct sensor index.
 thisPlat.Sensors{1}.SensorIndex = iD;
end

Simulating the bistatic scenario involves the following:

• Generating RF emissions
• Propagating the emissions and reflecting these emissions from platforms
• Receiving the emissions, calculating interference losses, and generating detections.

This process is wrapped in a supporting function, detectBistaticTargetRange, defined at the
end of this example.

Target Localization

The figure in the Introduction section illustrated that with a bistatic measurement, the target lies
somewhere on an ellipsoid defined by the emitter and sensor positions, as well as the measured
bistatic range. Since the target can lie anywhere on the ellipsoid, a single bistatic measurement does
not provide full observability of the target state. To localize the target (triangulate the target position)
and achieve observability of target's state, multiple measurements from different sensors are needed.
The target localization algorithm that is implemented in this example is based on the spherical

 Tracking Using Bistatic Range Detections

6-325

intersection method described in reference [1]. The non-linear nature of the localization problem
results in two possible target locations from intersection of 3 or more sensor bistatic ranges. A
decision about target location from two possible locations can be facilitated by using more than 3
sensors. In this example, you use four sensors to generate bistatic detections using one emitter.

Next, you will add a target to the scene to generate bistatic detections.

Add one target to scenario

Platforms without any attached emitters or sensors are referred to as targets. Create targets for
tracking using platform.

% Add one target here using the platform method of scenario. Specify the
% trajectory using a kinematicTrajectory with random position and constant
% velocity.
platform(scene,'Trajectory',kinematicTrajectory(...
 'Position', [2000*randn 100*randn -1000],...
 'Velocity',[10*randn 10*randn 5*randn]));

% Initialize the display for visualization.
theaterDisplay = helperBistaticRangeFusionDisplay(scene,...
 'XLim',[-3 3],'YLim', [-3 3],'ZLim',[-2.5 0],...
 'GIF',''); % records new GIF if name specified
view(3);

In a scenario with a single target and no false alarms, multiple measurements can be triangulated to
obtain the localized target position. This localized position can be used as an estimate of target
position or can also be passed to a tracker to estimate the target state. Now, you will generate
bistatic radar detections from a single target and visualize the geometry of bistatic ellipsoids. You will
calculate the triangulated position using the supporting function helperBistaticRangeFusion,
included with this example. The helperBistaticRangeFusion function calculates the triangulated
position of the target, given the bistatic range detections generated by the target.

% Create a fused detection to represent the triangulated position and
% visualize the position as a 3-D fused position detection.
measParam = struct('Frame','Rectangular',...
 'HasAzimuth',true,'HasElevation',true,...
 'HasRange',true,'HasVelocity',false,...
 'OriginPosition',[0;0;0],...% Fused position is in scenario frame
 'OriginVelocity',[0;0;0],...% Scenario frame has zero velocity
 'Orientation',eye(3),... % Scenario frame has no rotation.
 'IsParentToChild',false); % Specify if rotation is specified in parent frame

% Represent the fused detection using objectDetection. It has a 3-D
% position and covariance.
fusedDetection = {objectDetection(0,zeros(3,1),'MeasurementNoise',eye(3),...
 'MeasurementParameters',measParam)};

% Change view
view(-125,9);

% Run scenario.
while advance(scene)
 % Get current simulation time.
 time = scene.SimulationTime;

 % Get bistatic range detections from 1 target.

6 Featured Examples

6-326

 detections = detectBistaticTargetRange(scene,time,emitterIdx,true);

 % Triangulate detections to estimate target position.
 [position, covariance] = helperBistaticRangeFusion(detections);

 % Update the fused detection.
 fusedDetection{1}.Measurement = position;
 fusedDetection{1}.MeasurementNoise = covariance;

 % Update the display.
 theaterDisplay([detections;fusedDetection]);
end

% Write new GIF if requested
writeGIF(theaterDisplay);

 Tracking Using Bistatic Range Detections

6-327

In the preceding animations, the bistatic radar sensors are depicted with the downward-pointing
triangles. The stationary emitter is depicted with the purple circle marker at the origin. The target is
denoted by the white diamond and the grey line shows the trajectory of the target. The 2-D animation
is sliced at the target's Z location at each time stamp.

The fused detection, shown using the yellow circle marker, lies close to the intersection region
generated the four ellipsoids and is close to the true position of the target during the scenario.

Multi-Target Scenario

The single-target scenario assumes that detections are known to be generated by the same target.
Therefore, you can triangulate them to localize the target. However, in a multi-target scenario and in
the presence of false alarms and missed detections, this information is usually not available. This
results in the unknown data association between detections and the targets. To solve this problem,
you use the staticDetectionFuser. The staticDetectionFuser estimates the unknown data
association between detections and targets and finds the best solution using a multi-dimensional
assignment formulation. The staticDetectionFuser outputs fused detections. The number of
fused detections represent possible number of targets and each detection represents the Cartesian
position of the target.

Next, you will add new targets to the scenario, and use the staticDetectionFuser to create fused
detections from multiple targets in the presence of false alarms. These detections are further
processed by a GNN tracker, trackerGNN, to track the targets.

% Restart the scenario and add remaining targets.
restart(scene);

6 Featured Examples

6-328

% Reproducible geometry
rng(2021);

% Number of targets added here.
numTargets = 4;

% randomly distributed targets.
r = abs(2000*randn(1,numTargets)); % Random ranges (m)
theta = linspace(0,numTargets*pi/4,numTargets); % Angular position (rad)
xTgt = r.*cos(theta) + 100*randn(1,numTargets); % x position (m)
yTgt = -r.*sin(theta) + 100*randn(1,numTargets); % y position (m)

% Targets above ground.
zTgt = -1000*ones(1,numTargets); % z position (m)

for iD = 1:numTargets
 thisPlat = platform(scene,...
 'Trajectory',kinematicTrajectory('Position',[xTgt(iD) yTgt(iD) zTgt(iD)],...
 'Velocity',[10*randn 10*randn 5*randn]));
end

% Update platforms variable.
platforms = scene.Platforms;

% Reset the display.
release(theaterDisplay);

% Turn off plotting for bistatic ellipse for all targets.
theaterDisplay.PlotBistaticEllipse = false;

% No recording
theaterDisplay.GIF = '';

% Call once to plot new trajectories.
theaterDisplay();

% Scenario display with trajectories.
showScenario(theaterDisplay);
snapnow;
showGrabs(theaterDisplay,[]);

 Tracking Using Bistatic Range Detections

6-329

Setup Fuser and Tracker

This section creates a static detection fuser that uses the spherical intersection localization algorithm
discussed earlier. Additionally, a Global Nearest Neighbor (GNN) tracker is defined to process the
fused detections.

% Define a static detection fuser.
fuser = staticDetectionFuser(...
 'MeasurementFusionFcn','helperBistaticRangeFusion', ...
 'UseParallel',true, ... % Do parallel processing
 'MaxNumSensors',numSensors, ... % Number of bistatic radar sensors
 'Volume',sensor.RangeResolution, ... % Volumes of the sensors' detection bin
 'MeasurementFormat','custom', ... % Define custom fused measurement as bistatic cannot not reported by cvmeas
 'MeasurementFcn','helperBistaticMeas',... % Set measurement function for reporting bistatic measurement
 'DetectionProbability',0.99 ... % Probability of detecting the target
);

% Define a GNN tracker.
tracker = trackerGNN('AssignmentThreshold',100);

Track Targets Using Static Fusion

The simulated bistatic detections are fused with the staticDetectionFuser using spherical
intersection algorithm. The fused detections are then passed to the GNN tracker.

while advance(scene)
 % Get current simulation time.

6 Featured Examples

6-330

 time = scene.SimulationTime;

 % Get bistatic range detections
 detections = detectBistaticTargetRange(scene,time,emitterIdx);

 % Fuse bistatic detections into one structure.
 [superDets, info] = fuser(detections);

 % Track fused bistatic detections using the GNN tracker.
 confTracks = tracker(superDets,scene.SimulationTime);

 % Update display with current platform positions and tracks.
 theaterDisplay([superDets(:);detections(:)],confTracks);
end

Results

In the presence of multiple targets and possible false alarms, the ghost intersections may sometimes
be more favorable than actual solution. As these ghost intersections appear randomly on the scenario,
they are effectively treated as "false alarms" by the centralized tracker. You can notice in the figures
below that the static fusion outputs detections at the incorrect positions. As ghost intersections
compete with true intersections, two true targets are missed at this time.

In the "Current Estimated Tracks" plot, note that the tracker is able to maintain tracks on all 5
targets without creating any ghosts or false tracks.

showGrabs(theaterDisplay,1);

 Tracking Using Bistatic Range Detections

6-331

The plots below show the top view of tracks 1 and 2 with their histories at the end of the simulation.
The history is represented by the orange line connecting the track. Notice that the track histories are
close to the true trajectories of the targets.

showGrabs(theaterDisplay,2,false);

6 Featured Examples

6-332

 Tracking Using Bistatic Range Detections

6-333

Summary

In this example, you learned how to simulate a scenario with bistatic sensors. You learned about the
challenges associated with tracking targets using bistatic measurements. You used the
staticDetectionFuser to fuse bistatic range detections from multiple targets and trackerGNN to
track targets with the fused position measurements.

Supporting functions

helperBistaticRangeFusion Fuse range-only detections to triangulate target position

function [pos,cov] = helperBistaticRangeFusion(detections)
% This function is for example purposes only and may be removed in a future
% release.
% This function returns the estimated position and covariance of the target
% given the bistatic detections generated from it.

% Copyright 2019 The MathWorks, Inc.

% Do a coarse gating, as a minimum of 3 measurements are required for
% finding a solution.
if numel(detections) < 3
 pos = 1e10*ones(3,1);
 cov = 2*eye(3);
else
 % Retrieve info from measurements
 ranges = zeros(numel(detections),1);
 receiverLocations = zeros(3,numel(detections));
 emitterLocation = detections{1}.MeasurementParameters.EmitterPosition;
 for i = 1:numel(detections)
 rLoc = detections{i}.MeasurementParameters(2).OriginPosition;
 receiverLocations(:,i) = rLoc;

 % The spherical intersection method assumes that measurment is
 % Remit + Rrecv. Bistatic measurement is defined as Remit + Rrecv - Rb.
 % Add the Rb to the actual measurement
 L = norm(emitterLocation(:) - rLoc(:));
 ranges(i) = detections{i}.Measurement + L;
 end
 pos = helperSphericalIntersection(ranges,receiverLocations,emitterLocation);

 % Covariance is calculated only when required. This helps saving
 % computation during cost calculation for static fusion, where only
 % position is required.
 if nargout > 1
 cov = linearFusionFcn(pos,detections);
 end
end

end

%% linear fusion function for measurement noise
function measCov = linearFusionFcn(pos,thisDetections)
% Linear noise fusion function. It requires measJacobian to use linear
% transformation.
% Use a constant velocity state to calculate jacobians.
estState = zeros(6,1);

6 Featured Examples

6-334

estState(1:2:end) = pos;
n = numel(thisDetections);
totalJacobian = zeros(n,3);
totalCovariance = zeros(n,n);
for i = 1:numel(thisDetections)
 H = cvmeasjac(estState,thisDetections{i}.MeasurementParameters);
 totalJacobian(i,:) = H(1,1:2:end);
 totalCovariance(i,i) = thisDetections{i}.MeasurementNoise;
end
toInvertJacobian = totalJacobian'/(totalCovariance)*totalJacobian;
I = eye(3);
% 2-D to 3-D conversion with 0 jacobian wrt z.
if toInvertJacobian(3,3) == 0
 toInvertJacobian(3,3) = 1;
end
measCov = I/toInvertJacobian;
% Return true positive definite.
measCov = (measCov + measCov')/2;
measCov(~isfinite(measCov)) = 1000; % Some big number for inf and nan
end

detectionBistaticTargetRange Generate bistatic range-only detections from targets in scenario.

function detections = detectBistaticTargetRange(scene,time,emitterIdx,removeFalseAlarms)
 % Get platforms from scenario.
 platforms = scene.Platforms;

 % A flag to indicate if false alarms should be removed from detections.
 if nargin == 3
 removeFalseAlarms = false;
 end

 % Distinguish between receivers and targets to remove detections from
 % the receiver. It is assumed that these detections can be removed from
 % the batch using prior information.
 isReceiver = cellfun(@(x)~isempty(x.Sensors),scene.Platforms);
 allIDs = cellfun(@(x)x.PlatformID,scene.Platforms);
 receiverIDs = allIDs(isReceiver);

 % Generate RF emissions
 emitPlatform = platforms{emitterIdx};
 txEmiss = emit(emitPlatform, time);

 % Propagate the emissions and reflect these emissions from platforms.
 reflSigs = radarChannel(txEmiss, platforms,'HasOcclusion',false);

 % Generate detections from the bistatic radar sensor.
 detections = {};
 numPlat = numel(platforms);
 for iPlat = 1:numPlat
 thisPlatform = platforms{iPlat};

 % Receive the emissions, calculate interference losses, and
 % generate bistatic detections.
 thisDet = detect(thisPlatform, reflSigs, time);

 % Remove the detections that are the bistatic receivers. Only the

 Tracking Using Bistatic Range Detections

6-335

 % detections from the target platforms will be fused and tracked.
 detectedTargetIDs = cellfun(@(x)x.ObjectAttributes{1}.TargetIndex,thisDet);
 toRemove = ismember(detectedTargetIDs, receiverIDs) | removeFalseAlarms*(detectedTargetIDs<=0);
 thisDet = thisDet(~toRemove);

 % Add this platform's detections to the detections array.
 detections = [detections; thisDet]; %#ok<AGROW>
 end

 % Determine emitter position and velocity for this simulation time.
 emitterPosition = emitPlatform.Trajectory.Position(:);

 % Update detections structure to indicate that only bistatic range measurements are retained.
 for iD = 1:numel(detections)
 detections{iD}.Measurement = detections{iD}.Measurement(end); %#ok<AGROW> % Range measurement
 detections{iD}.MeasurementNoise = detections{iD}.MeasurementNoise(end,end); %#ok<AGROW> % Measurement noise for range
 detections{iD}.MeasurementParameters(1).HasAzimuth = false; %#ok<AGROW> % Update measurement parameters to indicate that azimuth no longer exists
 detections{iD}.MeasurementParameters(1).HasElevation = false; %#ok<AGROW> % Update measurement parameters to indicate that elevation no longer exists
 detections{iD}.MeasurementParameters(1).EmitterPosition = emitterPosition; %#ok<AGROW> % Add emitter position
 end
end

References

1 Malanowski, M. and K. Kulpa. "Two Methods for Target Localization in Multistatic Passive
Radar." IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 1, Jan. 2012, pp.
572-578.

2 Willis, N. J. Bistatic Radar. Raleigh:SciTech Publishing, Inc., 2005.

6 Featured Examples

6-336

Pose Estimation From Asynchronous Sensors
This example shows how you might fuse sensors at different rates to estimate pose. Accelerometer,
gyroscope, magnetometer and GPS are used to determine orientation and position of a vehicle
moving along a circular path. You can use controls on the figure window to vary sensor rates and
experiment with sensor dropout while seeing the effect on the estimated pose.

Simulation Setup

Load prerecorded sensor data. The sensor data is based on a circular trajectory created using the
waypointTrajectory class. The sensor values were created using the gpsSensor and imuSensor
classes. The CircularTrajectorySensorData.mat file used here can be generated with the
generateCircularTrajSensorData function.

ld = load('CircularTrajectorySensorData.mat');

Fs = ld.Fs; % maximum MARG rate
gpsFs = ld.gpsFs; % maximum GPS rate
ratio = Fs./gpsFs;
refloc = ld.refloc;

trajOrient = ld.trajData.Orientation;
trajVel = ld.trajData.Velocity;
trajPos = ld.trajData.Position;
trajAcc = ld.trajData.Acceleration;
trajAngVel = ld.trajData.AngularVelocity;

accel = ld.accel;
gyro = ld.gyro;
mag = ld.mag;
lla = ld.lla;
gpsvel = ld.gpsvel;

Fusion Filter

Create an insfilterAsync to fuse IMU + GPS measurements. This fusion filter uses a continuous-
discrete extended Kalman filter (EKF) to track orientation (as a quaternion), angular velocity,
position, velocity, acceleration, sensor biases, and the geomagnetic vector.

This insfilterAsync has several methods to process sensor data: fuseaccel, fusegyro,
fusemag and fusegps. Because insfilterAsync uses a continuous-discrete EKF, the predict
method can step the filter forward an arbitrary amount of time.

fusionfilt = insfilterAsync('ReferenceLocation', refloc);

Initialize the State Vector of the insfilterAsync

The insfilterAsync tracks the pose states in a 28-element vector. The states are:

 States Units Index
 Orientation (quaternion parts) 1:4
 Angular Velocity (XYZ) rad/s 5:7
 Position (NED) m 8:10
 Velocity (NED) m/s 11:13
 Acceleration (NED) m/s^2 14:16
 Accelerometer Bias (XYZ) m/s^2 17:19
 Gyroscope Bias (XYZ) rad/s 20:22

 Pose Estimation From Asynchronous Sensors

6-337

 Geomagnetic Field Vector (NED) uT 23:25
 Magnetometer Bias (XYZ) uT 26:28

Ground truth is used to help initialize the filter states, so the filter converges to good answers quickly.

Nav = 100;
initstate = zeros(28,1);
initstate(1:4) = compact(meanrot(trajOrient(1:Nav)));
initstate(5:7) = mean(trajAngVel(10:Nav,:), 1);
initstate(8:10) = mean(trajPos(1:Nav,:), 1);
initstate(11:13) = mean(trajVel(1:Nav,:), 1);
initstate(14:16) = mean(trajAcc(1:Nav,:), 1);
initstate(23:25) = ld.magField;

% The gyroscope bias initial value estimate is low for the Z-axis. This is
% done to illustrate the effects of fusing the magnetometer in the
% simulation.
initstate(20:22) = deg2rad([3.125 3.125 3.125]);
fusionfilt.State = initstate;

Set the Process Noise Values of the insfilterAsync

The process noise variance describes the uncertainty of the motion model the filter uses.

fusionfilt.QuaternionNoise = 1e-2;
fusionfilt.AngularVelocityNoise = 100;
fusionfilt.AccelerationNoise = 100;
fusionfilt.MagnetometerBiasNoise = 1e-7;
fusionfilt.AccelerometerBiasNoise = 1e-7;
fusionfilt.GyroscopeBiasNoise = 1e-7;

Define the Measurement Noise Values Used to Fuse Sensor Data

Each sensor has some noise in the measurements. These values can typically be found on a sensor's
datasheet.

Rmag = 0.4;
Rvel = 0.01;
Racc = 610;
Rgyro = 0.76e-5;
Rpos = 3.4;

fusionfilt.StateCovariance = diag(1e-3*ones(28,1));

Initialize Scopes

The HelperScrollingPlotter scope enables plotting of variables over time. It is used here to
track errors in pose. The PoseViewerWithSwitches scope allows 3D visualization of the filter
estimate and ground truth pose. The scopes can slow the simulation. To disable a scope, set the
corresponding logical variable to false.

useErrScope = true; % Turn on the streaming error plot.
usePoseView = true; % Turn on the 3D pose viewer.
if usePoseView
 posescope = PoseViewerWithSwitches(...
 'XPositionLimits', [-30 30], ...
 'YPositionLimits', [-30, 30], ...
 'ZPositionLimits', [-10 10]);

6 Featured Examples

6-338

end
f = gcf;

if useErrScope
 errscope = HelperScrollingPlotter(...
 'NumInputs', 4, ...
 'TimeSpan', 10, ...
 'SampleRate', Fs, ...
 'YLabel', {'degrees', ...
 'meters', ...
 'meters', ...
 'meters'}, ...
 'Title', {'Quaternion Distance', ...
 'Position X Error', ...
 'Position Y Error', ...
 'Position Z Error'}, ...
 'YLimits', ...
 [-1, 30
 -2, 2
 -2 2
 -2 2]);
end

Simulation Loop

The simulation of the fusion algorithm allows you to inspect the effects of varying sensor sample
rates. Further, fusion of individual sensors can be prevented by unchecking the corresponding
checkbox. This can be used to simulate sensor dropout.

Some configurations produce dramatic results. For example, turning off the GPS sensor causes the
position estimate to drift quickly. Turning off the magnetometer sensor will cause the orientation
estimate to slowly deviate from the ground truth as the estimate rotates too fast. Conversely, if the
gyroscope is turned off and the magnetometer is turned on, the estimated orientation shows a wobble
and lacks the smoothness present if both sensors are used.

Turning all sensors on but setting them to run at the lowest rate produces an estimate that visibly
deviates from the ground truth and then snaps back to a more correct result when sensors are fused.
This is most easily seen in the HelperScrollingPlotter of the running estimate errors.

The main simulation runs at 100 Hz. Each iteration inspects the checkboxes on the figure window
and, if the sensor is enabled, fuses the data for that sensor at the appropriate rate.

for ii=1:size(accel,1)
 fusionfilt.predict(1./Fs);

 % Fuse Accelerometer
 if (f.UserData.Accelerometer) && ...
 mod(ii, fix(Fs/f.UserData.AccelerometerSampleRate)) == 0

 fusionfilt.fuseaccel(accel(ii,:), Racc);
 end

 % Fuse Gyroscope
 if (f.UserData.Gyroscope) && ...
 mod(ii, fix(Fs/f.UserData.GyroscopeSampleRate)) == 0

 fusionfilt.fusegyro(gyro(ii,:), Rgyro);

 Pose Estimation From Asynchronous Sensors

6-339

 end

 % Fuse Magnetometer
 if (f.UserData.Magnetometer) && ...
 mod(ii, fix(Fs/f.UserData.MagnetometerSampleRate)) == 0

 fusionfilt.fusemag(mag(ii,:), Rmag);
 end

 % Fuse GPS
 if (f.UserData.GPS) && mod(ii, fix(Fs/f.UserData.GPSSampleRate)) == 0
 fusionfilt.fusegps(lla(ii,:), Rpos, gpsvel(ii,:), Rvel);
 end

 % Plot the pose error
 [p,q] = pose(fusionfilt);
 posescope(p, q, trajPos(ii,:), trajOrient(ii));

 orientErr = rad2deg(dist(q, trajOrient(ii)));
 posErr = p - trajPos(ii,:);
 errscope(orientErr, posErr(1), posErr(2), posErr(3));
end

6 Featured Examples

6-340

Conclusion

The insfilterAsync allows for various and varying sample rates. The quality of the estimated
outputs depends heavily on individual sensor fusion rates. Any sensor dropout will have a profound
effect on the output.

 Pose Estimation From Asynchronous Sensors

6-341

Magnetometer Calibration
Magnetometers detect magnetic field strength along a sensor's X,Y and Z axes. Accurate magnetic
field measurements are essential for sensor fusion and the determination of heading and orientation.

In order to be useful for heading and orientation computation, typical low cost MEMS magnetometers
need to be calibrated to compensate for environmental noise and manufacturing defects.

Ideal Magnetometers

An ideal three-axis magnetometer measures magnetic field strength along orthogonal X, Y and Z
axes. Absent any magnetic interference, magnetometer readings measure the Earth's magnetic field.
If magnetometer measurements are taken as the sensor is rotated through all possible orientations,
the measurements should lie on a sphere. The radius of the sphere is the magnetic field strength.

To generate magnetic field samples, use the imuSensor object. For these purposes it is safe to
assume the angular velocity and acceleration are zero at each orientation.

N = 500;
rng(1);
acc = zeros(N,3);
av = zeros(N,3);
q = randrot(N,1); % uniformly distributed random rotations
imu = imuSensor('accel-mag');
[~,x] = imu(acc,av,q);
scatter3(x(:,1),x(:,2),x(:,3));
axis equal
title('Ideal Magnetometer Data');

6 Featured Examples

6-342

Hard Iron Effects

Noise sources and manufacturing defects degrade a magnetometer's measurement. The most striking
of these are hard iron effects. Hard iron effects are stationary interfering magnetic noise sources.
Often, these come from other metallic objects on the circuit board with the magnetometer. The hard
iron effects shift the origin of the ideal sphere.

imu.Magnetometer.ConstantBias = [2 10 40];
[~,x] = imu(acc,av,q);
figure;
scatter3(x(:,1),x(:,2),x(:,3));
axis equal
title('Magnetometer Data With a Hard Iron Offset');

 Magnetometer Calibration

6-343

Soft Iron Effects

Soft iron effects are more subtle. They arise from objects near the sensor which distort the
surrounding magnetic field. These have the effect of stretching and tilting the sphere of ideal
measurements. The resulting measurements lie on an ellipsoid.

The soft iron magnetic field effects can be simulated by rotating the geomagnetic field vector of the
IMU to the sensor frame, stretching it, and then rotating it back to the global frame.

nedmf = imu.MagneticField;
Rsoft = [2.5 0.3 0.5; 0.3 2 .2; 0.5 0.2 3];
soft = rotateframe(conj(q),rotateframe(q,nedmf)*Rsoft);

for ii=1:numel(q)
 imu.MagneticField = soft(ii,:);
 [~,x(ii,:)] = imu(acc(ii,:),av(ii,:),q(ii));
end
figure;
scatter3(x(:,1),x(:,2),x(:,3));
axis equal
title('Magnetometer Data With Hard and Soft Iron Effects');

6 Featured Examples

6-344

Correction Technique

The magcal function can be used to determine magnetometer calibration parameters that account
for both hard and soft iron effects. Uncalibrated magnetometer data can be modeled as lying on an
ellipsoid with equation

In this equation R is a 3-by-3 matrix, b is a 1-by-3 vector defining the ellipsoid center, x is a 1-by-3
vector of uncalibrated magnetometer measurements, and is a scalar indicating the magnetic field
strength. The above equation is the general form of a conic. For an ellipsoid, R must be positive
definite. The magcal function uses a variety of solvers, based on different assumptions about R. In
the magcal function, R can be assumed to be the identity matrix, a diagonal matrix, or a symmetric
matrix.

The magcal function produces correction coefficients that take measurements which lie on an offset
ellipsoid and transform them to lie on an ideal sphere, centered at the origin. The magcal function
returns a 3-by-3 real matrix A and a 1-by-3 vector b. To correct the uncalibrated data compute

Here x is a 1-by-3 array of uncalibrated magnetometer measurements and m is the 1-by-3 array of
corrected magnetometer measurements, which lie on a sphere. The matrix A has a determinant of 1
and is the matrix square root of R. Additionally, A has the same form as R : the identity, a diagonal, or

 Magnetometer Calibration

6-345

a symmetric matrix. Because these kinds of matrices cannot impart a rotation, the matrix A will not
rotate the magnetometer data during correction.

The magcal function also returns a third output which is the magnetic field strength . You can use
the magnetic field strength to set the ExpectedMagneticFieldStrength property of ahrsfilter.

Using the magcal Function

Use the magcal function to determine calibration parameters that correct noisy magnetometer data.
Create noisy magnetometer data by setting the NoiseDensity property of the Magnetometer
property in the imuSensor. Use the rotated and stretched magnetic field in the variable soft to
simulate soft iron effects.

imu.Magnetometer.NoiseDensity = 0.08;
for ii=1:numel(q)
 imu.MagneticField = soft(ii,:);
 [~,x(ii,:)] = imu(acc(ii,:),av(ii,:),q(ii));
end

To find the A and b parameters which best correct the uncalibrated magnetometer data, simply call
the function as:

[A,b,expMFS] = magcal(x);
xCorrected = (x-b)*A;

Plot the original and corrected data. Show the ellipsoid that best fits the original data. Show the
sphere on which the corrected data should lie.

de = HelperDrawEllipsoid;
de.plotCalibrated(A,b,expMFS,x,xCorrected,'Auto');

6 Featured Examples

6-346

The magcal function uses a variety of solvers to minimize the residual error. The residual error is the
sum of the distances between the calibrated data and a sphere of radius expMFS.

r = sum(xCorrected.^2,2) - expMFS.^2;
E = sqrt(r.'*r./N)./(2*expMFS.^2);
fprintf('Residual error in corrected data : %.2f\n\n',E);

Residual error in corrected data : 0.01

You can run the individual solvers if only some defects need to be corrected or to achieve a simpler
correction computation.

Offset-Only Computation

Many MEMS magnetometers have registers within the sensor that can be used to compensate for the
hard iron offset. In effect, the (x-b) portion of the equation above happens on board the sensor. When
only a hard iron offset compensation is needed, the A matrix effectively becomes the identity matrix.
To determine the hard iron correction alone, the magcal function can be called this way:

[Aeye,beye,expMFSeye] = magcal(x,'eye');
xEyeCorrected = (x-beye)*Aeye;
[ax1,ax2] = de.plotCalibrated(Aeye,beye,expMFSeye,x,xEyeCorrected,'Eye');

 Magnetometer Calibration

6-347

view(ax1,[-1 0 0]);
view(ax2,[-1 0 0]);

Hard Iron Compensation and Axis Scaling Computation

For many applications, treating the ellipsoid matrix as a diagonal matrix is sufficient. Geometrically,
this means the ellipsoid of uncalibrated magnetometer data is approximated to have its semiaxes
aligned with the coordinate system axes and a center offset from the origin. Though this is unlikely to
be the actual characteristics of the ellipsoid, it reduces the correction equation to a single multiply
and single subtract per axis.

[Adiag,bdiag,expMFSdiag] = magcal(x,'diag');
xDiagCorrected = (x-bdiag)*Adiag;
[ax1,ax2] = de.plotCalibrated(Adiag,bdiag,expMFSdiag,x,xDiagCorrected,...
 'Diag');

6 Featured Examples

6-348

Full Hard and Soft Iron Compensation

To force the magcal function to solve for an arbitrary ellipsoid and produce a dense, symmetric A
matrix, call the function as:

[A,b] = magcal(x,'sym');

Auto Fit

The 'eye', 'diag', and 'sym' flags should be used carefully and the output values inspected. In
some cases, there may be insufficient data for a high order ('diag' or 'sym') fit and a better set of
correction parameters can be found using a simpler A matrix. The 'auto' fit option, which is the
default, handles this situation.

Consider the case when insufficient data is used with a high order fitter.

xidx = x(:,3) > 100;
xpoor = x(xidx,:);
[Apoor,bpoor,mfspoor] = magcal(xpoor,'diag');

There is not enough data spread over the surface of the ellipsoid to achieve a good fit and proper
calibration parameters with the 'diag' option. As a result, the Apoor matrix is complex.

disp(Apoor)

 0.0000 + 0.4722i 0.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.5981i 0.0000 + 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.0000i 3.5407 + 0.0000i

 Magnetometer Calibration

6-349

Using the 'auto' fit option avoids this problem and finds a simpler A matrix which is real,
symmetric, and positive definite. Calling magcal with the 'auto' option string is the same as calling
without any option string.

[Abest,bbest,mfsbest] = magcal(xpoor,'auto');
disp(Abest)

 1 0 0
 0 1 0
 0 0 1

Comparing the results of using the 'auto' fitter and an incorrect, high order fitter show the perils of
not examining the returned A matrix before correcting the data.

de.compareBest(Abest,bbest,mfsbest,Apoor,bpoor,mfspoor,xpoor);

Calling the magcal function with the 'auto' flag, which is the default, will try all possibilities of
'eye', 'diag' and 'sym' searching for the A and b which minimizes the residual error, keeps A
real, and ensures R is positive definite and symmetric.

Conclusion

The magcal function can give calibration parameters to correct hard and soft iron offsets in a
magnetometer. Calling the function with no option string, or equivalently the 'auto' option string,
produces the best fit and covers most cases.

6 Featured Examples

6-350

Track Vehicles Using Lidar: From Point Cloud to Track List
This example shows you how to track vehicles using measurements from a lidar sensor mounted on
top of an ego vehicle. Lidar sensors report measurements as a point cloud. The example illustrates
the workflow in MATLAB® for processing the point cloud and tracking the objects. For a Simulink®
version of the example, refer to “Track Vehicles Using Lidar Data in Simulink” on page 6-385.The
lidar data used in this example is recorded from a highway driving scenario. In this example, you use
the recorded data to track vehicles with a joint probabilistic data association (JPDA) tracker and an
interacting multiple model (IMM) approach.

3-D Bounding Box Detector Model

Due to high resolution capabilities of the lidar sensor, each scan from the sensor contains a large
number of points, commonly known as a point cloud. This raw data must be preprocessed to extract
objects of interest, such as cars, cyclists, and pedestrians. In this example, you use a classical
segmentation algorithm using a distance-based clustering algorithm. For more details about
segmentation of lidar data into objects such as the ground plane and obstacles, refer to the “Ground
Plane and Obstacle Detection Using Lidar” (Automated Driving Toolbox) example. For a deep learning
segmentation workflow, refer to the “Detect, Classify, and Track Vehicles Using Lidar” (Lidar Toolbox)
example. In this example, the point clouds belonging to obstacles are further classified into clusters
using the pcsegdist function, and each cluster is converted to a bounding box detection with the
following format:

, and refer to the x-, y- and z-positions of the bounding box, refers to its yaw angle and , and
 refer to its length, width, and height, respectively. The pcfitcuboid (Lidar Toolbox) function uses

L-shape fitting algorithm to determine the yaw angle of the bounding box.

The detector is implemented by a supporting class HelperBoundingBoxDetector, which wraps
around point cloud segmentation and clustering functionalities. An object of this class accepts a
pointCloud input and returns a list of objectDetection objects with bounding box
measurements.

The diagram shows the processes involved in the bounding box detector model and the Lidar
Toolbox™ functions used to implement each process. It also shows the properties of the supporting
class that control each process.

The lidar data is available at the following location: https://ssd.mathworks.com/supportfiles/lidar/
data/TrackVehiclesUsingLidarExampleData.zip

 Track Vehicles Using Lidar: From Point Cloud to Track List

6-351

https://ssd.mathworks.com/supportfiles/lidar/data/TrackVehiclesUsingLidarExampleData.zip
https://ssd.mathworks.com/supportfiles/lidar/data/TrackVehiclesUsingLidarExampleData.zip

Download the data files into your temporary directory, whose location is specified by MATLAB's
tempdir function. If you want to place the files in a different folder, change the directory name in the
subsequent instructions.

% Load data if unavailable. The lidar data is stored as a cell array of
% pointCloud objects.
if ~exist('lidarData','var')
 dataURL = 'https://ssd.mathworks.com/supportfiles/lidar/data/TrackVehiclesUsingLidarExampleData.zip';
 datasetFolder = fullfile(tempdir,'LidarExampleDataset');
 if ~exist(datasetFolder,'dir')
 unzip(dataURL,datasetFolder);
 end
 % Specify initial and final time for simulation.
 initTime = 0;
 finalTime = 35;
 [lidarData, imageData] = loadLidarAndImageData(datasetFolder,initTime,finalTime);
end

% Set random seed to generate reproducible results.
S = rng(2018);

% A bounding box detector model.
detectorModel = HelperBoundingBoxDetector(...
 'XLimits',[-50 75],... % min-max
 'YLimits',[-5 5],... % min-max
 'ZLimits',[-2 5],... % min-max
 'SegmentationMinDistance',1.8,... % minimum Euclidian distance
 'MinDetectionsPerCluster',1,... % minimum points per cluster
 'MeasurementNoise',blkdiag(0.25*eye(3),25,eye(3)),... % measurement noise in detection report
 'GroundMaxDistance',0.3); % maximum distance of ground points from ground plane

Target State and Sensor Measurement Model

The first step in tracking an object is defining its state, and the models that define the transition of
state and the corresponding measurement. These two sets of equations are collectively known as the
state-space model of the target. To model the state of vehicles for tracking using lidar, this example
uses a cuboid model with following convention:

 refers to the portion of the state that controls the kinematics of the motion center, and is the
yaw angle. The length, width, and height of the cuboid are modeled as constants, whose estimates
evolve in time during correction stages of the filter.

In this example, you use two state-space models: a constant velocity (cv) cuboid model and a constant
turn-rate (ct) cuboid model. These models differ in the way they define the kinematic part of the
state, as described below:

For information about their state transition, refer to the helperConstvelCuboid and
helperConstturnCuboid functions used in this example.

The helperCvmeasCuboid and helperCtmeasCuboid measurement models describe how the
sensor perceives the constant velocity and constant turn-rate states respectively, and they return

6 Featured Examples

6-352

bounding box measurements. Because the state contains information about size of the target, the
measurement model includes the effect of center-point offset and bounding box shrinkage, as
perceived by the sensor, due to effects like self-occlusion [1]. This effect is modeled by a shrinkage
factor that is directly proportional to the distance from the tracked vehicle to the sensor.

The image below demonstrates the measurement model operating at different state-space samples.
Notice the modeled effects of bounding box shrinkage and center-point offset as the objects move
around the ego vehicle.

Set Up Tracker and Visualization

The image below shows the complete workflow to obtain a list of tracks from a pointCloud input.

 Track Vehicles Using Lidar: From Point Cloud to Track List

6-353

Now, set up the tracker and the visualization used in the example.

A joint probabilistic data association tracker (trackerJPDA) coupled with an IMM filter
(trackingIMM) is used to track objects in this example. The IMM filter uses a constant velocity and
constant turn-rate model and is initialized using the supporting function, helperInitIMMFilter,
included with this example. The IMM approach helps a track to switch between motion models and
thus achieve good estimation accuracy during events like maneuvering or lane changing. The
animation below shows the effect of mixing the constant velocity and constant turn-rate model during
prediction stages of the IMM filter.

The IMM filter updates the probability of each model when it is corrected with detections from the
object. The animation below shows the estimated trajectory of a vehicle during a lane change event
and the corresponding estimated probabilities of each model.

6 Featured Examples

6-354

Set the HasDetectableTrackIDsInput property of the tracker as true, which enables you to
specify a state-dependent probability of detection. The detection probability of a track is calculated
by the helperCalcDetectability function, listed at the end of this example.

assignmentGate = [75 1000]; % Assignment threshold;
confThreshold = [7 10]; % Confirmation threshold for history logic
delThreshold = [8 10]; % Deletion threshold for history logic
Kc = 1e-9; % False-alarm rate per unit volume

% IMM filter initialization function
filterInitFcn = @helperInitIMMFilter;

% A joint probabilistic data association tracker with IMM filter
tracker = trackerJPDA('FilterInitializationFcn',filterInitFcn,...
 'TrackLogic','History',...
 'AssignmentThreshold',assignmentGate,...

 Track Vehicles Using Lidar: From Point Cloud to Track List

6-355

 'ClutterDensity',Kc,...
 'ConfirmationThreshold',confThreshold,...
 'DeletionThreshold',delThreshold,...
 'HasDetectableTrackIDsInput',true,...
 'InitializationThreshold',0,...
 'HitMissThreshold',0.1);

The visualization is divided into these main categories:

1 Lidar Preprocessing and Tracking - This display shows the raw point cloud, segmented ground,
and obstacles. It also shows the resulting detections from the detector model and the tracks of
vehicles generated by the tracker.

2 Ego Vehicle Display - This display shows the 2-D bird's-eye view of the scenario. It shows the
obstacle point cloud, bounding box detections, and the tracks generated by the tracker. For
reference, it also displays the image recorded from a camera mounted on the ego vehicle and its
field of view.

3 Tracking Details - This display shows the scenario zoomed around the ego vehicle. It also shows
finer tracking details, such as error covariance in estimated position of each track and its motion
model probabilities, denoted by cv and ct.

% Create display
displayObject = HelperLidarExampleDisplay(imageData{1},...
 'PositionIndex',[1 3 6],...
 'VelocityIndex',[2 4 7],...
 'DimensionIndex',[9 10 11],...
 'YawIndex',8,...
 'MovieName','',... % Specify a movie name to record a movie.
 'RecordGIF',false); % Specify true to record new GIFs

Loop Through Data

Loop through the recorded lidar data, generate detections from the current point cloud using the
detector model and then process the detections using the tracker.

time = 0; % Start time
dT = 0.1; % Time step

% Initiate all tracks.
allTracks = struct([]);

% Initiate variables for comparing MATLAB and MEX simulation.
numTracks = zeros(numel(lidarData),2);

% Loop through the data
for i = 1:numel(lidarData)
 % Update time
 time = time + dT;

 % Get current lidar scan
 currentLidar = lidarData{i};

 % Generator detections from lidar scan.
 [detections,obstacleIndices,groundIndices,croppedIndices] = detectorModel(currentLidar,time);

 % Calculate detectability of each track.
 detectableTracksInput = helperCalcDetectability(allTracks,[1 3 6]);

6 Featured Examples

6-356

 % Pass detections to track.
 [confirmedTracks,tentativeTracks,allTracks,info] = tracker(detections,time,detectableTracksInput);
 numTracks(i,1) = numel(confirmedTracks);

 % Get model probabilities from IMM filter of each track using
 % getTrackFilterProperties function of the tracker.
 modelProbs = zeros(2,numel(confirmedTracks));
 for k = 1:numel(confirmedTracks)
 c1 = getTrackFilterProperties(tracker,confirmedTracks(k).TrackID,'ModelProbabilities');
 modelProbs(:,k) = c1{1};
 end

 % Update display
 if isvalid(displayObject.PointCloudProcessingDisplay.ObstaclePlotter)
 % Get current image scan for reference image
 currentImage = imageData{i};

 % Update display object
 displayObject(detections,confirmedTracks,currentLidar,obstacleIndices,...
 groundIndices,croppedIndices,currentImage,modelProbs);
 end

 % Snap a figure at time = 18
 if abs(time - 18) < dT/2
 snapnow(displayObject);
 end
end

% Write movie if requested
if ~isempty(displayObject.MovieName)
 writeMovie(displayObject);
end

% Write new GIFs if requested.
if displayObject.RecordGIF
 % second input is start frame, third input is end frame and last input
 % is a character vector specifying the panel to record.
 writeAnimatedGIF(displayObject,10,170,'trackMaintenance','ego');
 writeAnimatedGIF(displayObject,310,330,'jpda','processing');
 writeAnimatedGIF(displayObject,120,140,'imm','details');
end

 Track Vehicles Using Lidar: From Point Cloud to Track List

6-357

The figure above shows the three displays at time = 18 seconds. The tracks are represented by green
bounding boxes. The bounding box detections are represented by orange bounding boxes. The
detections also have orange points inside them, representing the point cloud segmented as obstacles.
The segmented ground is shown in purple. The cropped or discarded point cloud is shown in blue.

Generate C Code

You can generate C code from the MATLAB® code for the tracking and the preprocessing algorithm
using MATLAB Coder™. C code generation enables you to accelerate MATLAB code for simulation. To
generate C code, the algorithm must be restructured as a MATLAB function, which can be compiled
into a MEX file or a shared library. For this purpose, the point cloud processing algorithm and the
tracking algorithm is restructured into a MATLAB function, mexLidarTracker. Some variables are
defined as persistent to preserve their state between multiple calls to the function (see
persistent). The inputs and outputs of the function can be observed in the function description
provided in the "Supporting Files" section at the end of this example.

MATLAB Coder requires specifying the properties of all the input arguments. An easy way to do this
is by defining the input properties by example at the command line using the -args option. For more
information, see “Define Input Properties by Example at the Command Line” (MATLAB Coder). Note
that the top-level input arguments cannot be objects of the handle class. Therefore, the function
accepts the x, y and z locations of the point cloud as an input. From the stored point cloud, this
information can be extracted using the Location property of the pointCloud object. This
information is also directly available as the raw data from the lidar sensor.

6 Featured Examples

6-358

% Input lists
inputExample = {lidarData{1}.Location, 0};

% Create configuration for MEX generation
cfg = coder.config('mex');

% Replace cfg with the following to generate static library and perform
% software-in-the-loop simulation. This requires an Embedded Coder license.
%
% cfg = coder.config('lib'); % Static library
% cfg.VerificationMode = 'SIL'; % Software-in-the-loop

% Generate code if file does not exist.
if ~exist('mexLidarTracker_mex','file')
 h = msgbox({'Generating code. This may take a few minutes...';'This message box will close when done.'},'Codegen Message');
 % -config allows specifying the codegen configuration
 % -o allows specifying the name of the output file
 codegen -config cfg -o mexLidarTracker_mex mexLidarTracker -args inputExample
 close(h);
else
 clear mexLidarTracker_mex;
end

Code generation successful.

Rerun simulation with MEX Code

Rerun the simulation using the generated MEX code, mexLidarTracker_mex. Reset time

time = 0;

for i = 1:numel(lidarData)
 time = time + dT;

 currentLidar = lidarData{i};

 [detectionsMex,obstacleIndicesMex,groundIndicesMex,croppedIndicesMex,...
 confirmedTracksMex, modelProbsMex] = mexLidarTracker_mex(currentLidar.Location,time);

 % Record data for comparison with MATLAB execution.
 numTracks(i,2) = numel(confirmedTracksMex);
end

Compare results between MATLAB and MEX Execution

disp(isequal(numTracks(:,1),numTracks(:,2)));

 1

Notice that the number of confirmed tracks is the same for MATLAB and MEX code execution. This
assures that the lidar preprocessing and tracking algorithm returns the same results with generated
C code as with the MATLAB code.

 Track Vehicles Using Lidar: From Point Cloud to Track List

6-359

Results

Now, analyze different events in the scenario and understand how the combination of lidar
measurement model, joint probabilistic data association, and interacting multiple model filter, helps
achieve a good estimation of the vehicle tracks.

Track Maintenance

The animation above shows the simulation between time = 3 seconds and time = 16 seconds. Notice
that tracks such as T10 and T6 maintain their IDs and trajectory during the time span. However,
track T9 is lost because the tracked vehicle was missed (not detected) for a long time by the sensor.
Also, notice that the tracked objects are able to maintain their shape and kinematic center by
positioning the detections onto the visible portions of the vehicles. For example, as Track T7 moves
forward, bounding box detections start to fall on its visible rear portion and the track maintains the
actual size of the vehicle. This illustrates the offset and shrinkage effect modeled in the measurement
functions.

Capturing Maneuvers

The animation shows that using an IMM filter helps the tracker to maintain tracks on maneuvering
vehicles. Notice that the vehicle tracked by T4 changes lanes behind the ego vehicle. The tracker is
able maintain a track on the vehicle during this maneuvering event. Also notice in the display that its
probability of following the constant turn model, denoted by ct, increases during the lane change
maneuver.

Joint Probabilistic Data Association

6 Featured Examples

6-360

This animation shows that using a joint probabilistic data association tracker helps in maintaining
tracks during ambiguous situations. Here, vehicles tracked by T43 and T73, have a low probability of
detection due to their large distance from the sensor. Notice that the tracker is able to maintain
tracks during events when one of the vehicles is not detected. During the event, the tracks first
coalesce, which is a known phenomenon in JPDA, and then separate as soon as the vehicle was
detected again.

Summary

This example showed how to use a JPDA tracker with an IMM filter to track objects using a lidar
sensor. You learned how a raw point cloud can be preprocessed to generate detections for
conventional trackers, which assume one detection per object per sensor scan. You also learned how
to define a cuboid model to describe the kinematics, dimensions, and measurements of extended
objects being tracked by the JPDA tracker. In addition, you generated C code from the algorithm and
verified its execution results with the MATLAB simulation.

Supporting Files

helperLidarModel

This function defines the lidar model to simulate shrinkage of the bounding box measurement and
center-point offset. This function is used in the helperCvmeasCuboid and helperCtmeasCuboid
functions to obtain bounding box measurement from the state.

function meas = helperLidarModel(pos,dim,yaw)
% This function returns the expected bounding box measurement given an
% object's position, dimension, and yaw angle.

 Track Vehicles Using Lidar: From Point Cloud to Track List

6-361

% Copyright 2019 The MathWorks, Inc.

% Get x,y and z.
x = pos(1,:);
y = pos(2,:);
z = pos(3,:) - 2; % lidar mounted at height = 2 meters.

% Get spherical measurement.
[az,~,r] = cart2sph(x,y,z);

% Shrink rate
s = 3/50; % 3 meters radial length at 50 meters.
sz = 2/50; % 2 meters height at 50 meters.

% Get length, width and height.
L = dim(1,:);
W = dim(2,:);
H = dim(3,:);

az = az - deg2rad(yaw);

% Shrink length along radial direction.
Lshrink = min(L,abs(s*r.*(cos(az))));
Ls = L - Lshrink;

% Shrink width along radial direction.
Wshrink = min(W,abs(s*r.*(sin(az))));
Ws = W - Wshrink;

% Shrink height.
Hshrink = min(H,sz*r);
Hs = H - Hshrink;

% Similar shift is for x and y directions.
shiftX = Lshrink.*cosd(yaw) + Wshrink.*sind(yaw);
shiftY = Lshrink.*sind(yaw) + Wshrink.*cosd(yaw);
shiftZ = Hshrink;

% Modeling the affect of box origin offset
x = x - sign(x).*shiftX/2;
y = y - sign(y).*shiftY/2;
z = z + shiftZ/2 + 2;

% Measurement format
meas = [x;y;z;yaw;Ls;Ws;Hs];

end

helperInverseLidarModel

This function defines the inverse lidar model to initiate a tracking filter using a lidar bounding box
measurement. This function is used in the helperInitIMMFilter function to obtain state estimates
from a bounding box measurement.

function [pos,posCov,dim,dimCov,yaw,yawCov] = helperInverseLidarModel(meas,measCov)

6 Featured Examples

6-362

% This function returns the position, dimension, yaw using a bounding
% box measurement.

% Copyright 2019 The MathWorks, Inc.

% Shrink rate.
s = 3/50;
sz = 2/50;

% x,y and z of measurement
x = meas(1,:);
y = meas(2,:);
z = meas(3,:);

[az,~,r] = cart2sph(x,y,z);

% Shift x and y position.
Lshrink = abs(s*r.*(cos(az)));
Wshrink = abs(s*r.*(sin(az)));
Hshrink = sz*r;

shiftX = Lshrink;
shiftY = Wshrink;
shiftZ = Hshrink;

x = x + sign(x).*shiftX/2;
y = y + sign(y).*shiftY/2;
z = z - shiftZ/2;

pos = [x;y;z];
posCov = measCov(1:3,1:3,:);

yaw = meas(4,:);
yawCov = measCov(4,4,:);

% Dimensions are initialized for a standard passenger car with low
% uncertainity.
dim = [4.7;1.8;1.4];
dimCov = 0.01*eye(3);
end

HelperBoundingBoxDetector

This is the supporting class HelperBoundingBoxDetector to accept a point cloud input and return
a list of objectDetection

classdef HelperBoundingBoxDetector < matlab.System
 % HelperBoundingBoxDetector A helper class to segment the point cloud
 % into bounding box detections.
 % The step call to the object does the following things:
 %
 % 1. Removes point cloud outside the limits.
 % 2. From the survived point cloud, segments out ground
 % 3. From the obstacle point cloud, forms clusters and puts bounding
 % box on each cluster.

 Track Vehicles Using Lidar: From Point Cloud to Track List

6-363

 % Cropping properties
 properties
 % XLimits XLimits for the scene
 XLimits = [-70 70];
 % YLimits YLimits for the scene
 YLimits = [-6 6];
 % ZLimits ZLimits fot the scene
 ZLimits = [-2 10];
 end

 % Ground Segmentation Properties
 properties
 % GroundMaxDistance Maximum distance of point to the ground plane
 GroundMaxDistance = 0.3;
 % GroundReferenceVector Reference vector of ground plane
 GroundReferenceVector = [0 0 1];
 % GroundMaxAngularDistance Maximum angular distance of point to reference vector
 GroundMaxAngularDistance = 5;
 end

 % Bounding box Segmentation properties
 properties
 % SegmentationMinDistance Distance threshold for segmentation
 SegmentationMinDistance = 1.6;
 % MinDetectionsPerCluster Minimum number of detections per cluster
 MinDetectionsPerCluster = 2;
 % MaxZDistanceCluster Maximum Z-coordinate of cluster
 MaxZDistanceCluster = 3;
 % MinZDistanceCluster Minimum Z-coordinate of cluster
 MinZDistanceCluster = -3;
 end

 % Ego vehicle radius to remove ego vehicle point cloud.
 properties
 % EgoVehicleRadius Radius of ego vehicle
 EgoVehicleRadius = 3;
 end

 properties
 % MeasurementNoise Measurement noise for the bounding box detection
 MeasurementNoise = blkdiag(eye(3),10,eye(3));
 end

 properties (Nontunable)
 MeasurementParameters = struct.empty(0,1);
 end

 methods
 function obj = HelperBoundingBoxDetector(varargin)
 setProperties(obj,nargin,varargin{:})
 end
 end

 methods (Access = protected)
 function [bboxDets,obstacleIndices,groundIndices,croppedIndices] = stepImpl(obj,currentPointCloud,time)
 % Crop point cloud
 [pcSurvived,survivedIndices,croppedIndices] = cropPointCloud(currentPointCloud,obj.XLimits,obj.YLimits,obj.ZLimits,obj.EgoVehicleRadius);
 % Remove ground plane

6 Featured Examples

6-364

 [pcObstacles,obstacleIndices,groundIndices] = removeGroundPlane(pcSurvived,obj.GroundMaxDistance,obj.GroundReferenceVector,obj.GroundMaxAngularDistance,survivedIndices);
 % Form clusters and get bounding boxes
 detBBoxes = getBoundingBoxes(pcObstacles,obj.SegmentationMinDistance,obj.MinDetectionsPerCluster,obj.MaxZDistanceCluster,obj.MinZDistanceCluster);
 % Assemble detections
 if isempty(obj.MeasurementParameters)
 measParams = {};
 else
 measParams = obj.MeasurementParameters;
 end
 bboxDets = assembleDetections(detBBoxes,obj.MeasurementNoise,measParams,time);
 end
 end
end

function detections = assembleDetections(bboxes,measNoise,measParams,time)
% This method assembles the detections in objectDetection format.
numBoxes = size(bboxes,2);
detections = cell(numBoxes,1);
for i = 1:numBoxes
 detections{i} = objectDetection(time,cast(bboxes(:,i),'double'),...
 'MeasurementNoise',double(measNoise),'ObjectAttributes',struct,...
 'MeasurementParameters',measParams);
end
end

function bboxes = getBoundingBoxes(ptCloud,minDistance,minDetsPerCluster,maxZDistance,minZDistance)
 % This method fits bounding boxes on each cluster with some basic
 % rules.
 % Cluster must have at least minDetsPerCluster points.
 % Its mean z must be between maxZDistance and minZDistance.
 % length, width and height are calculated using min and max from each
 % dimension.
 [labels,numClusters] = pcsegdist(ptCloud,minDistance);
 pointData = ptCloud.Location;
 bboxes = nan(7,numClusters,'like',pointData);
 isValidCluster = false(1,numClusters);
 for i = 1:numClusters
 thisPointData = pointData(labels == i,:);
 meanPoint = mean(thisPointData,1);
 if size(thisPointData,1) > minDetsPerCluster && ...
 meanPoint(3) < maxZDistance && meanPoint(3) > minZDistance
 cuboid = pcfitcuboid(pointCloud(thisPointData));
 yaw = cuboid.Orientation(3);
 L = cuboid.Dimensions(1);
 W = cuboid.Dimensions(2);
 H = cuboid.Dimensions(3);
 if abs(yaw) > 45
 possibles = yaw + [-90;90];
 [~,toChoose] = min(abs(possibles));
 yaw = possibles(toChoose);
 temp = L;
 L = W;
 W = temp;
 end
 bboxes(:,i) = [cuboid.Center yaw L W H]';
 isValidCluster(i) = L < 20 & W < 20;
 end
 end

 Track Vehicles Using Lidar: From Point Cloud to Track List

6-365

 bboxes = bboxes(:,isValidCluster);
end

function [ptCloudOut,obstacleIndices,groundIndices] = removeGroundPlane(ptCloudIn,maxGroundDist,referenceVector,maxAngularDist,currentIndices)
 % This method removes the ground plane from point cloud using
 % pcfitplane.
 [~,groundIndices,outliers] = pcfitplane(ptCloudIn,maxGroundDist,referenceVector,maxAngularDist);
 ptCloudOut = select(ptCloudIn,outliers);
 obstacleIndices = currentIndices(outliers);
 groundIndices = currentIndices(groundIndices);
end

function [ptCloudOut,indices,croppedIndices] = cropPointCloud(ptCloudIn,xLim,yLim,zLim,egoVehicleRadius)
 % This method selects the point cloud within limits and removes the
 % ego vehicle point cloud using findNeighborsInRadius
 locations = ptCloudIn.Location;
 locations = reshape(locations,[],3);
 insideX = locations(:,1) < xLim(2) & locations(:,1) > xLim(1);
 insideY = locations(:,2) < yLim(2) & locations(:,2) > yLim(1);
 insideZ = locations(:,3) < zLim(2) & locations(:,3) > zLim(1);
 inside = insideX & insideY & insideZ;

 % Remove ego vehicle
 nearIndices = findNeighborsInRadius(ptCloudIn,[0 0 0],egoVehicleRadius);
 nonEgoIndices = true(ptCloudIn.Count,1);
 nonEgoIndices(nearIndices) = false;
 validIndices = inside & nonEgoIndices;
 indices = find(validIndices);
 croppedIndices = find(~validIndices);
 ptCloudOut = select(ptCloudIn,indices);
end

mexLidarTracker

This function implements the point cloud preprocessing display and the tracking algorithm using a
functional interface for code generation.

function [detections,obstacleIndices,groundIndices,croppedIndices,...
 confirmedTracks, modelProbs] = mexLidarTracker(ptCloudLocations,time)

persistent detectorModel tracker detectableTracksInput currentNumTracks

if isempty(detectorModel) || isempty(tracker) || isempty(detectableTracksInput) || isempty(currentNumTracks)

 % Use the same starting seed as MATLAB to reproduce results in SIL
 % simulation.
 rng(2018);

 % A bounding box detector model.
 detectorModel = HelperBoundingBoxDetector(...
 'XLimits',[-50 75],... % min-max
 'YLimits',[-5 5],... % min-max
 'ZLimits',[-2 5],... % min-max

6 Featured Examples

6-366

 'SegmentationMinDistance',1.8,... % minimum Euclidian distance
 'MinDetectionsPerCluster',1,... % minimum points per cluster
 'MeasurementNoise',blkdiag(0.25*eye(3),25,eye(3)),... % measurement noise in detection report.
 'GroundMaxDistance',0.3); % maximum distance of ground points from ground plane

 assignmentGate = [75 1000]; % Assignment threshold;
 confThreshold = [7 10]; % Confirmation threshold for history logic
 delThreshold = [8 10]; % Deletion threshold for history logic
 Kc = 1e-9; % False-alarm rate per unit volume

 filterInitFcn = @helperInitIMMFilter;

 tracker = trackerJPDA('FilterInitializationFcn',filterInitFcn,...
 'TrackLogic','History',...
 'AssignmentThreshold',assignmentGate,...
 'ClutterDensity',Kc,...
 'ConfirmationThreshold',confThreshold,...
 'DeletionThreshold',delThreshold,...
 'HasDetectableTrackIDsInput',true,...
 'InitializationThreshold',0,...
 'MaxNumTracks',30,...
 'HitMissThreshold',0.1);

 detectableTracksInput = zeros(tracker.MaxNumTracks,2);

 currentNumTracks = 0;
end

ptCloud = pointCloud(ptCloudLocations);

% Detector model
[detections,obstacleIndices,groundIndices,croppedIndices] = detectorModel(ptCloud,time);

% Call tracker
[confirmedTracks,~,allTracks] = tracker(detections,time,detectableTracksInput(1:currentNumTracks,:));
% Update the detectability input
currentNumTracks = numel(allTracks);
detectableTracksInput(1:currentNumTracks,:) = helperCalcDetectability(allTracks,[1 3 6]);

% Get model probabilities
modelProbs = zeros(2,numel(confirmedTracks));
if isLocked(tracker)
 for k = 1:numel(confirmedTracks)
 c1 = getTrackFilterProperties(tracker,confirmedTracks(k).TrackID,'ModelProbabilities');
 probs = c1{1};
 modelProbs(1,k) = probs(1);
 modelProbs(2,k) = probs(2);
 end
end

end

helperCalcDetectability

The function calculates the probability of detection for each track. This function is used to generate
the "DetectableTracksIDs" input for the trackerJPDA.

 Track Vehicles Using Lidar: From Point Cloud to Track List

6-367

function detectableTracksInput = helperCalcDetectability(tracks,posIndices)
% This is a helper function to calculate the detection probability of
% tracks for the lidar tracking example. It may be removed in a future
% release.

% Copyright 2019 The MathWorks, Inc.

% The bounding box detector has low probability of segmenting point clouds
% into bounding boxes are distances greater than 40 meters. This function
% models this effect using a state-dependent probability of detection for
% each tracker. After a maximum range, the Pd is set to a high value to
% enable deletion of track at a faster rate.
if isempty(tracks)
 detectableTracksInput = zeros(0,2);
 return;
end
rMax = 75;
rAmbig = 40;
stateSize = numel(tracks(1).State);
posSelector = zeros(3,stateSize);
posSelector(1,posIndices(1)) = 1;
posSelector(2,posIndices(2)) = 1;
posSelector(3,posIndices(3)) = 1;
pos = getTrackPositions(tracks,posSelector);
if coder.target('MATLAB')
 trackIDs = [tracks.TrackID];
else
 trackIDs = zeros(1,numel(tracks),'uint32');
 for i = 1:numel(tracks)
 trackIDs(i) = tracks(i).TrackID;
 end
end
[~,~,r] = cart2sph(pos(:,1),pos(:,2),pos(:,3));
probDetection = 0.9*ones(numel(tracks),1);
probDetection(r > rAmbig) = 0.4;
probDetection(r > rMax) = 0.99;
detectableTracksInput = [double(trackIDs(:)) probDetection(:)];
end

loadLidarAndImageData

Stitches Lidar and Camera data for processing using initial and final time specified.

function [lidarData,imageData] = loadLidarAndImageData(datasetFolder,initTime,finalTime)
initFrame = max(1,floor(initTime*10));
lastFrame = min(350,ceil(finalTime*10));
load (fullfile(datasetFolder,'imageData_35seconds.mat'),'allImageData');
imageData = allImageData(initFrame:lastFrame);

numFrames = lastFrame - initFrame + 1;
lidarData = cell(numFrames,1);

% Each file contains 70 frames.
initFileIndex = floor(initFrame/70) + 1;
lastFileIndex = ceil(lastFrame/70);

6 Featured Examples

6-368

frameIndices = [1:70:numFrames numFrames + 1];

counter = 1;
for i = initFileIndex:lastFileIndex
 startFrame = frameIndices(counter);
 endFrame = frameIndices(counter + 1) - 1;
 load(fullfile(datasetFolder,['lidarData_',num2str(i)]),'currentLidarData');
 lidarData(startFrame:endFrame) = currentLidarData(1:(endFrame + 1 - startFrame));
 counter = counter + 1;
end
end

References

[1] Arya Senna Abdul Rachman, Arya. "3D-LIDAR Multi Object Tracking for Autonomous Driving:
Multi-target Detection and Tracking under Urban Road Uncertainties." (2017).

 Track Vehicles Using Lidar: From Point Cloud to Track List

6-369

Extended Object Tracking With Radar For Marine Surveillance
This example shows how to generate a marine scenario, simulate radar detections from a marine
surveillance radar, and configure a multi-target Probability Hypothesis Density (PHD) tracker to
estimate the location and size of the simulated ships using the radar detections.

Marine Surveillance Scenario

Simulate a marine surveillance radar mounted at the top of a tower overlooking ships in a harbor.
Simulation of the tower's location and the motion of the ships in the scenario is managed by
trackingScenario.

% Create tracking scenario.
scenario = trackingScenario('StopTime',30);

% Define unit conversions.
nmi2m = 1852; % nautical miles to meters
hr2s = 3600; % hours to seconds
kts2mps = nmi2m/hr2s; % knots to meters per second

Marine Surveillance Radar

Add a marine surveillance radar to the tower. The radar is mounted 20 meters above sea level (ASL).
The radar stares into the harbor, surveying a 30 degree azimuth sector. Common specifications for a
marine surveillance radar are listed:

• Sensitivity: 0 dBsm @ 5 km
• Field of View: 30 deg azimuth, 10 deg elevation
• Azimuth Resolution: 2 deg
• Range Resolution: 5 m

Model the marine radar with the above specifications using the fusionRadarSensor.

% Create surveillance radar.
sensor = fusionRadarSensor(1,'No scanning', ...
 'MountingLocation',[0 0 -20], ... % 20 meters (ASL)
 'MountingAngles',[45 0 0], ... % [yaw pitch roll] deg
 'FieldOfView',[30 10], ... % [az el] deg
 'ReferenceRange',5e3, ... % m
 'AzimuthResolution',2, ... % deg
 'RangeResolution',5, ... % m
 'HasINS',true,... % Report INS information
 'TargetReportFormat','Detections',... % Detections without clustering
 'DetectionCoordinates','Sensor spherical');

Add the tower to the scenario as a stationary platform with the radar mounted on top of it.

platform(scenario,'Sensors',sensor);
tower = scenario.Platforms{1}

tower =

 Platform with properties:

 PlatformID: 1

6 Featured Examples

6-370

 ClassID: 0
 Position: [0 0 0]
 Orientation: [0 0 0]
 Dimensions: [1x1 struct]
 Mesh: [1x1 extendedObjectMesh]
 Trajectory: [1x1 kinematicTrajectory]
 PoseEstimator: [1x1 insSensor]
 Emitters: {}
 Sensors: {[1x1 fusionRadarSensor]}
 Signatures: {[1x1 rcsSignature] [1x1 irSignature] [1x1 tsSignature]}

Add three ships in the harbor within the radar's surveillance sector. The two smaller ships are turning
at 20 and 30 knots, the large ship is traveling at a constant heading at 10 knots.

% Define the dimensions for the two small ships.
dim = struct(...
 'Length',80, ... % m
 'Width',15, ... % m
 'Height',5, ... % m
 'OriginOffset', [0 0 5/2]); % [x y z] m

% Model the radar cross section (RCS) of the small ships as 30 dBsm.
rcs = rcsSignature('Pattern',30);

% Create a turning trajectory.
speed = 20; % knots
initYaw = 130; % deg
initPos = [1050 790 0];
radius = 200; % m

initOrient = quaternion([initYaw 0 0], 'eulerd', 'ZYX', 'frame');
initVel = speed*kts2mps*rotatepoint(initOrient,[1 0 0])';
accBody = [0 (speed*kts2mps)^2/radius 0];
angVelBody = [0 0 speed*kts2mps/radius];
traj = kinematicTrajectory('Position',initPos,'Velocity',initVel,'Orientation',initOrient, ...
 'AccelerationSource','Property','Acceleration',accBody, ...
 'AngularVelocitySource','Property','AngularVelocity', angVelBody);

% Add the first small ship, traveling at 20 knots to the scenario. This is
% the closest ship to the radar tower.
platform(scenario,'Dimensions',dim,'Signatures',rcs,'Trajectory',traj);

% Create the other small ship, traveling at 30 knots. This is the ship
% which is farthest from the radar tower.
speed = 30; % knots
initYaw = 120; % deg
initPos = [1410 1180 0];
radius = 400; % m

initOrient = quaternion([initYaw 0 0],'eulerd','ZYX','frame');
initVel = speed*kts2mps*rotatepoint(initOrient,[1 0 0])';
accBody = [0 (speed*kts2mps)^2/radius 0];
angVelBody = [0 0 speed*kts2mps/radius];
traj = kinematicTrajectory('Position',initPos,'Velocity',initVel,'Orientation',initOrient, ...
 'AccelerationSource','Property','Acceleration',accBody, ...
 'AngularVelocitySource','Property','AngularVelocity', angVelBody);

 Extended Object Tracking With Radar For Marine Surveillance

6-371

platform(scenario,'Dimensions',dim,'Signatures',rcs,'Trajectory',traj);

% Define the dimensions for the large ship.
dim = struct(...
 'Length',400, ... % m
 'Width',60, ... % m
 'Height',15, ... % m
 'OriginOffset', [0 0 15/2]); % [x y z] m

% Model the radar cross section (RCS) of the large ship as 75 dBsm.
rcs = rcsSignature('Pattern',75);

% Create the large ship's trajectory, traveling at a constant heading at 10 knots.
speed = 10; % knots
initYaw = -135; % deg
initPos = [1150 1100 0];

initOrient = quaternion([initYaw 0 0],'eulerd','ZYX','frame');
initVel = speed*kts2mps*rotatepoint(initOrient,[1 0 0])';
traj = kinematicTrajectory('Position',initPos,'Velocity',initVel,'Orientation',initOrient, ...
 'AccelerationSource','Property','AngularVelocitySource','Property');

% Add the large ship to the scenario.
platform(scenario,'Dimensions',dim,'Signatures',rcs,'Trajectory',traj);

% Create a display to show the true, measured, and tracked positions of the ships.
theaterDisplay = helperMarineSurveillanceDisplay(scenario, ...
 'IsSea',true,'DistanceUnits','m', ...
 'XLim',450*[-1 1]+1e3,'YLim',450*[-1 1]+1e3,'ZLim',[-1000 10], ...
 'Movie','MarineSurveillanceExample.gif');
slctTrkPos = zeros(3,7); slctTrkPos(1,1) = 1; slctTrkPos(2,3) = 1; slctTrkPos(3,6) = 1;
slctTrkVel = circshift(slctTrkPos,[0 1]);
theaterDisplay.TrackPositionSelector = slctTrkPos;
theaterDisplay.TrackVelocitySelector = slctTrkVel;
theaterDisplay();
snapnow(theaterDisplay);

6 Featured Examples

6-372

Multi-Target GGIW-PHD Tracker

Create a trackerPHD to form tracks from the radar detections generated from the three ships in the
harbor. The PHD tracker enables the estimation of the size of the ships by allowing multiple
detections to be associated to a single object. This is important in situations such as marine
surveillance where the size of the objects detected by the sensor is greater than the sensor's
resolution, resulting in multiple detections generated along the surfaces of the ships.

The tracker uses the filterInitFcn supporting function to initialize a constant turn-rate Gamma
Gaussian Inverse Wishart (GGIW) PHD filter. filterInitFcn adds birth components to the PHD-
intensity at every time step. These birth components are added uniformly inside the field of view of
the sensor. Their sizes and expected number of detections are specified using prior information about
the types of ships expected in the harbor.

The tracker uses the gamma distribution of the GGIW-PHD components to estimate how many
detections should be generated from an object. The tracker also calculates the detectability of each
component in the density using the sensor's limits. Use trackingSensorConfiguration to model
the sensor's configuration for trackerPHD.

 Extended Object Tracking With Radar For Marine Surveillance

6-373

% Define radar's measurement limits and resolution.
azLimits = sensor.FieldOfView(1)/2*[-1 1]; % deg
rangeLimits = [0 15e3]; % m
sensorLimits = [azLimits;rangeLimits];
sensorResolution = [sensor.AzimuthResolution;sensor.RangeResolution];

% Define the sensor's mounting location and orientation on the tower.
params(1) = struct('Frame','Spherical', ...
 'OriginPosition',sensor.MountingLocation(:), ...
 'OriginVelocity',[0;0;0], ...
 'Orientation',rotmat(quaternion(sensor.MountingAngles,'eulerd','zyx','frame'),'frame'),...
 'IsParentToChild', true, ...
 'HasRange',true,'HasElevation',sensor.HasElevation,'HasVelocity',false);

% Define the tower's location, velocity, and orientation in the scenario.
params(2) = struct('Frame','Rectangular', ...
 'OriginPosition',tower.Trajectory.Position(:), ...
 'OriginVelocity',tower.Trajectory.Velocity(:), ...
 'Orientation',rotmat(tower.Trajectory.Orientation,'frame'), ...
 'IsParentToChild', true, ...
 'HasRange',true,'HasElevation',false,'HasVelocity',false);

% Create a trackingSensorConfiguration to model the detectability of the
% tracks by the sensor. The detection probability defines the probability
% of generating at least 1 detection from the extended object.
sensorConfig = trackingSensorConfiguration('SensorIndex',sensor.SensorIndex, ...
 'SensorLimits',sensorLimits,...
 'SensorResolution',sensorResolution,...
 'DetectionProbability',0.99,...
 'SensorTransformParameters',params);

% Fields on the sensor configuration used to update trackingSensorConfiguration.
configFlds = {'SensorIndex','IsValidTime'};

% Noise covariance corresponding to a resolution cell of the radar.
resolutionNoise = diag((sensorResolution/2).^2);

sensorConfig.FilterInitializationFcn = @(varargin)filterInitFcn(varargin{:},params);
sensorConfig.SensorTransformFcn = @ctmeas;
sensorConfig.ClutterDensity = sensor.FalseAlarmRate/(sensor.AzimuthResolution*sensor.RangeResolution);

% Create a PHD tracker using the trackingSensorConfiguration.
tracker = trackerPHD('SensorConfigurations',sensorConfig, ...
 'HasSensorConfigurationsInput',true, ...
 'PartitioningFcn',@(x)partitionDetections(x,1.5,6), ...
 'ExtractionThreshold',0.75,...
 'DeletionThreshold',1e-6,...
 'BirthRate',1e-5);

Simulate and Track Ships

The following loop advances the positions of the ships until the end of the scenario. For each step
forward in the scenario, the tracker is updated with the detections from the ships in the radar's field
of view.

% Initialize scenario and tracker.
restart(scenario);
reset(tracker);

6 Featured Examples

6-374

% Set simulation to advance at the update rate of the radar.
scenario.UpdateRate = sensor.UpdateRate;

% Set random seed for repeatable results.
rng(2019,'twister');

% Run simulation.
snapTimes = [2 7 scenario.StopTime]; % seconds
while advance(scenario)
 % Get current simulation time.
 time = scenario.SimulationTime;

 % Generate detections from the tower's radar.
 [dets,~,config] = detect(tower,time);

 % Update measurement noise of detections to match radar's resolution.
 dets = updateMeasurementNoise(dets,resolutionNoise);

 % Update tracker.
 trackSensorConfig = computeTrackingSensorConfig(config,configFlds);
 tracks = tracker(dets,trackSensorConfig,time);

 % Update display with current beam position, detections, and track positions.
 theaterDisplay(dets,config,tracks);

 % Take snapshot.
 snapFigure(theaterDisplay,any(time==snapTimes));
end
writeMovie(theaterDisplay);

 Extended Object Tracking With Radar For Marine Surveillance

6-375

The following figure shows the radar detections, shown as red dots, and the estimated track
locations, shown as yellow squares annotated with the track ID, and the estimated tracked object's
extent, shown as a yellow ellipse. The radar tower is located at the origin, (0,0), which is not shown in
the figure. The radar's field of view is indicated by the two red lines crossing the top and bottom of
the figure. All of the ships lie within the radar's field of view, and because the size of the ships is
much larger than the radar's range and azimuth resolution, multiple detections are made along the
faces of the ships visible to the radar.

showSnapshot(theaterDisplay,1)

6 Featured Examples

6-376

Because the ships are modeled as extended objects and not point targets, detections of a ship can be
occluded by the presence of another ship between the ship and the radar. This is shown in the
following figure. In this case, the smaller ship at the top of the figure is not detected by the radar. The
radar's line of sight is occluded by both the other small ship at the bottom of the figure and the large
ship in the center. The tracker maintains an estimate of the occluded ship and associates detections
in the following steps to the track without ever dropping the track.

showSnapshot(theaterDisplay,2)
axis([1250 1450 1150 1350]); view([-90 90]);

 Extended Object Tracking With Radar For Marine Surveillance

6-377

The following figure shows the PHD estimate of the smaller ship located closest to the radar in the
scenario. You can verify the PHD estimate of the ship's location lies near the center of the ship and
the estimated size is reasonably close to the actual size of the ship, indicated by the overlap of the
track's ellipse with the ship.

showSnapshot(theaterDisplay,3)
axis([650 850 700 900]); view([-90 90]);

6 Featured Examples

6-378

The next figure also shows that the PHD tracker estimated both the location, size, and heading of the
other small ship in the scenario. This is the ship that was previously occluded by the other two ships.
Despite the occlusion, the estimated location, size, and orientation closely matches the ship.

showSnapshot(theaterDisplay,3)
axis([900 1100 1250 1450]); view([-90 90]);

 Extended Object Tracking With Radar For Marine Surveillance

6-379

The track states of the 3 ships report the estimated size of each ship using a 3D positional covariance
matrix. Take the eigen decomposition of the covariance matrices to compute the estimated length,
width, and height for each of the ships.

numTrks = numel(tracks);
TrackID = [tracks.TrackID]';
Length = zeros(numTrks,1);
Width = zeros(numTrks,1);
Height = zeros(numTrks,1);
for iTrk = 1:numTrks
 ext = tracks(iTrk).Extent;
 [Q,D] = eig(ext);
 d = 2*sqrt(diag(D));
 iDims = 1:3;

 up = [0 0 -1];
 [~,iUp] = max(abs(up*Q));
 Height(iTrk) = d(iDims(iUp));
 iDims(iUp) = [];

 Length(iTrk) = max(d(iDims));
 Width(iTrk) = min(d(iDims));
end

% Display a table of the estimated dimensions of the ships.
dims = table(TrackID,Length,Width,Height)

6 Featured Examples

6-380

dims =

 3x4 table

 TrackID Length Width Height
 _______ ______ ______ ______

 1 99.077 17.388 16.276
 2 473.93 55.699 8.8352
 3 100.75 18.741 17.407

Recall that the true dimensions of the ships are given by:

Large Ship

• Length: 400 m
• Width: 60 m
• Height: 15 m

Small Ship

• Length: 80 m
• Width: 15 m
• Height: 5 m

The tracker is able to differentiate between the size of the large and smaller ships by estimating the
shape of each ship as an ellipse. In the simulation, the true shape of each ship is modeled using a
cuboid. This mismatch between the shape assumption made by the tracker and the true shapes of the
modeled ships results in overestimates the length and width of the ships. The radar is a 2D sensor,
only measuring range and azimuth, so the height of each ship is not observable. This results in
inaccurate height estimates reported by the tracker.

Summary

This example shows how to generate a marine scenario, simulate radar detections from a marine
surveillance radar, and configure a multi-target PHD tracker to track the simulated ships using the
radar detections. In this example, you learned how to model extended objects in a scenario,
generating multiple detections from these objects. You also learned how to use a multi-target PHD
tracker to process the information provided by the multiple detections to estimate not only the
location but also the size of the tracked objects.

Supporting Functions

computeTrackingSensorConfig

Returns a structure containing configuration information returned by the radar. This structure is used
to update the trackingSensorConfiguration model used within the tracker.

function config = computeTrackingSensorConfig(configIn,flds)
config = struct();
for iFld = 1:numel(flds)
 thisFld = flds{iFld};
 config.(thisFld) = configIn.(thisFld);

 Extended Object Tracking With Radar For Marine Surveillance

6-381

end
end

updateMeasurementNoise

Sets the measurement noise of the detections based on the specified noise covariance.

function dets = updateMeasurementNoise(dets,noise)
 for iDet = 1:numel(dets)
 dets{iDet}.MeasurementNoise(:) = noise(:);
 end
end

filterInitFcn

Modifies the filter returned by initctggiwphd to match the velocities and expected number of
detections for the ships being tracked.

function phd = filterInitFcn(measParam,varargin)
% This function uses the predictive birth density only to simulate birth in
% the scenario.

if nargin == 1 % Set predictive birth uniformly inside the FOV.
 phdDefault = initctggiwphd;
 % 1. Create uniformly distributed states using Azimuth and Range.
 az = 0; % All components at azimuth.
 ranges = linspace(1000,10000,5); % 5 components for range
 [Az,R] = meshgrid(az,ranges);

 % create a PHD filter to allocate memory.
 phd = ggiwphd(zeros(7,numel(Az)),repmat(eye(7),[1 1 numel(Az)]),...
 'ScaleMatrices',repmat(eye(3),[1 1 numel(Az)]),...
 'StateTransitionFcn',@constturn,'StateTransitionJacobianFcn',@constturnjac,...
 'MeasurementFcn',@ctmeas,'MeasurementJacobianFcn',@ctmeasjac,...
 'PositionIndex',[1 3 6],'ExtentRotationFcn',phdDefault.ExtentRotationFcn,...
 'HasAdditiveProcessNoise',false,'ProcessNoise',2*eye(4),...
 'TemporalDecay',1e3,'GammaForgettingFactors',1.1*ones(1,numel(Az)),...
 'MaxNumComponents',10000);

 for i = 1:numel(Az)
 [sensorX,sensorY,sensorZ] = sph2cart(deg2rad(Az(i)),0,R(i));
 globalPos = measParam(1).Orientation'*[sensorX;sensorY;sensorZ] + measParam(1).OriginPosition(:);
 phd.States([1 3 6],i) = globalPos;
 phd.StateCovariances([1 3 6],[1 3 6],i) = diag([1e5 1e5 1000]); % Cover gaps between components using position covariance
 end

 % 2. You have described the "kinematic" states of each of the ships
 % inside the field of view. Next, add information about their sizes and
 % expected number of detections.
 %
 % It is expected that there are 2 types of ships in the sea, small and
 % large. You create components for each size.
 phdSmall = phd;

 % Clone the PHD filter for large ships.
 phdLarge = clone(phd);

 % Set initial number of components.

6 Featured Examples

6-382

 numComps = phdSmall.NumComponents;

 % For small ships, the expected size is about 100 meters in length and
 % 20 meters in width. As the orientation is unknown, we will create 4
 % orientations for each size. First, you must add components to the
 % density at same states. This can be done by simply appending it
 % Setup values for small boats
 append(phdSmall,phdSmall);
 append(phdSmall,phdSmall);

 % Degrees of freedom for defining shape. A large number represents
 % higher certainty in dimensions.
 dof = 1000;

 % Covariance in vx, vy and omega.
 smallStateCov = diag([300 300 50]);

 % Scale matrix for small boats
 smallShape = (dof - 4)*diag([100/2 20/2 10].^2); % l, w and h

 % Create 4 orientations at 45 degrees from each other.
 for i = 1:4
 thisIndex = (i-1)*numComps + (1:numComps);
 R = rotmat(quaternion([45*(i-1) 0 0],'eulerd','ZYX','frame'),'frame');
 phdSmall.ScaleMatrices(:,:,thisIndex) = repmat(R*smallShape*R',[1 1 numComps]);
 phdSmall.StateCovariances([2 4 5],[2 4 5],thisIndex) = repmat(R*smallStateCov*R',[1 1 numComps]);
 phdSmall.StateCovariances([6 7],[6 7],thisIndex) = repmat(diag([100 100]),[1 1 numComps]);
 end

 % Small ships generate approximately 10-20 detections.
 expNumDets = 15;
 uncertainty = 5^2;
 phdSmall.Rates(:) = expNumDets/uncertainty;
 phdSmall.Shapes(:) = expNumDets^2/uncertainty;
 phdSmall.DegreesOfFreedom(:) = dof;

 % Follow similar process for large ships.
 append(phdLarge,phdLarge);
 append(phdLarge,phdLarge);
 largeStateCov = diag([100 5 10]);
 largeShape = (dof - 4)*diag([500/2 100/2 10].^2);
 for i = 1:4
 thisIndex = (i-1)*numComps + (1:numComps);
 R = rotmat(quaternion([45*(i-1) 0 0],'eulerd','ZYX','frame'),'frame');
 phdLarge.ScaleMatrices(:,:,thisIndex) = repmat(R*largeShape*R',[1 1 numComps]);
 phdLarge.StateCovariances([2 4 5],[2 4 5],thisIndex) = repmat(R*largeStateCov*R',[1 1 numComps]);
 phdLarge.StateCovariances([6 7],[6 7],thisIndex) = repmat(diag([100 100]),[1 1 numComps]);
 end

 % Generate approximately 100-200 detections.
 expNumDets = 150;
 uncertainty = 50^2;
 phdLarge.Rates(:) = expNumDets/uncertainty;
 phdLarge.Shapes(:) = expNumDets^2/uncertainty;
 phdLarge.DegreesOfFreedom(:) = dof;

 % Add large ships to small ships to create total density. This density
 % is added to the total density every step.

 Extended Object Tracking With Radar For Marine Surveillance

6-383

 phd = phdSmall;
 append(phd,phdLarge);
end

% When called with detection input i.e. the adaptive birth density, do not
% add any new components.
if nargin > 1
 % This creates 0 components in the density.
 phd = initctggiwphd;
end

end

6 Featured Examples

6-384

Track Vehicles Using Lidar Data in Simulink
This example shows you how to track vehicles using measurements from a lidar sensor mounted on
top of an ego vehicle. Due to high resolution capabilities of the lidar sensor, each scan from the
sensor contains a large number of points, commonly known as a point cloud. The example illustrates
the workflow in Simulink for processing the point cloud and tracking the objects. The lidar data used
in this example is recorded from a highway driving scenario. You use the recorded data to track
vehicles with a joint probabilistic data association (JPDA) tracker and an interacting multiple model
(IMM) approach. The example closely follows the “Track Vehicles Using Lidar: From Point Cloud to
Track List” on page 6-351 MATLAB® example.

Setup

The lidar data used in this example is available at the following link: https://ssd.mathworks.com/
supportfiles/lidar/data/TrackVehiclesUsingLidarExampleData.zip

Download the data files into the current working folder. If you want to place the files in a different
folder, change the directory name in the subsequent instructions.

% Load the data if unavailable.
if ~exist('lidarData_1.mat','file')
 dataUrl = 'https://ssd.mathworks.com/supportfiles/lidar/data/TrackVehiclesUsingLidarExampleData.zip';
 datasetFolder = fullfile(pwd);
 unzip(dataUrl,datasetFolder);
end

Overview of the Model

load_system('TrackVehiclesSimulinkExample');
set_param('TrackVehiclesSimulinkExample','SimulationCommand','update');
open_system('TrackVehiclesSimulinkExample');

Lidar and Image Data Reader

The Lidar Data Reader and Image Data Reader blocks are implemented using a MATLAB System
(Simulink) block. The code for the blocks is defined by helper classes, HelperLidarDataReader and
HelperImageDataReader respectively. The image and lidar data readers read the recorded data
from the MAT files and output the reference image and the locations of points in the point cloud
respectively.

Bounding Box Detector

 Track Vehicles Using Lidar Data in Simulink

6-385

https://ssd.mathworks.com/supportfiles/lidar/data/TrackVehiclesUsingLidarExampleData.zip
https://ssd.mathworks.com/supportfiles/lidar/data/TrackVehiclesUsingLidarExampleData.zip

As described earlier, the raw data from sensor contains a large number of points. This raw data must
be preprocessed to extract objects of interest, such as cars, cyclists, and pedestrian. The
preprocessing is done using the Bounding Box Detector block. The Bounding Box Detector is also
implemented as a MATLAB System™ block defined by a helper class,
HelperBoundingBoxDetectorBlock. It accepts the point cloud locations as an input and outputs
bounding box detections corresponding to obstacles. The diagram shows the processes involved in
the bounding box detector model and the Computer Vision Toolbox™ functions used to implement
each process. It also shows the parameters of the block that control each process.

The block outputs the detections and segmentation information as a Simulink.Bus (Simulink) object
named detectionBus and segmentationBus. These buses are created in the base workspace
using helper function helperCreateDetectorBus specified in the PreLoadFcn callback. See
“Model Callbacks” (Simulink) for more information about callback functions.

Tracking algorithm

The tracking algorithm is implemented using the joint probabilistic data association (JPDA) tracker,
which uses an interacting multiple model (IMM) approach to track targets. The IMM filter is
implemented by the helperInitIMMFilter, which is specified as the "Filter initialization function"
parameter of the block. In this example, the IMM filter is configured to use two models, a constant
velocity cuboid model and a constant turn-rate cuboid model. The models define the dimensions of
the cuboid as constants during state-transition and their estimates evolve in time during correction
stages of the filter. The animation below shows the effect of mixing the constant velocity and constant
turn-rate models with different probabilities during prediction stages of the filter.

6 Featured Examples

6-386

The IMM filter automatically computes the probability of each model when the filter is corrected with
detections. The animation below shows the estimated trajectory and the probability of models during
a lane change event.

 Track Vehicles Using Lidar Data in Simulink

6-387

For a detailed description of the state transition and measurement models, refer to the "Target State
and Sensor Measurement Model" section of the MATLAB example.

The tracker block selects the check box "Enable all tracks output" and "Enable detectable track IDs
input" to output all tracks from the tracker and calculate their detection probability as a function of
their state.

Calculate Detectability

The Calculate Detectability block is implemented using a MATLAB Function (Simulink) block. The
block calculates the Detectable TrackIDs input for the tracker and outputs it as an array with 2
columns. The first column represents the TrackIDs of the tracks and the second column specifies
their probability of detection by the sensor and bounding box detector.

Visualization

6 Featured Examples

6-388

The Visualization block is also implemented using the MATLAB System block and is defined using
HelperLidarExampleDisplayBlock. The block uses RunTimeObject parameter of the blocks to
display their outputs. See “Access Block Data During Simulation” (Simulink) for further information
on how to access block outputs during simulation.

Detections and Tracks Bus Objects

As described earlier, the inputs and outputs of different blocks are bus objects. You can visualize the
structure of each bus using the Bus Editor (Simulink). The following images show the structure of the
bus for detections and tracks.

Detections

The detectionBus outputs a nested bus object with 2 elements, NumDetections and Detections.

The first element, NumDetections, represents the number of detections. The second element
Detections is a bus object of a fixed size representing all detections. The first NumDetections
elements of the bus object represent the current set of detections. Notice that the structure of the
bus is similar to the objectDetection class.

 Track Vehicles Using Lidar Data in Simulink

6-389

Tracks

The track bus is similar to the detections bus. It is a nested bus, where NumTracks defines the
number of tracks in the bus and Tracks define a fixed size of tracks. The size of the tracks is
governed by the block parameter "Maximum number of tracks".

6 Featured Examples

6-390

The second element Tracks is a bus object defined by trackBusTracks. This bus is automatically
created by the tracker block by using the bus name specified as the prefix. Notice that the structure
of the bus is similar to the objectTrack class.

 Track Vehicles Using Lidar Data in Simulink

6-391

Results

The detector and tracker algorithm is configured exactly as the “Track Vehicles Using Lidar: From
Point Cloud to Track List” on page 6-351 MATLAB example. After running the model, you can
visualize the results on the figure. The animation below shows the results from time 0 to 4 seconds.
The tracks are represented by green bounding boxes. The bounding box detections are represented
by orange bounding boxes. The detections also have orange points inside them, representing the
point cloud segmented as obstacles. The segmented ground is shown in purple. The cropped or
discarded point cloud is shown in blue. Notice that the tracked objects are able to maintain their
shape and kinematic center by positioning the detections onto visible portions of the vehicles. This
illustrates the offset and shrinkage effect modeled in the measurement functions.

6 Featured Examples

6-392

close_system('TrackVehiclesSimulinkExample');

Summary

This example showed how to use a JPDA tracker with an IMM filter to track objects using a lidar
sensor. You learned how a raw point cloud can be preprocessed to generate detections for
conventional trackers, which assume one detection per object per sensor scan. You also learned how
to use a cuboid model to describe the extended objects being tracked by the JPDA tracker.

 Track Vehicles Using Lidar Data in Simulink

6-393

Track Closely Spaced Targets Under Ambiguity in Simulink
This example shows how to track objects in Simulink® with Sensor Fusion and Tracking Toolbox™
when the association of sensor detections to tracks is ambiguous. It closely follows the “Tracking
Closely Spaced Targets Under Ambiguity” on page 6-167 MATLAB® example.

Introduction

Sensors report a single detection for multiple targets when the targets are so closely spaced that the
sensors cannot resolve them spatially. This example illustrates the workflow for tracking targets
under such ambiguity using the global nearest neighbor (GNN), joint probabilistic data association
(JPDA), and track-oriented multiple-hypothesis (TOMHT) trackers.

Setup and Overview of the Model

Prior to running this example, the scenario was generated as described in “Tracking Closely Spaced
Targets Under Ambiguity” on page 6-167. The detection and time data from this scenario were then
saved to the scenario file CloselySpacedData.mat.

DataLogReader

The DataLogReader block is implemented as a MATLAB System (Simulink) block. The code for the
block is defined by a helper class, HelperDataLogReader. The block reads the recorded data from the
CloselySpacedData.mat file and outputs the detection and time for each time stamp.

Trackers

The Trackers block is a variant subsystem block, which has six subsystems defined internally. Each
subsystem is composed of one of the three trackers and one of the two motion models.

6 Featured Examples

6-394

The first motion model is a constant velocity model with an extended kalman filter. The
helperCVFilter function modifies the filter initcvekf returns to allow for a higher uncertainty in
the velocity terms and a higher horizontal acceleration in the process noise.

The second filter you use is an interacting multiple-model (IMM) filter, which allows you to define two
or more motion models for the targets. The filter automatically updates the likelihood of each motion
model based on the give measurements and estimates the target state and uncertainty based on these
models and likelihoods. In this example, the targets switch between straight legs at a constant
velocity motion and legs of constant turn rate. Therefore, you define an IMM filter with a constant
velocity model and a constant turn-rate model using the helperIMMFilter function.

You can run the different configurations by changing the value of Tracker in the workspace as
shown in the above table. You can also use the “Edit and Manage Workspace Variables by Using
Model Explorer” (Simulink) as shown below to change the value of Tracker.

 Track Closely Spaced Targets Under Ambiguity in Simulink

6-395

TrackAssignmentMetrics

The TrackAssignmentMetrics is implemented using a MATLAB System (Simulink) block. The code for
the block is defined by a helper class, HelperTrackAssignmentMetrics.

Visualization

The visualization block is implemented using a MATLAB System (Simulink) block. The code for the
block is defined by a helper class, HelperDetectionAndTrackDisplay.

Detections and Tracks Bus Objects

The trackers variant subsystem block receives the detections as a bus object with time values and
outputs the tracks as a bus object to the visualization block. You can visualize the structure of each
bus using the Bus Editor (Simulink). The following images show the structure of the bus for
detections and tracks.

Detections Bus

The detectionBus outputs a nested bus object with 2 elements, NumDetections and Detections.

6 Featured Examples

6-396

The first element Detections is a fixed-size bus object representing all detections. The second
element, NumDetections, represents the number of detections. The structure of the bus is similar to
the objectDetection class.

 Track Closely Spaced Targets Under Ambiguity in Simulink

6-397

Tracks Bus

The track bus is similar to the detections bus. The track bus is a nested bus, where NumTracks
defines the number of tracks in the bus and Tracks define a fixed size of tracks. The size of the
tracks is governed by the block parameter Maximum number of tracks. The figure below shows
the configuration of the tracks bus object for trackerGNN. The configuration of the tracks bus object
for trackerJPDA and trackerTOMHT is similar.

6 Featured Examples

6-398

The second element Tracks is a bus object defined by trackBus_GNNTracks for the trackerGNN
configuration. This bus is automatically created by the tracker block using the bus name specified as
the prefix. The structure of the bus is similar to the objectTrack class.

 Track Closely Spaced Targets Under Ambiguity in Simulink

6-399

Results

Tracker configuration in the Trackers variant subsystem block is similar to that of the “Tracking
Closely Spaced Targets Under Ambiguity” on page 6-167 MATLAB® example.

You can run the trackerGNN, trackerJPDA, and trackerTOMHT blocks in Simulink® models via
interpreted execution or code generation. With interpreted execution, the model simulates the block
using the MATLAB® execution engine which allows faster startup time but longer execution time.
With code generation, the model uses the subset of MATLAB code supported for code generation
which allows better performance than the interpreted execution.

After running the model you can visualize the results on the figures.

6 Featured Examples

6-400

The above results are achieved from the first configuration where Tracker = 1 in MATLAB
workspace. These results show that there are two truth objects. However, the tracker generate three
confirmed tracks, and one of the tracks did not survive until the end of the scenario. At the end of the
scenario, the tracker associates truth object 1 with track 8. The tracker created track 8 through the
scenario after dropping track 2. The tracker assigned truth object 2 to track 1 at the end of the
scenario after there were two track breaks in the tracking history.

 Track Closely Spaced Targets Under Ambiguity in Simulink

6-401

The above results are achieved from the second configuration where Tracker = 2 in MATLAB
workspace. The IMM filter enables the trackerGNN to track the maneuvering target correctly. Notice
that truth object 1 has zero breaks due to continuous history of its associated track.

However, even with the IMM filter, one of the tracks breaks in the ambiguity region. The
trackerGNN receives only one detection in that ambiguity region, and therefore can update only one
of the tracks with it. After a few updates, the score of the coasted track falls below the deletion
threshold and the tracker drops the track.

6 Featured Examples

6-402

The above results are achieved from the third configuration where Tracker = 3 in MATLAB
workspace. You can observe that the trackerJPDA maintains both the tracks confirmed in the
ambiguity region. However, there is a swap between the two tracks.

 Track Closely Spaced Targets Under Ambiguity in Simulink

6-403

The above results are achieved from the fourth configuration where Tracker = 4 in MATLAB
workspace. You can observe that trackerJPDA with IMM filter tracks the maneuvering targets more
precisely and did not break or lose the track even during the turns.

6 Featured Examples

6-404

Next, the fifth configuration is used, with trackerTOMHT and a constant velocity model by setting
Tracker = 5 in MATLAB workspace. You can observe that the trackerTOMHT result is similar to the
one obtained by the trackerJPDA: it maintains the tracks through the ambiguity region, but relying
only on a constant velocity model causes the tracks to swap.

 Track Closely Spaced Targets Under Ambiguity in Simulink

6-405

Finally, we use trackerTOMHT and IMM filter by setting Tracker = 6 in MATLAB workspace. This
time, the trackerTOMHT with IMM filter tracks the maneuvering targets more precisely and did not
break or lose the track even during the turns. However, the runtime for a trackerTOMHT is
significantly longer than using trackerJPDA.

Summary

In this example, you learned how to track closely spaced targets using three types of trackers: global
nearest neighbor, joint probabilistic data association, and track-oriented multiple hypothesis. You saw
how to use a variant subsystem in Simulink to select which tracker and filter to run. You also learned
how you can utilize and configure trackerGNN, trackerJPDA, and trackerTOMHT Simulink blocks
for tracking the maneuvering targets.

You observed that a constant velocity filter is insufficient when tracking the targets during their
maneuver. In this case, an interacting multiple-model filter is required. You also observed that the
JPDA and TOMHT trackers can more accurately handle the case of ambiguous association of
detections to tracks compared with the GNN tracker.

6 Featured Examples

6-406

Design and Simulate Tracking Scenario with Tracking Scenario
Designer

This example shows how to use trackingScenarioDesigner with an existing session file. Using
the application, you can add, modify, or remove platforms, monostatic radar sensors, and trajectories
of all objects in the scenario. You can also export the scenario as a MATLAB script for further
analysis.

Introduction

The goal of object tracking is to determine the state of an object in the presence of infrequent or
uncertain measurements. In the case of multiple objects, tracking algorithms must also address the
problem of data association. To test these algorithms, a tracking scenario can be used to synthetically
generate realistic detections of objects in a three-dimensional scene.

This example models a scenario where a radar tower equipped with a monostatic radar sensor scans
the sky. At a distance far from the sensor, two airplanes fly in close proximity other for a short
duration of time. The close spacing of the aircraft trajectories and their distances from the radar
tower challenge the radar's capability to properly resolve the two objects. This scenario is described
in further detail in the “Tracking Closely Spaced Targets Under Ambiguity” on page 6-167 example.

Launch Tracking Scenario Designer

The matfile TSD_TrackingCloselySpacedTargets was previously saved with a tracking scenario
session. To launch the application and load the session file, use the command:

trackingScenarioDesigner('TSD_TrackingCloselySpacedTargets.mat')

 Design and Simulate Tracking Scenario with Tracking Scenario Designer

6-407

The application opens and loads the scenario. The Tracking Scenario Designer App consists of a
toolstrip and three document groups:

• Platform Properties and Sensor Properties panels on the left
• Platform Canvas and Sensor Canvas in the center
• Scenario View showing a three-dimensional world view on the right

Edit and modify the scenario

Red plane

Select the red colored plane by clicking on it in the Platform Canvas.

6 Featured Examples

6-408

Inspect its trajectory using the Trajectory Table and the Time-Altitude plot

 Design and Simulate Tracking Scenario with Tracking Scenario Designer

6-409

In the property panel (purple), note that the plane is modeled as a point object whose length, width,
and height dimensions are zero. By default, its radar cross section is 10 dBsm.

Click on the Trajectory Table button (red) in the toolstrip to display the list of waypoints for this
plane. The trajectory table appears at the bottom center of the application.

Click on the Time-Altitude Plot button (green) in the toolstrip to display the elevation profile of this
plane. The plot appears within the same tab as the Platform Canvas.

Observe that the airplane is flying level at an altitude of 3000 m with a ground speed of 83.33 m/s.
The duration of the trajectory is 50s.

You can further edit the trajectory by changing the parameter values in the table or by dragging
waypoints in the Platform Canvas as shown in the GIF below.

6 Featured Examples

6-410

For the remainder of this example, we use the predefined trajectory in the session file.

Tower

Select the tower platform by clicking on the platform on the Platform Canvas or by choosing the
tower platform from the Current Platform list in the Platform Properties tab.

Upon selecting the platform, the Sensor Properties and the Sensor Canvas for the tower platform
become active.

 Design and Simulate Tracking Scenario with Tracking Scenario Designer

6-411

Observe the monostatic radar sensor properties in the panel (yellow). The radar has an update rate of
100 Hz, and a scan range of 40 degrees in azimuth and 10 degrees in elevation. Its field of view is 1.5
deg in azimuth and 10 deg in elevation. Note that we use 10.001 def to ensure the beam is not exactly
the size of the elevation scan range, in which case the radar would sweep twice in elevation.

Note that the default platform frame is NED (North-East-Down). Also the Mounting Location of the
sensor is defined as X = 0, Y = 0, Z = -15 to ensure that the radar is located at the top of the
15m high tower.

On the Sensor Canvas, you can use the toolbar (green) to display the side views of the tower. The
axes are platform centric coordinates.

The sensor can be reconfigured using the property panel and its mounting location can be dragged on
the Sensor Canvas for coarse editing.

Additionally, you can select a new sensor in the toolstrip gallery and mount it on the tower, or add a
new platform in the scene using the platform gallery and then mount a new sensor on it. This is
illustrated in the GIF below.

6 Featured Examples

6-412

Simulate the scenario

As this scenario is already set up, the next step is to run the simulation to generate the synthetic
radar detections.

Click Run to run the simulation. Alternatively, use the drop-down to select Run Without Detections
to simulate the ground truth only.

 Design and Simulate Tracking Scenario with Tracking Scenario Designer

6-413

The application goes into simulation mode and the simulation begins automatically. You will see the
two planes moving along their trajectories. When an aircraft is detected by the tower, you can see a
dark purple marker show at the instant of detection.

To better observe the scene, you can use the axes toolbar to quickly navigate between X-Y, X-Z, or Y-Z
view. Additionally, you can turn on and off the sensor coverage plot, the trajectory lines, the ground
plane projection, and the orientation indicator.

.

Playback Controls and Time Scroll Bar

To observe the detection creation as the beam scans a target, use the playback control which allow
you to pause, step back, and step forward the simulation.

6 Featured Examples

6-414

The time scroll bar is located at the bottom of the Scenario View. It represents the current status of
the simulation as well as the current time of display.

The light blue progress bar shows progress in the data simulation of the scenario. The darker blue
rectangle slider shows the progress of the animation of the scenario.

The rectangle slider can be dragged backward (left) or forward in time (right) within the time range
that has been simulated.

Step through the simulation, and observe that the radar generates a single detection per sweep
between t = 19.30 s and t = 20.50 s. This is the region of ambiguity where the two planes

 Design and Simulate Tracking Scenario with Tracking Scenario Designer

6-415

cannot be resolved by the radar.

Export to MATLAB

To view and edit the code used to design the scenario, you can export the scenario as a MATLAB
script. Use the script to add trackers and interact with the scenario programmatically.

Click Export to view the equivalent script that creates the scenario.

6 Featured Examples

6-416

After clicking Export, you will see a script that can be saved to a file name of your choice. The
current 3D view angles of the Scenario View are also exported to the script.

Run Generated Script

Visualize Targets and Detections

Once the script is saved, you can run it and observe the animated theater plot in MATLAB.

Edit the generated script for tracking

You can add the following commands to define a tracker as shown in the Tracking Closely Spaced
Targets Under Ambiguity example.

 Design and Simulate Tracking Scenario with Tracking Scenario Designer

6-417

https://www.mathworks.com/help/fusion/examples/tracking-closely-spaced-targets-under-ambiguity.html
https://www.mathworks.com/help/fusion/examples/tracking-closely-spaced-targets-under-ambiguity.html

Note: This code may need to be modified if you edit or use a different scenario.

The generated script from Tracking Scenario Designer has several comments that indicate where to
add more code.

1) Configure a trackerJPDA

% Configure your tracker here:
numTracks = 20;
gate = 45;
vol = 1e9;
beta = 1e-14;
pd = 0.8;
far = 1e-6;

tracker = trackerJPDA(...
 'FilterInitializationFcn',@initCVFilter,...
 'MaxNumTracks', numTracks, ...
 'MaxNumSensors', 1, ...
 'AssignmentThreshold',gate, ...
 'TrackLogic','Integrated',...
 'DetectionProbability', pd, ...
 'ClutterDensity', far/vol, ...
 'NewTargetDensity', beta,...
 'TimeTolerance',0.05);

2) Define a track plotter

% Add a trackPlotter here:
trackp = trackPlotter(tp,'DisplayName','Tracks','ConnectHistory','on','ColorizeHistory','on');

3) Define a buffer for detections before the loop

% Main simulation loop
detBuffer = {};

4) Update the tracker within the loop

% Update your tracker here:
detBuffer = [detBuffer; dets]; %#ok<AGROW>
if configs.IsScanDone
 tracks = tracker(detBuffer,scenario.SimulationTime);
 pos = getTrackPositions(tracks,[1 0 0 0 0 0; 0 0 1 0 0 0 ; 0 0 0 0 1 0]);
 labels = string([tracks.TrackID]);
 detBuffer = {};
end

4) Update track plotter

% Update the trackPlotter here:
if configs.IsScanDone
 trackp.plotTrack(pos,labels);
end

Visualize Tracks

Observe the tracking animation by rerunning the script with the above additions. You will now
visualize the tracks of the two planes.

6 Featured Examples

6-418

Summary

In this example, you used the Tracking Scenario Designer application to load a tracking scenario
session file. You also learned how to navigate the application and how to simulate the scenario. In the
scenario, two aircraft are detected by a single radar. For a portion of the time, the two aircraft are so
close that the radar cannot resolve them. You learned how to export the scenario to a MATLAB script
to rerun the simulation and how to modify the script to add a JPDA tracker.

 Design and Simulate Tracking Scenario with Tracking Scenario Designer

6-419

Estimate Orientation with a Complementary Filter and IMU
Data

This example shows how to stream IMU data from an Arduino and estimate orientation using a
complementary filter.

Connect Hardware

Connect the SDA, SCL, GND, and VCC pins of the MPU-9250 sensor to the corresponding pins of the
Arduino® hardware. This example uses an Arduino® Uno board with the following connections:

• SDA - A4
• SCL - A5
• VCC - +3.3V
• GND - GND

6 Featured Examples

6-420

Ensure that the connections to the sensors are intact. It is recommended to attach/connect the sensor
to a prototype shield to avoid loose connections while the sensor is in motion. Refer the
Troubleshooting Sensors page to debug the sensor related issues.

Create Sensor Object

Create an arduino object and an mpu9250 object. Specify the sensor sampling rate Fs and the
amount of time to run the loops. Optionally, enable the isVerbose flag to check if any samples are
overrun. By disabling the useHW flag, you can also run the example with sensor data saved in the
MAT-file loggedMPU9250Data.mat.

The data in loggedMPU9250Data.mat was logged while the IMU was generally facing due South,
then rotated:

• +90 degrees around the z-axis

 Estimate Orientation with a Complementary Filter and IMU Data

6-421

https://www.mathworks.com/help/supportpkg/arduinoio/ug/troubleshoot-sensors.html

• -180 degrees around the z-axis
• +90 degrees around the z-axis
• +90 degrees around the y-axis
• -180 degrees around the y-axis
• +90 degrees around the y-axis
• +90 degrees around the x-axis
• -270 degrees around the x-axis
• +180 degrees around the x-axis

Notice that the last two rotations around the x-axis are an additional 90 degrees. This was done to flip
the device upside-down. The final orientation of the IMU is the same as the initial orientation, due
South.

Fs = 100;
samplesPerRead = 10;
runTime = 20;
isVerbose = false;
useHW = true;

if useHW
 a = arduino;
 imu = mpu9250(a, 'SampleRate', Fs, 'OutputFormat', 'matrix', ...
 'SamplesPerRead', samplesPerRead, 'Streaming', true);
else
 load('loggedMPU9250Data.mat', 'allAccel', 'allGyro', 'allMag', ...
 'allT', 'allOverrun', ...
 'numSamplesAccelGyro', 'numSamplesAccelGyroMag')
end

Align Axes of MPU-9250 Sensor with NED Coordinates

The axes of the accelerometer, gyroscope, and magnetometer in the MPU-9250 are not aligned with
each other. Specify the index and sign x-, y-, and z-axis of each sensor so that the sensor is aligned
with the North-East-Down (NED) coordinate system when it is at rest. In this example, the
magnetometer axes are changed while the accelerometer and gyroscope axes remain fixed. For your
own applications, change the following parameters as necessary.

% Accelerometer axes parameters.
accelXAxisIndex = 1;
accelXAxisSign = 1;
accelYAxisIndex = 2;
accelYAxisSign = 1;
accelZAxisIndex = 3;
accelZAxisSign = 1;

% Gyroscope axes parameters.
gyroXAxisIndex = 1;
gyroXAxisSign = 1;
gyroYAxisIndex = 2;
gyroYAxisSign = 1;
gyroZAxisIndex = 3;
gyroZAxisSign = 1;

% Magnetometer axes parameters.

6 Featured Examples

6-422

magXAxisIndex = 2;
magXAxisSign = 1;
magYAxisIndex = 1;
magYAxisSign = 1;
magZAxisIndex = 3;
magZAxisSign = -1;

% Helper functions used to align sensor data axes.

alignAccelAxes = @(in) [accelXAxisSign, accelYAxisSign, accelZAxisSign] ...
 .* in(:, [accelXAxisIndex, accelYAxisIndex, accelZAxisIndex]);

alignGyroAxes = @(in) [gyroXAxisSign, gyroYAxisSign, gyroZAxisSign] ...
 .* in(:, [gyroXAxisIndex, gyroYAxisIndex, gyroZAxisIndex]);

alignMagAxes = @(in) [magXAxisSign, magYAxisSign, magZAxisSign] ...
 .* in(:, [magXAxisIndex, magYAxisIndex, magZAxisIndex]);

Perform Additional Sensor Calibration

If necessary, you may calibrate the magnetometer to compensate for magnetic distortions. For more
details, see the Compensating for Hard Iron Distortions section of the “Estimating Orientation Using
Inertial Sensor Fusion and MPU-9250” on page 6-448 example.

Specify Complementary filter Parameters

The complementaryFilter has two tunable parameters. The AccelerometerGain parameter
determines how much the accelerometer measurement is trusted over the gyroscope measurement.
The MagnetometerGain parameter determines how much the magnetometer measurement is
trusted over the gyroscope measurement.

compFilt = complementaryFilter('SampleRate', Fs)

compFilt =

 complementaryFilter with properties:

 SampleRate: 100
 AccelerometerGain: 0.0100
 MagnetometerGain: 0.0100
 HasMagnetometer: 1
 OrientationFormat: 'quaternion'

Estimate Orientation with Accelerometer and Gyroscope

Set the HasMagnetometer property to false to disable the magnetometer measurement input. In
this mode, the filter only takes accelerometer and gyroscope measurements as inputs. Also, the filter
assumes the initial orientation of the IMU is aligned with the parent navigation frame. If the IMU is
not aligned with the navigation frame initially, there will be a constant offset in the orientation
estimation.

compFilt = complementaryFilter('HasMagnetometer', false);

tuner = HelperOrientationFilterTuner(compFilt);

if useHW

 Estimate Orientation with a Complementary Filter and IMU Data

6-423

 tic
else
 idx = 1:samplesPerRead;
 overrunIdx = 1;
end
while true
 if useHW
 [accel, gyro, mag, t, overrun] = imu();
 accel = alignAccelAxes(accel);
 gyro = alignGyroAxes(gyro);
 else
 accel = allAccel(idx,:);
 gyro = allGyro(idx,:);
 mag = allMag(idx,:);
 t = allT(idx,:);
 overrun = allOverrun(overrunIdx,:);

 idx = idx + samplesPerRead;
 overrunIdx = overrunIdx + 1;
 pause(samplesPerRead/Fs)
 end

 if (isVerbose && overrun > 0)
 fprintf('%d samples overrun ...\n', overrun);
 end

 q = compFilt(accel, gyro);
 update(tuner, q);

 if useHW
 if toc >= runTime
 break;
 end
 else
 if idx(end) > numSamplesAccelGyro
 break;
 end
 end
end

6 Featured Examples

6-424

Estimate Orientation with Accelerometer, Gyroscope, and Magnetometer

With the default values of AccelerometerGain and MagnetometerGain, the filter trusts more on
the gyroscope measurements in the short-term, but trusts more on the accelerometer and
magnetometer measurements in the long-term. This allows the filter to be more reactive to quick
orientation changes and prevents the orientation estimates from drifting over longer periods of time.
For specific IMU sensors and application purposes, you may want to tune the parameters of the filter
to improve the orientation estimation accuracy.

compFilt = complementaryFilter('SampleRate', Fs);

tuner = HelperOrientationFilterTuner(compFilt);

if useHW
 tic
end
while true
 if useHW
 [accel, gyro, mag, t, overrun] = imu();
 accel = alignAccelAxes(accel);
 gyro = alignGyroAxes(gyro);

 Estimate Orientation with a Complementary Filter and IMU Data

6-425

 mag = alignMagAxes(mag);
 else
 accel = allAccel(idx,:);
 gyro = allGyro(idx,:);
 mag = allMag(idx,:);
 t = allT(idx,:);
 overrun = allOverrun(overrunIdx,:);

 idx = idx + samplesPerRead;
 overrunIdx = overrunIdx + 1;
 pause(samplesPerRead/Fs)
 end

 if (isVerbose && overrun > 0)
 fprintf('%d samples overrun ...\n', overrun);
 end

 q = compFilt(accel, gyro, mag);
 update(tuner, q);

 if useHW
 if toc >= runTime
 break;
 end
 else
 if idx(end) > numSamplesAccelGyroMag
 break;
 end
 end
end

6 Featured Examples

6-426

Summary

This example showed how to estimate the orientation of an IMU using data from an Arduino and a
complementary filter. This example also showed how to configure the IMU and discussed the effects
of tuning the complementary filter parameters.

 Estimate Orientation with a Complementary Filter and IMU Data

6-427

Logged Sensor Data Alignment for Orientation Estimation
This example shows how to align and preprocess logged sensor data. This allows the fusion filters to
perform orientation estimation as expected. The logged data was collected from an accelerometer
and a gyroscope mounted on a ground vehicle.

Load Logged Sensor Data

Load logged inertial measurement unit (IMU) data and extract individual sensor data and
timestamps.

load('imuData', 'imuTT')

time = imuTT.Time;
accel = imuTT.LinearAcceleration;
gyro = imuTT.AngularVelocity;
orient = imuTT.Orientation;

Inspect the Gyroscope Data

From the range of angular velocity readings, the logged gyroscope data is in radians per second
instead of degrees per second. Also, the larger z-axis values and small x- and y-axis values indicate
that the device rotated around the z-axis only.

figure
plot(time, gyro)
title('Gyroscope')
ylabel('rad/s')
legend('x-axis', 'y-axis', 'z-axis')

6 Featured Examples

6-428

Inspect the Accelerometer Data

Since the z-axis reading of the accelerometer is around 10, the logged data is in meters per second
squared instead of g's.

figure
plot(time, accel)
title('Accelerometer')
ylabel('m/s^2')
legend('x-axis', 'y-axis', 'z-axis')

 Logged Sensor Data Alignment for Orientation Estimation

6-429

Inspect the Orientation Data

Convert the logged orientation quaternion data to Euler angles in degrees. The z-axis is changing
while the x- and y-axis are relatively fixed. This matches the gyroscope and accelerometer readings.
Therefore, no axis negating or rotating is required. However, the z-axis Euler angle is decreasing
while the gyroscope reading is positive. This means that the logged orientation quaternion is
expected to be applied as a point rotation operator (). In order to have the orientation
quaternion match the orientations filters, such as imufilter, the quaternion needs to be applied as
a frame rotation operator (). This can be done by conjugating the logged orientation
quaternion.

figure
plot(time, eulerd(orient, 'ZYX', 'frame'))
title('Euler Angles')
ylabel('\circ') % Degrees symbol.
legend('z-axis', 'y-axis', 'x-axis')

6 Featured Examples

6-430

Find the Sampling Rate of the Logged Data

An estimate of the sampling rate can be obtained by taking the mean of the difference between the
timestamps. Notice that there are some variances in the time differences. Since the variances are
small for this logged data, the mean of the time differences can be used. Alternatively, the sensor data
could be interpolated using the timestamps and equally spaced timestamps as query points.

deltaTimes = seconds(diff(time));
sampleRate = 1/mean(deltaTimes);

figure
plot([deltaTimes, repmat(mean(deltaTimes), numel(deltaTimes), 1)])
title('Time Differences')
ylabel('s')
legend('differences', 'mean')

 Logged Sensor Data Alignment for Orientation Estimation

6-431

Compare the Transformed Logged Quaternion to the imufilter Quaternion

Conjugate the logged orientation quaternion before comparing it to the estimated orientation
quaternion from imufilter. From the plot below, there is still a constant offset in the z-axis Euler
angle estimate. This is because the imufilter assumes the initial orientation of the device is aligned
with the navigation frame.

loggedOrient = conj(orient);

filt = imufilter('SampleRate', sampleRate);
estOrient = filt(accel, gyro);

figure
subplot(2, 1, 1)
plot(time, eulerd(loggedOrient, 'ZYX', 'frame'), '--')
title('Logged Euler Angles')
ylabel('\circ') % Degrees symbol.
legend('z-axis', 'y-axis', 'x-axis')
subplot(2, 1, 2)
plot(time, eulerd(estOrient, 'ZYX', 'frame'))
title('|imufilter| Euler Angles')
ylabel('\circ') % Degrees symbol.
legend('z-axis', 'y-axis', 'x-axis')

6 Featured Examples

6-432

Align the Logged Orientation and imufilter Orientation

Align the imufilter orientation quaternion with the logged orientation quaternion by applying a
constant bias using the first logged orientation quaternion. For quaternions, a constant rotation bias
can be applied by pre-multiplying frame rotations or post-multiplying point rotations. Since
imufilter reports quaternions as frame rotation operators, the estimated orientation quaternions
are pre-multiplied by the first logged orientation quaternion.

alignedEstOrient = loggedOrient(1) .* estOrient;

figure
subplot(2, 1, 1)
plot(time, eulerd(loggedOrient, 'ZYX', 'frame'), '--')
title('Logged Euler Angles')
ylabel('\circ') % Degrees symbol.
legend('z-axis', 'y-axis', 'x-axis')
subplot(2, 1, 2)
plot(time, eulerd(alignedEstOrient, 'ZYX', 'frame'))
title('Aligned |imufilter| Euler Angles')
ylabel('\circ') % Degrees symbol.
legend('z-axis', 'y-axis', 'x-axis')

 Logged Sensor Data Alignment for Orientation Estimation

6-433

Conclusion

For the MAT-file in this example, you checked the following aspects for alignment:

• Units for accelerometer and gyroscope.
• Axes alignments of accelerometer and gyroscope.
• Orientation quaternion rotation operator (point: or frame:)

Different unit conversions, axes alignments, and quaternion transformations may need to be applied
depending on the format of the logged data.

6 Featured Examples

6-434

Remove Bias from Angular Velocity Measurement
This example shows how to remove gyroscope bias from an IMU using imufilter.

Use kinematicTrajectory to create a trajectory with two parts. The first part has a constant
angular velocity about the y- and z-axes. The second part has a varying angular velocity in all three
axes.

duration = 60*8;
fs = 20;
numSamples = duration * fs;
rng('default') % Seed the RNG to reproduce noisy sensor measurements.

initialAngVel = [0,0.5,0.25];
finalAngVel = [-0.2,0.6,0.5];
constantAngVel = repmat(initialAngVel,floor(numSamples/2),1);
varyingAngVel = [linspace(initialAngVel(1), finalAngVel(1), ceil(numSamples/2)).', ...
 linspace(initialAngVel(2), finalAngVel(2), ceil(numSamples/2)).', ...
 linspace(initialAngVel(3), finalAngVel(3), ceil(numSamples/2)).'];

angVelBody = [constantAngVel; varyingAngVel];
accBody = zeros(numSamples,3);

traj = kinematicTrajectory('SampleRate',fs);

[~,qNED,~,accNED,angVelNED] = traj(accBody,angVelBody);

Create an imuSensor System object™, IMU, with a nonideal gyroscope. Call IMU with the ground-
truth acceleration, angular velocity, and orientation.

IMU = imuSensor('accel-gyro', ...
 'Gyroscope',gyroparams('RandomWalk',0.003,'ConstantBias',0.3), ...
 'SampleRate',fs);

[accelReadings, gyroReadingsBody] = IMU(accNED,angVelNED,qNED);

Create an imufilter System object, fuse. Call fuse with the modeled accelerometer readings and
gyroscope readings.

fuse = imufilter('SampleRate',fs, 'GyroscopeDriftNoise', 1e-6);

[~,angVelBodyRecovered] = fuse(accelReadings,gyroReadingsBody);

Plot the ground-truth angular velocity, the gyroscope readings, and the recovered angular velocity for
each axis.

The angular velocity returned from the imufilter compensates for the effect of the gyroscope bias
over time and converges to the true angular velocity.

time = (0:numSamples-1)'/fs;

figure(1)
plot(time,angVelBody(:,1), ...
 time,gyroReadingsBody(:,1), ...
 time,angVelBodyRecovered(:,1))
title('X-axis')
legend('True Angular Velocity', ...

 Remove Bias from Angular Velocity Measurement

6-435

 'Gyroscope Readings', ...
 'Recovered Angular Velocity')
ylabel('Angular Velocity (rad/s)')

figure(2)
plot(time,angVelBody(:,2), ...
 time,gyroReadingsBody(:,2), ...
 time,angVelBodyRecovered(:,2))
title('Y-axis')
ylabel('Angular Velocity (rad/s)')

6 Featured Examples

6-436

figure(3)
plot(time,angVelBody(:,3), ...
 time,gyroReadingsBody(:,3), ...
 time,angVelBodyRecovered(:,3))
title('Z-axis')
ylabel('Angular Velocity (rad/s)')
xlabel('Time (s)')

 Remove Bias from Angular Velocity Measurement

6-437

6 Featured Examples

6-438

Convert Detections to objectDetection Format
These examples show how to convert actual detections in the native format of the sensor into
objectDetection objects. objectDetection is the standard input format for most filters and
trackers in Sensor Fusion and Tracking toolbox. The five examples progressively show how to set up
objectDetection with varied tracking scenarios.

• Example 1 on page 6-0 configures the detection in a stationary rectangular frame.
• Example 2 on page 6-0 configures the detection in a moving rectangular frame.
• Example 3 on page 6-0 configures the detection in a moving spherical frame.
• Example 4 on page 6-0 shows how to express detections obtained by consecutive rotations.
• Example 5 on page 6-0 shows how to configure 3-D detections.

An objectDetection report must contain the basic detection information: Time and Measurement.
It can also contain other key properties, including MeasurementNoise, SensorIndex,
ObjectClassID, ObjectAttributes, and MeasurementParameters. Setting up
MeasurementParameters correctly so that a filter or tracker can interpret the measurement is
crucial in creating objectDetection. The first example shows the basic setup of an
objectDetection. The remaining examples focus on how to correctly set up
MeasurementParameters.

Example 1: Convert Detections in Stationary Rectangular Frame

Consider a 2-D tracking scenario with a stationary tower and a truck. The tower located at the origin
of the scenario frame is equipped with a radar sensor. At t = 0 seconds, the truck at the position of
(10,20,0) meters is traveling in the positive X direction at a speed of 5 m/s.

The radar sensor outputs 3-D position and velocity measurements in the scenario frame, so the
measurement can be written as follows:

measurement1 = [10;20;0;5;0;0]; % [x;y;z;vx;vy;vz]

You can specify additional properties such as MeasurmentNoise, SensorIndex, ObjectClassID,
and ObjectAttributes for the objectDetection object. For example, assuming the standard

 Convert Detections to objectDetection Format

6-439

deviation of the position and velocity measurement noise is 10 m and 1 m/s, respectively, you can
define the measurement error covariance matrix as:

measurementNoise1 = diag([10*ones(3,1);ones(3,1)]);

Create an objectDetection using these values.

time1 = 0; % detection time
detect1 = objectDetection(time1,measurement1,'MeasurementNoise',measurementNoise1)

detect1 =
 objectDetection with properties:

 Time: 0
 Measurement: [6x1 double]
 MeasurementNoise: [6x6 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: {}
 ObjectAttributes: {}

Example 2: Convert Detections in Moving Rectangular Frame

Consider a 2-D tracking scenario with an ego car and a truck. At t = 0 seconds, the car is located at
(20,10,0) meters with respect to the scenario frame. The car is moving with a speed of 5 m/s in the Y
direction of the scenario frame. The local (forward) frame of the ego car, {x,y}, rotates from the
scenario frame by an angle of 90 degrees. As in the previous example, a truck at the position of
(10,20,0) meters is traveling in the positive X direction at a speed of 5 m/s.

Meanwhile, the ego car is observing the truck in its own local frame, {x,y}. In practice, you can
obtain the measurement directly from the sensor system of the ego car. From the figure, the
measurements of the truck are [10; 10; 0 -5; -5; 0] with respect to the {x,y} frame in the order of
[x;y;z;vx;vy;vz].

measurement2 = [10; 10; 0; -5; -5; 0]; % [x;y;z;vx;vy;vz]

6 Featured Examples

6-440

To specify the object detection, you need to specify the coordinate transformation from the scenario
rectangular frame {X,Y} to the local rectangular frame {x,y}. You can use the
MeasurementParameters property of objectDetection to specify these transformation
parameters. In the transformation, the scenario frame is the parent frame, and the ego car local
frame is the child frame.

• The Frame property sets the child frame type to 'rectangular'(in this example) or
'spherical'.

• The OriginPosition property sets the position of the origin of the child frame with respect to
the parent frame.

• The OriginVelocity property sets the velocity of the origin of the child frame with respect to
the parent frame.

MP2 = struct();

MP2.Frame = 'rectangular';
MP2.OriginPosition =[20; 10; 0];
MP2.OriginVelocity = [0; 5; 0];

Specify rotation using the rotation matrix converted from Euler angles. Set IsParentToChild to
true to indicate rotation from the parent frame to the child frame.

rotAngle2 = [90 0 0]; % [yaw,pitch,row]
rotQuat2 = quaternion(rotAngle2,'Eulerd','ZYX','frame');
rotMatrix2 = rotmat(rotQuat2,'frame');
MP2.Orientation = rotMatrix2;
MP2.IsParentToChild = true;

Specify measurements.

• Set HasElevation and HasAzimuth both to false, since the child frame is rectangular.
• Set HasRange to true to enable position measurement.
• Set HasVelocity to true to enable velocity measurement.

MP2.HasElevation = false;
MP2.HasAzimuth = false;
MP2.HasRange = true;
MP2.HasVelocity = true;

Create the objectDetection object and specify the MeasurementParameters property.

time2 = 0;
detection2 = objectDetection(time2,measurement2,'MeasurementParameters',MP2)

detection2 =
 objectDetection with properties:

 Time: 0
 Measurement: [6x1 double]
 MeasurementNoise: [6x6 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

 Convert Detections to objectDetection Format

6-441

To verify the object detection, you can use the cvmeas measurement function to regenerate the
measurement. The cvmeas function can take the actual state of the target and measurement
parameters as input. The state input of cvmeas is in the order of [x;vx;y;vy;z;vz]. As shown in
the following output, the results agree with measurement2.

state2 =[10;5;20;0;0;0]; % [x;vx;y;vy;z;vz]
cvmeas2 = cvmeas(state2,MP2)% [x;y;z;vx;vy;vz]

cvmeas2 = 6×1

 10.0000
 10.0000
 0
 -5.0000
 -5.0000
 0

Example 3: Convert Detections in Moving Spherical Frame

Consider the previous tracking scenario, only now the measurement is obtained by a scanning radar
with a spherical output frame. The boresight direction of the radar is aligned with the Y direction
(same as x direction) at t = 0 seconds.

Since the relative velocity between the truck and the car is in the line-of-sight direction, the
measurement, which is in the order of [azimuth; elevation; range; range-rate], can be obtained as
follows:

measurement3 =[45; 0; 10/sind(45); -5/sind(45)]; % [az;el;rng;rr]. Units in degrees.

Specify the measurement parameters.

6 Featured Examples

6-442

MP3 = struct();

MP3.Frame = 'spherical'; % The child frame is spherical.
MP3.OriginPosition = [20; 10; 0];
MP3.OriginVelocity = [0; 5; 0];

% Specify rotation.
rotAngle3 = [90 0 0];
rotQuat3 = quaternion(rotAngle3,'Eulerd','ZYX','frame');
rotMatrix3 = rotmat(rotQuat3,'frame');
MP3.Orientation = rotMatrix3;
MP3.IsParentToChild = true;

Set HasElevation and HasAzimuth to true to output azimuth and elevation angles in the spherical
child frame. Set HasRange and HasVelocity both to true to output range and range-rate,
respectively.

MP3.HasElevation = true;
MP3.HasAzimuth = true;
MP3.HasRange = true;
MP3.HasVelocity = true;

Create the objectDetection object.

time3 = 0;
detection3 = objectDetection(time3,measurement3,'MeasurementParameters',MP3)

detection3 =
 objectDetection with properties:

 Time: 0
 Measurement: [4x1 double]
 MeasurementNoise: [4x4 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

Verify the results using cvmeas. The results agree with measurement3.

state3 = [10;5;20;0;0;0]; % [x;vx;y;vy;z;vz]
cvmeas3 = cvmeas(state3,MP3) % [az;el;rng;rr]

cvmeas3 = 4×1

 45.0000
 0
 14.1421
 -7.0711

Example 4: Convert Detections Between Three Frames

Consider the previous tracking scenario, only now the boresight direction of the radar rotates 45
degrees from the x direction of the car's local frame.

 Convert Detections to objectDetection Format

6-443

The new measurements, expressed in the new spherical frame {x′,y′}, are:

measurement4 = [0; 0; 10/sind(45); -5/sind(45)]; % [az;el;rng;rr]

For the measurement parameters, you can specify the rotation as a 135-degree rotation from the
scenario frame to the new spherical frame. Alternately, you can specify it as two consecutive
rotations: rectangular {X,Y} to rectangular {x,y} and rectangular {x,y} to spherical {x′,y′}. To
illustrate the multiple frame transformation feature supported by the MeasurementParameters
property, this example uses the latter approach.

The first set of measurement parameters is exactly the same as MP2 used in Example 2 on page 6-
0 . MP2 accounts for the rotation from the rectangular {X,Y} to the rectangular {x,y}. For the
second set of measurement parameters, MP4, you need to specify only a 45-degree rotation from the
rectangular {x,y} to the spherical {x′,y′}.

MP4 = struct();

MP4.Frame = 'spherical';
MP4.OriginPosition =[0; 0; 0]; % Colocated positions.
MP4.OriginVelocity = [0; 0; 0]; % Same origin velocities.

% Specify rotation.
rotAngle4 = [45 0 0];
rotQuat4 = quaternion(rotAngle4,'Eulerd','ZYX','frame');
rotMatrix4 = rotmat(rotQuat4,'frame');
MP4.Orientation = rotMatrix4;
MP4.IsParentToChild = true;

% Specify outputs in the spherical child frame.

6 Featured Examples

6-444

MP4.HasElevation = true;
MP4.HasAzimuth = true;
MP4.HasRange = true;
MP4.HasVelocity = true;

Create the combined MeasurementParameters input, MPc.

MPc =[MP4 MP2];

Create the objectDetection object.

time4 = 0;
detection4 = objectDetection(time4,measurement4,'MeasurementParameters',MPc)

detection4 =
 objectDetection with properties:

 Time: 0
 Measurement: [4x1 double]
 MeasurementNoise: [4x4 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x2 struct]
 ObjectAttributes: {}

Verify the results using cvmeas. The result agrees with measurement4.

state4 = [10;5;20;0;0;0]; % [x;vx;y;vy;z;vz]
cvmeas4 = cvmeas(state4,MPc) % [az;el;rr;rrate]

cvmeas4 = 4×1

 0.0000
 0
 14.1421
 -7.0711

Example 5: Convert 3D Detections

Consider an unmanned aerial vehicle (UAV) monitoring a region. At t = 0 seconds, the UAV is at the
position of (5,5,-1) km with respect to the global north-east-down (NED) frame. The velocity of the
UAV is (-50,-100,5) m/s. The orientation of the UAV body frame {x,y,z} with respect to the global NED
frame is given as (-120,2,2) degrees in yaw, pitch, and roll. At the same time, a car at the position of
(1,1,0) km is moving east with a speed of 30 m/s. The UAV measures the car using a radar system
aligned with its own body axis.

 Convert Detections to objectDetection Format

6-445

Based on this information, specify the kinematic parameters for the measurement transformation.

Specify the frame type, origin position, and origin velocity of the UAV body frame.

MP5 = struct();

MP5.Frame = 'spherical';
MP5.OriginPosition = [5000; 5000; -1000];
MP5.OriginVelocity = [-50; -100; 5];

Specify the rotation from the NED frame to the UAV body frame.

Rot_angle5 = [-120 2 2]; % [yaw,pitch,roll]
Rot_quat5 = quaternion(Rot_angle5,'Eulerd','ZYX','frame');
Rot_matrix5 = rotmat(Rot_quat5,'frame');
MP5.Orientation = Rot_matrix5;
MP5.IsParentToChild = true;

Specify the output measurements in a spherical frame.

MP5.HasElevation = true;
MP5.HasAzimuth = true;
MP5.HasRange = true;
MP5.HasVelocity = true;

You can obtain the measurement directly from the radar system on the UAV. Use the cvmeas function
is to obtain the measurement. The measurement is in the order of [azimuth;elevation;range;range-
rate].

car_state5 = [1000;0;1000;30;0;0]; % [x;vx;y;vy;z;vz].
measurement5 = cvmeas(car_state5,MP5);
meas_az5 = measurement5(1)

meas_az5 = -14.6825

6 Featured Examples

6-446

meas_el5 = measurement5(2)

meas_el5 = 12.4704

meas_rng5 = measurement5(3)

meas_rng5 = 5.7446e+03

meas_rr5 = measurement5(4)

meas_rr5 = -126.2063

The elevation angle is defined as an angle from the xy-plane to the z direction. That is why the
elevation angle is positive for a target on the ground relative to the UAV. This convention is used
throughout the toolbox.

The measurement noise for azimuth, elevation, range, and range-rate is [1,1,20,2], respectively. Also,
the index of the radar is 2, and the radar can classify the detected object as 1 for the type of 'car'.

index5 = 2;
covariance5 = diag([1;1;20;2]);
classID5 = 1;

Create an objectDetection object for the detection.

time5 = 0;
detection = objectDetection(time5,measurement5,'SensorIndex',index5,...
 'MeasurementNoise',covariance5,'ObjectClassID',classID5,'MeasurementParameters',MP5)

detection =
 objectDetection with properties:

 Time: 0
 Measurement: [4x1 double]
 MeasurementNoise: [4x4 double]
 SensorIndex: 2
 ObjectClassID: 1
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

 Convert Detections to objectDetection Format

6-447

Estimating Orientation Using Inertial Sensor Fusion and
MPU-9250

This example shows how to get data from an InvenSense MPU-9250 IMU sensor, and to use the 6-axis
and 9-axis fusion algorithms in the sensor data to compute orientation of the device.

MPU-9250 is a 9-axis sensor with accelerometer,gyroscope, and magnetometer. The accelerometer
measures acceleration, the gyroscope measures angular velocity, and the magnetometer measures
magnetic field in x-, y- and z- axis. The axis of the sensor depends on the make of the sensor.

Required MathWorks® Products

• MATLAB®
• MATLAB Support Package for Arduino® Hardware
• Sensor Fusion and Tracking Toolbox™ or Navigation Toolbox™

Required Hardware

• Arduino Uno
• InvenSense MPU-9250

Hardware Connection

Connect the SDA, SCL, GND, and the VCC pins of the MPU-9250 sensor to the corresponding pins on
the Arduino® Hardware. This example uses the Arduino Uno board with the following connections:

• SDA - A4
• SCL - A5
• VCC - +3.3V
• GND - GND

6 Featured Examples

6-448

Ensure that the connections to the sensors are intact. It is recommended to use a prototype shield
and solder the sensor to it to avoid loose connections while moving the sensor. Refer the
“Troubleshooting Sensors” (MATLAB Support Package for Arduino Hardware) page for sensors to
debug the sensor related issues.

Create Sensor Object

Create an arduino object and include the I2C library.

a = arduino('COM9', 'Uno', 'Libraries', 'I2C');

Updating server code on board Uno (COM9). This may take a few minutes.

Create the MPU-9250 sensor object.

fs = 100; % Sample Rate in Hz
imu = mpu9250(a,'SampleRate',fs,'OutputFormat','matrix');

 Estimating Orientation Using Inertial Sensor Fusion and MPU-9250

6-449

Compensating For Hard Iron Distortions

Fusion algorithms use magnetometer readings which need to compensate for magnetic distortions
such as hard iron distortion. Hard iron distortions are produced by materials which create a magnetic
field, resulting in shifting the origin on the response surface. These distortions can be corrected by
subtracting the correction values from the magnetometer readings for each axis. In order to find the
correction values, do the following:

1. Rotate the sensor from 0 to 360 degree around each axis.

2. Obtain the minimum and maximum magnetometer readings.

3. Average the minimum and maximum readings to get the correction values for each axis.

The correction values change with the surroundings.

The following code snippets can be used to obtain bias values for x axis, similar procedure can be
followed for other axes as well:

displayMessage(['Fusion algorithms use magnetometer readings which need to compensate for magnetic distortions.' ...
 'The given code snippet can be used to find the correction values for compensating Hard Iron Distortions. When the code '...
 'is executing, rotate the sensor around x axis from 0 to 360 degree. For other axes, modify the code accordingly and rotate the ' ...
 'sensor along that axis'],'Compensating Hard Iron Distortions');
tic;
stopTimer = 100;
magReadings=[];
while(toc<stopTimer)
 % Rotate the sensor around x axis from 0 to 360 degree.
 % Take 2-3 rotations to improve accuracy.
 % For other axes, rotate around that axis.
 [accel,gyro,mag] = read(imu);
 magReadings = [magReadings;mag];
end

% For y axis, use magReadings (:,2) and for z axis use magReadings(:,3)
magx_min = min(magReadings(:,1));
magx_max = max(magReadings(:,1));
magx_correction = (magx_max+magx_min)/2;

For more accurate tracking, calibrate the magnetometer for other distortions as well. The magcal
function (this function is available in both the Sensor Fusion and Tracking Toolbox™ and the
Navigation Toolbox™) can be used to compensate soft iron distortions as well. Change the correction
values calculated for your sensor in the readSensorDataMPU9250 function in the example folder.

Aligning the axis of MPU-9250 sensor with NED Coordinates

Sensor fusion algorithms used in this example use North-East-Down(NED) as a fixed, parent
coordinate system. In the NED reference frame, the X-axis points north, the Y-axis points east, and
the Z-axis points down. Depending on the algorithm, north may either be the magnetic north or true
north. The algorithms in this example use the magnetic north. The algorithms used here expects all
the sensors in the object to have their axis aligned and is in accordance with NED convention.

MPU-9250 has two devices, the magnetometer and the accelerometer-gyroscope, on the same board.
The axes of these devices are different from each other. The magnetometer axis is aligned with the
NED coordinates. The axis of the accelerometer-gyroscope is different from magnetometer in
MPU-9250. The accelerometer and the gyroscope axis need to be swapped and/or inverted to match

6 Featured Examples

6-450

the magnetometer axis. For more information refer to the section “Orientation of Axes” section in
MPU-9250 datasheet.

To align MPU-9250 accelerometer-gyroscope axes to NED coordinates, do the following:

1. Define device axes: Define the imaginary axis as the device axis on the sensor in accordance to
NED coordinate system which may or may not be same as sensor axes. For MPU-9250, magnetometer
axis can be considered as device axis.

2. Swap the x and y values of accelerometer and gyroscope readings, so that the accelerometer and
gyroscope axis is aligned with magnetometer axis.

3. Determine polarity values for accelerometer, and gyroscope.

a. Accelerometer

• Place the sensor such that device X axis is pointing downwards, perpendicular to the surface at
which sensor is kept. Accelerometer readings should read approximately [9.8 0 0]. If not negate
the x-values of accelerometer.

• Place the sensor such that device Y axis is pointing downwards, perpendicular to the surface at
which sensor is kept. Accelerometer readings should read approximately [0 9.8 0]. If not negate
the y-values of accelerometer.

• Place the sensor such that device Z axis is pointing downwards, perpendicular to the surface at
which sensor is kept. Accelerometer readings should read approximately [0 0 9.8]. If not negate
the z-values of accelerometer.

b. Gyroscope

Rotate the sensor along each axis and capture the readings. Use the right hand screw rule to correct
the polarity of rotation.

The above method is used to set the axis of the sensor in this example.

Tuning Filter Parameters

The algorithms used in this example, when properly tuned, enable estimation of orientation and are
robust against environmental noise sources. You must consider the situations in which the sensors

 Estimating Orientation Using Inertial Sensor Fusion and MPU-9250

6-451

https://invensense.tdk.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf

are used and tune the filters accordingly. See “Custom Tuning of Fusion Filters” on page 6-659 for
more details related to tuning filter parameters.

The example demonstrates three algorithms to determine orientation, namely ahrsfilter,
imufilter, and ecompass. Refer “Determine Orientation Using Inertial Sensors” for more details
related to inertial fusion algorithms.

Accelerometer-Gyroscope-Magnetometer Fusion

An attitude and heading reference system (AHRS) consist of a 9-axis system that uses an
accelerometer, gyroscope, and magnetometer to compute orientation of the device. The ahrsfilter
produces a smoothly changing estimate of orientation of the device, while correctly estimating the
north direction. The ahrsfilter has the ability to remove gyroscope bias and can also detect and
reject mild magnetic jamming.

The following code snippets use ahrsfilter system object to determine orientation of the sensor
and creates a figure which gets updated as you move the sensor. The sensor has to be stationary,
before the start of this example.

% GyroscopeNoise and AccelerometerNoise is determined from datasheet.
GyroscopeNoiseMPU9250 = 3.0462e-06; % GyroscopeNoise (variance value) in units of rad/s
AccelerometerNoiseMPU9250 = 0.0061; % AccelerometerNoise(variance value)in units of m/s^2
viewer = HelperOrientationViewer('Title',{'AHRS Filter'});
FUSE = ahrsfilter('SampleRate',imu.SampleRate, 'GyroscopeNoise',GyroscopeNoiseMPU9250,'AccelerometerNoise',AccelerometerNoiseMPU9250);
stopTimer = 100;

While the below code is getting executed, slowly move the sensor and check if the motion in the
figure matches the motion of the sensor.

% Use ahrsfilter to estimate orientation and update the viewer as the
% sensor moves for time specified by stopTimer
displayMessage(['This section uses AHRS filter to determine orientation of the sensor by collecting live sensor data from the \slmpu9250 \rm' ...
 'system object. Move the sensor to visualize orientation of the sensor in the figure window. Keep the sensor stationery before you' ...
 'click OK'],...
 'Estimate Orientation using AHRS filter and MPU-9250')
tic;
while(toc < stopTimer)
 [accel,gyro,mag] = readSensorDataMPU9250(imu);
 rotators = FUSE(accel,gyro,mag);
 for j = numel(rotators)
 viewer(rotators(j));
 end
end

When the device X axis of sensor is pointing to north, the device Y-axis is pointing to east and device
Z-axis is pointing down.

6 Featured Examples

6-452

When the device X axis of sensor is pointing to north, device Y-axis is pointing to west and device Z-
axis is pointing upwards.

 Estimating Orientation Using Inertial Sensor Fusion and MPU-9250

6-453

Accelerometer-Gyroscope Fusion

The imufilter system object fuses accelerometer and gyroscope data using an internal error-state
Kalman filter. The filter is capable of removing the gyroscope bias noise, which drifts over time. The
filter does not process magnetometer data, so it does not correctly estimate the direction of north.
The algorithm assumes the initial position of the sensor is in such a way that device X-axis of the
sensor is pointing towards magnetic north, the device Y-axis of the sensor is pointing to east and the
device Z-axis of the sensor is pointing downwards. The sensor must be stationary, before the start of
this example.

The following code snippets use imufilter object to determine orientation of the sensor and creates
a figure which gets updated as you move the sensor.

displayMessage(['This section uses IMU filter to determine orientation of the sensor by collecting live sensor data from the \slmpu9250 \rm' ...
 'system object. Move the sensor to visualize orientation of the sensor in the figure window. Keep the sensor stationery before you'...
 'click OK'],...
 'Estimate Orientation using IMU filter and MPU-9250.')
% GyroscopeNoise and AccelerometerNoise is determined from datasheet.
GyroscopeNoiseMPU9250 = 3.0462e-06; % GyroscopeNoise (variance) in units of rad/s
AccelerometerNoiseMPU9250 = 0.0061; % AccelerometerNoise (variance) in units of m/s^2
viewer = HelperOrientationViewer('Title',{'IMU Filter'});

6 Featured Examples

6-454

FUSE = imufilter('SampleRate',imu.SampleRate, 'GyroscopeNoise',GyroscopeNoiseMPU9250,'AccelerometerNoise', AccelerometerNoiseMPU9250);
stopTimer=100;

While the below code is getting executed, slowly move the sensor and check if the motion in the
figure matches the motion of the sensor.

% Use imufilter to estimate orientation and update the viewer as the
% sensor moves for time specified by stopTimer
tic;
while(toc < stopTimer)
 [accel,gyro] = readSensorDataMPU9250(imu);
 rotators = FUSE(accel,gyro);
 for j = numel(rotators)
 viewer(rotators(j));
 end
end

The imufilter algorithm can also be used with MPU6050 as well, since it does not require
magnetometer values.

When the device X axis of sensor is pointing to north, device Z-axis is pointing downwards and device
Y-axis is pointing to east.

 Estimating Orientation Using Inertial Sensor Fusion and MPU-9250

6-455

When the device X axis of sensor is pointing upwards, device Y-axis is points to west and device Z-axis
points to south.

Accelerometer-Magnetometer Fusion

The ecompass system object fuses the accelerometer and magnetometer data. The Ecompass
algorithm is a memoryless algorithm that requires no parameter tuning but is highly susceptible to
sensor noise. You could use spherical linear interpolation (SLERP) to lowpass filter a noisy trajectory.
Refer “Lowpass Filter Orientation Using Quaternion SLERP” on page 6-48 example for more details

displayMessage(['This section uses \slecompass \rmfunction to determine orientation of the sensor by collecting live sensor data from the \slmpu9250 ' ...
 '\rmsystem object. Move the sensor to visualize orientation of the sensor in the figure window. Keep the sensor stationery before you click OK'],...
 'Estimate Orientation using Ecompass algorithm.')
tic;
viewer = HelperOrientationViewer('Title',{'Ecompass Algorithm'});
stopTimer = 100;
tic;
% Use ecompass algorithm to estimate orientation and update the viewer as the
% sensor moves for time specified by stopTimer.
while(toc < stopTimer)
 [accel,gyro,mag] = readSensorDataMPU9250(imu);
 rotators = ecompass(accel,mag);

6 Featured Examples

6-456

 for j = numel(rotators)
 viewer(rotators(j));
 end
end

Clean Up

When the connection is no longer needed, release and clear the objects

release(imu);
delete(imu);
clear;

Things to try

You can try this example with other sensors such as InvenSense MPU-6050 and STMicroelectronics
LSM9DS1. Note that the MPU-6050 sensor can be used only with the imufilter system object.

 Estimating Orientation Using Inertial Sensor Fusion and MPU-9250

6-457

Track Simulated Vehicles Using GNN and JPDA Trackers in
Simulink

This example shows how to configure and utilize GNN and JPDA trackers in a simulated highway
scenario in Simulink® with Sensor Fusion and Tracking Toolbox™. It closely follows the “Sensor
Fusion Using Synthetic Radar and Vision Data in Simulink” (Automated Driving Toolbox). A main
benefit of modeling the system in Simulink is the simplicity of performing "what-if" analysis and
choosing a tracker that results in the best performance based on the requirements.

Introduction

Synthetic radar and vision data help us in evaluating the target tracking algorithms. This example
primarily focuses on the tracking abilities of trackerGNN and trackerJPDA in Simulink.

Setup and Overview of the Model

The setup of this example is the same as the setup of “Sensor Fusion Using Synthetic Radar and
Vision Data in Simulink” (Automated Driving Toolbox) example, except that the simulated detections
are concatenated as the input to the Trackers block.

Trackers

The Trackers block is a variant subsystem, which you can use to switch between the GNN tracker
and the JPDA tracker.

The first variant of the Trackers block, trackerGNN, assumes a constant velocity motion model and
an extended Kalman filter by setting the Filter initialization function as the default initcvekf.

6 Featured Examples

6-458

With GNN tracker, you can choose your own customized filter which fits the motion of the simulated
objects. You can choose the assignment algorithm among MatchPairs, Munkres, Jonker-Volgenant,
Auction and your own customized assignment algorithm. You can also specify the track maintenance
logic as History or Score.

The second variant of the Trackers block, trackerJPDA, also assumes a constant velocity motion
model and an extended Kalman filter by the default filter initialization function initcvekf.

 Track Simulated Vehicles Using GNN and JPDA Trackers in Simulink

6-459

With trackerJPDA, you can customize your own filter initialization function and choose between the
History and the Integrated track logic.

You can select your preferable subsystem by setting the value of conditional variable Tracker in the
base workspace. The following table shows the Tracker values corresponding to their
configurations.

You can also use the “Edit and Manage Workspace Variables by Using Model Explorer” (Simulink) to
change the value of Tracker.

6 Featured Examples

6-460

Track Metrics

The Track Metrics is implemented using a MATLAB System (Simulink) block. The code for the block
is defined by a helper class, HelperTrackMetrics.

Results

To visualize the results, use the Bird's-Eye Scope. The Bird's-Eye Scope is a model-level visualization
tool via a menu provided on the Simulink model toolbar. After opening the scope, click Find Signals
to set up the signals. Then run the simulation to display the actors, vision and radar detections,
tracks, and road boundaries. The following image shows the bird's-eye scope for this example.

In Simulink, you can run this example via interpreted execution or code generation. With interpreted
execution, the model simulates the block using the MATLAB® execution engine which allows faster
startup time but longer execution time. With code generation, the model simulates the block using
the subset of MATLAB code supported for code generation which allows better performance than the
interpreted execution.

After running the model, you can visualize the results on the figures below.

 Track Simulated Vehicles Using GNN and JPDA Trackers in Simulink

6-461

The above figure shows the tracking results using synthetic radar and vision data with trackerGNN.
You can see that the tracker maintained tracks throughout the tracking region.

6 Featured Examples

6-462

The above figure shows the tracking results using synthetic radar and vision data with trackerJPDA.
You can see that the tracker maintained tracks throughout the tracking region and the tracking
performance is better than that of trackerGNN as there are fewer false tracks generated.

Evaluate Tracking Performance

You can use the Track Metrics block to evaluate the tracking performance of each tracker using
quantitative metrics. In this example, you view the number of target tracks, the number of redundant
tracks, and the number of false tracks. A target track is a track that is associated with unique targets.
A redundant track is a track that is associated with a ground truth object that has been associated to
another track. A false track is a track that is not associated with any ground truth objects. Below the
first figure shows the tracking performance results of GNN tracker and the second figure shows the
results of JPDA tracker.

 Track Simulated Vehicles Using GNN and JPDA Trackers in Simulink

6-463

The assignment metrics illustrate that one redundant track was initialized and confirmed by
trackerGNN whereas trackerJPDA does not create any redundant tracks. The redundant tracks
were generated due to imperfect clustering, where detections belonging to the same target were
clustered into more than one cluster. Also, the trackerGNN created and confirmed three false tracks
whereas trackerJPDA confirmed only one false track. These metrics show that trackerJPDA
provides better tracking performance than trackerGNN.

Summary

This example shows how to generate a scenario, simulate sensor detections, and use these detections
to track moving vehicles around the ego vehicle using the trackerGNN and trackerJPDA blocks in
Simulink. You have also seen the simplicity of exchanging between the two trackers, the flexibility of
customizing these trackers to suit your own target tracking requirements, and the ability to evaluate
the tracking results using track metrics.

6 Featured Examples

6-464

Track-to-Track Fusion for Automotive Safety Applications in
Simulink

This example shows how to perform track-to-track fusion in Simulink® with Sensor Fusion and
Tracking Toolbox™. In the context of autonomous driving, the example illustrates how to build a
decentralized tracking architecture using a track fuser block. In the example, each vehicle perform
tracking independently as well as fuse tracking information received from other vehicles. This
example closely follows the “Track-to-Track Fusion for Automotive Safety Applications” on page 6-694
MATLAB® example.

Introduction

Automotive safety applications largely rely on the situational awareness of the vehicle. A better
situational awareness provides the basis to a successful decision-making for different situations. To
achieve this, vehicles can benefit from intervehicle data fusion. This example illustrates the workflow
in Simulink for fusing data from two vehicles to enhance situational awareness of the vehicle.

Setup and Overview of the Model

Prior to running this example, the drivingScenario object was used to create the same scenario
defined in “Track-to-Track Fusion for Automotive Safety Applications” on page 6-694. The roads and
actors from this scenario were then saved to the scenario object file
TrackToTrackFusionScenario.mat.

 Track-to-Track Fusion for Automotive Safety Applications in Simulink

6-465

Tracking and Fusion

In the Tracking and Fusion section of the model there are two subsystems which implements the
target tracking and fusion capabilities of Vehicle1 and Vehicle2 in this scenario.

Vehicle1

This subsystem includes the Scenario Reader (Automated Driving Toolbox) block that reads the actor
pose data from the saved file. The block converts the actor poses from the world coordinates of the
scenario into ego vehicle coordinates. The actor poses are streamed on a bus generated by the block.
The actor poses are used by the Sensor Simulation subsystem, which generates radar and vision
detections. These detections are then passed to the JPDA Tracker V1 block which processes the
detections to generate a list of tracks. The tracks are then passed into a Track Concatenation1
block, which concatenates these input tracks. The first input to the Track Concatenation1 block is
the local tracks from the JPDA tracker and the second input is the tracks received from the other
vehicle's track fuser. To transform local tracks to central tracks, the track fuser needs the parameter
information about the local tracks. However, this information is not available from the direct outputs
of the JPDA tracker. Therefore, a helper Update Pose block is used to supply these information by
reading the data from the v1Pose.mat file. The updated tracks are then broadcasted to T2TF
Tracker V1 block as an input. Finally, the trackFuser T2TF Tracker V1 block fuses the local
vehicle tracks with the tracks received from the other vehicle's track fuser. After each update, the
track fuser on each vehicle broadcasts its fused tracks to be fed into the update of the other vehicle's
track fuser in the next time stamp.

Vehicle2

Vehicle2 subsystem follows similar setup as Vehicle1 subsystem as described above.

Visualization

The Visualization block is implemented using the MATLAB System block and is defined using
HelperTrackDisplay block. The block uses RunTimeObject parameter of the blocks to display
their outputs. See “Access Block Data During Simulation” (Simulink) for further information on how
to access block outputs during simulation.

Results

After running the model, you visualize the results as on the figure. The animation below shows the
results for this simulation.

6 Featured Examples

6-466

The visualization includes two panels. The left panel shows the detections, local tracks, and fused
tracks that Vehicle1 generated during the simulation and represents the situational awareness of
the Vehicle1. The right panel shows the situational awareness of Vehicle2.

The recorded detections are represented by black circles. The local and fused tracks from Vehicle1
are represented by square and diamond respectively. The local and fused tracks from Vehicle2
represented by a solid black square and diamond. Notice that during the start of simulation,
Vehicle1 detects vehicles parked on the right side of the street, and tracks associated with the
parked vehicles are confirmed. Currently Vehicle2 only detects Vehicle1 which is immediately in
front of it. As the simulation continues the confirmed tracks from Vehicle1 are broadcasts to the
fuser on Vehicle2. After fusing the tracks, vehicle2 becomes aware of the objects prior to
detecting these objects on its own. Similarly, Vehicle2 tracks are broadcasts to Vehicle1.
Vehicle1 fuses these tracks and becomes aware of the objects prior to detecting them on its own.

In particular, you observe that the pedestrian standing between the blue and purple car on the right
side of the street is detected and tracked by Vehicle1. Vehicle2 first becomes aware of the
pedestrian by fusing the track from Vehicle1 at around 0.8 seconds. It takes Vehicle2 roughly 3
seconds before it starts detecting the pedestrian using its own sensor. The ability to track a
pedestrian based on inputs from Vehicle1 allows Vehicle2 to extend its situational awareness and
to mitigate the risk of accident.

Summary

This example showed how to perform track-to-track fusion in Simulink. You learned how to perform
tracking using a decentralized tracking architecture, where each vehicle is responsible for
maintaining its own local tracks, fuse tracks from other vehicles, and communicate the tracks to the
other vehicle. You also used a JPDA tracker block to generate the local tracks.

 Track-to-Track Fusion for Automotive Safety Applications in Simulink

6-467

Track Point Targets in Dense Clutter Using GM-PHD Tracker
This example shows you how to track points targets in dense clutter using a Gaussian mixture
probability hypothesis density (GM-PHD) tracker using a constant velocity model.

Setup Scenario

The scenario used in this example is created using trackingScenario. The scenario consists of five
point targets moving at a constant velocity. The targets move within the field of view of a static 2-D
radar sensor. You use the monostaticRadarSensor to simulate the 2-D sensor and mount it on a
static platform. You use the FalseAlarmRate property of the sensor to control the density of the
clutter. The value of the FalseAlarmRate property represents the probability of generating a false
alarm in one resolution cell of the sensor. Based on a false alarm rate of 10−3 and the resolution of
the sensor defined in this example, there are approximately 48 false alarms generated per step.

% Reproducible target locations
rng(2022);

% Create a trackingScenario object
scene = trackingScenario('UpdateRate',10,'StopTime',10);
numTgts = 5;

% Initialize position and velocity of each target
x = 100*(2*rand(numTgts,1) - 1);
y = 100*(2*rand(numTgts,1) - 1);
z = zeros(numTgts,1);
vx = 5*randn(numTgts,1);
vy = 5*randn(numTgts,1);
vz = zeros(numTgts,1);

% Add platforms to scenario with given positions and velocities.
for i = 1:numTgts
 thisTgt = platform(scene);
 thisTgt.Trajectory.Position = [x(i) y(i) z(i)];
 thisTgt.Trajectory.Velocity = [vx(i) vy(i) vz(i)];
end

% Add a detecting platform to the scene.
detectingPlatform = platform(scene);
detectingPlatform.Trajectory.Position = [-200 0 0];

% Simulate 2-D radar using a monostaticRadarSensor.
radar = monostaticRadarSensor(1,...
 'UpdateRate',scene.UpdateRate,...
 'DetectionProbability',0.9,...% Pd
 'FalseAlarmRate',1e-3,...% Pfa
 'FieldOfView',[120 1],...
 'ScanMode','No Scanning',...
 'DetectionCoordinates','scenario',...% Report in scenario frame
 'HasINS',true,... % Enable INS to report in scenario frame
 'ReferenceRange',300,... % Short-range
 'ReferenceRCS',10,... % Default RCS of platforms
 'MaxUnambiguousRange',400,... % Short-range
 'RangeResolution',1,...
 'AzimuthResolution',1,...
 'HasFalseAlarms',true); % Reports false alarms

6 Featured Examples

6-468

% Mount the radar on the detecting platform.
detectingPlatform.Sensors = radar;

Set Up Tracker and Metrics

Tracker

You use a GM-PHD point object tracker to track targets. The first step towards configuring a PHD
tracker is to set up the configuration of the sensor. You define the configuration using a
trackingSensorConfiguration object.

The SensorIndex of the configuration is set to 1 to match that of the simulated sensor. As the sensor
is a point object sensor that outputs at most one detection per object per scan, you set the
MaxNumDetsPerObject property of the configuration to 1.

The SensorTransformFcn, SensorTransformParameters, and SensorLimits together allow
you to define the region in which the tracks can be detected by the sensor. The
SensorTransformFcn defines the transformation of a track state (xtrack) into an intermediate space
used by the sensor (xsensor) to define track detectability. The overall calculation to calculate detection
probability is shown below:

xsensor = SensorTransformFcn xtrack, SensorTransformParameters

Pd =

 Track Point Targets in Dense Clutter Using GM-PHD Tracker

6-469

Configuration . DetectionProbability SensorLimits : , 1 ≤ xsensor ≤ SensorLimits : , 2
Configuration . MinDetectionProbability otherwise

To compute detection probability of an uncertain state with a given state covariance, the tracker
generates samples of the state using sigma-point calculations similar to an unscented Kalman filter.

Notice that the signature of the SensorTransformFcn is similar to a typical measurement model.
Therefore, you can use functions like cvmeas, cameas as SensorTransformFcn. In this example,
you assume that all tracks are detectable. Therefore, the SensorTransformFcn is defined as
@(x,params)x and SensorLimits are defined as [-inf inf] for all states.

% Transform function and limits
sensorTransformFcn = @(x,params)x;
sensorTransformParameters = struct;
sensorLimits = [-inf inf].*ones(6,1);

% Detection probability for sensor configuration
Pd = radar.DetectionProbability;

config = trackingSensorConfiguration('SensorIndex',1,...
 'IsValidTime',true,...% Update every step
 'MaxNumDetsPerObject',1,...
 'SensorTransformFcn',sensorTransformFcn,...
 'SensorTransformParameters',sensorTransformParameters,...
 'SensorLimits',sensorLimits,...
 'DetectionProbability',Pd);

The ClutterDensity property of the configuration refers to false alarm rate per-unit volume of the
measurement-space. In this example, the measurement-space is defined as the Cartesian coordinates
as the detections are reported in the scenario frame. As the volume of the sensor's resolution in
Cartesian coordinates changes with azimuth and range of the resolution, an approximate value can
be computed at the mean-range of the sensor.

% Sensor Parameters to calculate Volume of the resolution bin
Rm = radar.MaxUnambiguousRange/2; % mean -range
dTheta = radar.ElevationResolution;
% Bias fractions reduce the "effective" resolution size
dPhi = radar.AzimuthBiasFraction*radar.AzimuthResolution;
dR = radar.RangeBiasFraction*radar.RangeResolution;

% Cell volume
VCell = 2*((Rm+dR)^3 - Rm^3)/3*(sind(dTheta/2))*deg2rad(dPhi);

% False alarm rate
Pfa = radar.FalseAlarmRate;

% Define clutter density
config.ClutterDensity = Pfa/VCell;

You also define a FilterInitializationFcn to specify the type of filter and the distribution of
components in the filter, initialized by this sensor. In this example, you set the
FilterInitializationFcn to initcvgmphd, which creates a constant-velocity GM-PHD filter and
adds 1 component per low-likelihood detection from the tracker. The initcvgmphd does not add any
component when called without a detection. This means that under this configuration, the birth
components are only added to the filter when detections fall outside of the AssignmentThreshold
of multi-target filer. See AssignmentThreshold property of trackerPHD for more details.

6 Featured Examples

6-470

config.FilterInitializationFcn = @initcvgmphd;

Next you create the tracker using this configuration using the trackerPHD System object™. While
configuring a tracker, you specify the BirthRate property to define the number of targets appearing
in the field of view per unit time. The FilterInitializationFcn used with the configuration adds
one component per unassigned detection. At each time-step, you can expect the number of
components to be approximately equal to the number of false alarms and new targets. The tracker
distributes the BirthRate to all these components uniformly.

% Use number of radar cells to compute number of false alarms per unit time.
NCells = radar.MaxUnambiguousRange/radar.RangeResolution*radar.FieldOfView(1)/radar.AzimuthResolution;
numFalse = Pfa*NCells;

% Choose an initial weight of 0.05 for each new component. As number of new
% targets is not known, new number of components are simply used as number
% of false alarms. 0.1 is the update rate.
birthRate = 0.05*(numFalse)/0.1;

% Create a tracker with the defined sensor configuration.
tracker = trackerPHD('BirthRate',birthRate,...
 'SensorConfigurations', config);

Metrics

To evaluate the performance of the tracker, you also set up a metric for performance evaluation. In
this example, you use the Generalized Optimal Subpattern Assignment (GOSPA) metric. The GOSPA
metric aims to evaluate the performance of a tracker by assigning it a single cost value. The better
the tracking performance, the lower the GOSPA cost. A value of zero represents perfect tracking.

% Create gospa metric object.
gospa = trackGOSPAMetric;

% Initialize variable for storing metric at each step.
gospaMetric = zeros(0,1);
loc = zeros(0,1);
mt = zeros(0,1);
ft = zeros(0,1);

Run Simulation

Next, you advance the scenario, collect detections from the scenario, and run the PHD tracker on the
simulated detections.

% Create a display
display = helperClutterTrackingDisplay(scene);

count = 1; % Counter for storing metric data
rng(2018); % Reproducible run

while advance(scene)
 % Current time
 time = scene.SimulationTime;

 % Current detections
 detections = detect(scene);

 % Tracks
 tracks = tracker(detections, time);

 Track Point Targets in Dense Clutter Using GM-PHD Tracker

6-471

 % Update display
 display(scene, detections, tracks);

 % Compute GOSPA. getTruth function is defined below.
 truths = getTruth(scene);
 [~,gospaMetric(count),~,loc(count),mt(count),ft(count)] = gospa(tracks, truths);
 count = count + 1;
end

You can visualize that all targets were tracked by the PHD tracker in this scenario. This can also be
quantitatively evaluated using the GOSPA metric and associated components. In the figure below,
notice that GOSPA metric goes down after a few steps. The initial value of GOSPA metric is higher
because of establishment delay for each track.

figure('Units','normalized','Position',[0.1 0.1 0.8 0.8])
subplot(2,2,[1 2]); plot(gospaMetric,'LineWidth',2); title('Total GOSPA');
ylabel('GOSPA Metric'); xlabel('Time step'); grid on;
subplot(2,2,3); plot(mt,'LineWidth',2); title('Missed Target GOSPA');
ylabel('Missed Target Metric'); xlabel('Time step'); grid on;
subplot(2,2,4); plot(ft,'LineWidth',2); title('False Track GOSPA');
ylabel('False Target Metric'); xlabel('Time step'); grid on;

6 Featured Examples

6-472

Analyze Performance

A typical method to qualify the performance of a tracker is by running several simulations on
different realizations of the scenario. Monte Carlo simulations help to nullify the effect of random
events such as locations of false alarms, events of target misses, and noise in measurements.

In this section, you run different realizations of the scenario and the tracker with different false alarm
rates and compute the average GOSPA of the system for each realization. The process of running a
scenario and computing the average GOSPA for the system is wrapped inside the helper function
helperRunMonteCarloAnalysis on page 6-0 . To accelerate the Monte Carlo simulations, you can
generate code for the monostaticRadarSensor model as well as the trackerPHD using
MATLAB® Coder™ Toolbox. The process for generating code is wrapped inside the helper function
helperGenerateCode on page 6-0 . To generate code for an algorithm, you assemble the code into a
standalone function. This function is named clutterSimTracker_kernel in this example. The
clutterSimTracker_kernel function is written to support four false alarm rates. To regenerate
code with different false alarm rates, you can use the following command.

Pfas = 10.^(-4,-3,4); % Choose your false alarm settings
helperGenerateCode(scene, Pfas); % Generate code

To regenerate code for more false alarm settings, you can modify the functions to include more
persistent variables. For more details on how to generate code for System objects™, refer to the
“How to Generate C Code for a Tracker” on page 6-295 example.

 Track Point Targets in Dense Clutter Using GM-PHD Tracker

6-473

The helperRunMonteCarloAnalysis function uses a parfor to execute each Monte Carlo run. If
you have Parallel Computing Toolbox™ license, the Monte Carlo runs can be distributed across
several workers to further accelerate the simulations.

% Turn on flag to run Monte Carlo Simulations
Pfas = 10.^linspace(-4,-3,4);
runMonteCarlo = false;
if runMonteCarlo
 numRunsPerPfa = 50; %#ok<UNRCH>
 gospaMCs = zeros(4,numRunsPerPfa,4);
 for i = 1:4
 gospaMCs(i,:,:) = helperRunMonteCarloAnalysis(scene, Pfas, Pfas(i), numRunsPerPfa);
 end
 save clutterTrackingMCRuns.mat gospaMCs;
else
 % Reload results from last run
 load('clutterTrackingMCRuns.mat','gospaMCs');
end

% Plot results
figure('Units','normalized','Position',[0.1 0.1 0.8 0.8])
subplot(2,2,[1 2]); plot(gospaMCs(:,:,1)','LineWidth',2); title('GOSPA');
legend(strcat('Pfa = ',string(Pfas)),'Orientation','horizontal','Location','NorthOutside');
ylabel('Average GOSPA Metric'); xlabel('Monte Carlo Run'); grid on;
subplot(2,2,3); plot(gospaMCs(:,:,3)','LineWidth',2); title('Missed Target GOSPA');
ylabel('Average Missed Target Metric'); xlabel('Monte Carlo Run'); grid on;
subplot(2,2,4); plot(gospaMCs(:,:,4)','LineWidth',2); title('False Track GOSPA');
ylabel('Average False Track Metric'); xlabel('Monte Carlo Run'); grid on;

6 Featured Examples

6-474

The plots above show performance of the tracker in this scenario by running 50 Monte Carlo
realizations for each false alarm rate. As the false alarm rate increases, the probability of generating
a false track increases. This probability is even higher in the vicinity of the sensor, where density of
resolution cells is much higher. As false alarms are closely spaced and appear frequently in this
region, they can be misclassified as a low-velocity false-track. This behavior of the tracker can be
observed in the averaged "False Track Component" of the GOSPA metric per scenario run. Notice that
as the false alarm rate increases, the number of peaks in the plot also increase. This also causes an
increase in the total GOSPA metric. The "Missed Target Component" is zero for all except one run.
This type of event is caused by multiple misses of the target by the sensor.

Summary

In this example, you learned how to configure and initialize a GM-PHD tracker to track point targets
for a given false alarm rate. You also learned how to evaluate the performance of the tracker using
the GOSPA metric and its associated components. In addition, you learned how to run several
realizations of the scenario under different false alarm settings to qualify the performance
characteristics of the tracker.

Utility Functions

helperRunMonteCarloAnalysis

function gospaMC = helperRunMonteCarloAnalysis(scene, Pfas, Pfai, numRuns)

clear clutterSimTracker_kernel;

 Track Point Targets in Dense Clutter Using GM-PHD Tracker

6-475

% Compute which tracker to run based on provided Pfa
settingToRun = find(Pfas == Pfai,1,'first');

% Initialize ospa for each Monte Carlo run
gospaMC = zeros(numRuns,4);

% Use parfor for parallel simulations
parfor i = 1:numRuns
 rng(i, 'twister');

 % Restart scenario before each run
 restart(scene);

 % metrics vs time in this scenario
 gospaMetric = zeros(0,4);

 % Counter
 count = 0;

 % Advance scene and run
 while advance(scene)
 count = count + 1;

 % Use radar sensor using targetPoses function
 own = scene.Platforms{end};
 tgtPoses = targetPoses(own,'rotmat');
 insPose = pose(own);
 poses = platformPoses(scene,'rotmat');
 truths = poses(1:end-1);
 time = scene.SimulationTime;

 % Reset tracker at the end of step so at the next call tracker is
 % reset to time 0.
 systemToReset = settingToRun*(abs(time - scene.StopTime) < 1e-3);

 % Store ospa metric. Tracks and detections can be outputted to run
 % scenario in code generation without needing Monte Carlo runs.
 [~,~,gospaMetric(count,:)] = clutterSimTracker_kernel(Pfas, tgtPoses, insPose, truths, time, settingToRun, systemToReset);
 end

 % Compute average of GOSPA in this run
 % Start from time step 20 to allow track establishment.
 gospaMC(i,:) = mean(gospaMetric(20:end,:));
end

end

helperGenerateCode

function helperGenerateCode(scene,Pfas) %#ok<DEFNU>

% Generate sample pose using platformPoses
poses = platformPoses(scene,'rotmat');

% Generate sample inputs for the kernel function
%
% Pfas must be compile-time constant and they cannot change with time
Pfas = coder.Constant(Pfas);

6 Featured Examples

6-476

% Target poses as a variable size arrray of max 20 elements
tgtPoses = coder.typeof(poses(1),[20 1],[1 0]);

% Scalar ins pose
insPose = pose(scene.Platforms{1},'true');

% Truth information with maximum 20 targets
truths = coder.typeof(poses(1),[20 1],[1 0]);

% Time
time = 0;

% Which false-alarm setting to run and which to reset. Reset is necessary
% after each run to reinitialize the tracker
systemToRun = 1;
systemToReset = 1;

inputs = {Pfas, tgtPoses, insPose, truths, time, systemToRun, systemToReset}; %#ok<NASGU>

% Same name as MATLAB file allows to shadow the MATLAB function when
% MEX file is available and execute code in MEX automatically.
codegen clutterSimTracker_kernel -args inputs -o clutterSimTracker_kernel;

end

getTruth

function truths = getTruth(scenario)
platPoses = platformPoses(scenario); % True Information
truths = platPoses(1:end-1); % Last object is ownship
end

clutterSimTracker_kernel

This function is defined in an external file named clutterSimTracker_kernel, available in the
same working folder as this script.

function [detections, tracks, ospaMetric] = clutterSimTracker_kernel(Pfas, tgtPoses, insPose, truths, time, systemToRun, systemToReset)

assert(numel(Pfas) == 4,'Only 4 false alarm settings supported. Rewrite more persistent variables to add more settings');

persistent tracker1 tracker2 tracker3 tracker4 ...
 radar1 radar2 radar3 radar4
 reset1 reset2 reset3 reset4
 gospa

if isempty(gospa) || isempty(reset1) || isempty(reset2) || isempty(reset3) || isempty(reset4)
 gospa = trackGOSPAMetric('CutoffDistance',50);
end

if isempty(tracker1) || isempty(radar1) || isempty(reset1)
 tracker1 = setupTracker(Pfas(1));
 radar1 = setupRadar(Pfas(1));
 reset1 = zeros(1,1);
end

if isempty(tracker2) || isempty(radar2) || isempty(reset2)

 Track Point Targets in Dense Clutter Using GM-PHD Tracker

6-477

 tracker2 = setupTracker(Pfas(2));
 radar2 = setupRadar(Pfas(2));
 reset2 = zeros(1,1);
end

if isempty(tracker3) || isempty(radar3) || isempty(reset3)
 tracker3 = setupTracker(Pfas(3));
 radar3 = setupRadar(Pfas(3));
 reset3 = zeros(1,1);
end

if isempty(tracker4) || isempty(radar4) || isempty(reset4)
 tracker4 = setupTracker(Pfas(4));
 radar4 = setupRadar(Pfas(4));
 reset4 = zeros(1,1);
end

switch systemToRun
 case 1
 detections = radar1(tgtPoses, insPose, time);
 tracks = tracker1(detections, time);
 case 2
 detections = radar2(tgtPoses, insPose, time);
 tracks = tracker2(detections, time);
 case 3
 detections = radar3(tgtPoses, insPose, time);
 tracks = tracker3(detections, time);
 case 4
 detections = radar4(tgtPoses, insPose, time);
 tracks = tracker4(detections, time);
 otherwise
 error('Idx out of bounds');
end

[~,gp,~,loc,mT,fT] = gospa(tracks, truths);

ospaMetric = [gp loc mT fT];

switch systemToReset
 case 1
 reset1 = zeros(0,1);
 case 2
 reset2 = zeros(0,1);
 case 3
 reset3 = zeros(0,1);
 case 4
 reset4 = zeros(0,1);
end

end

function tracker = setupTracker(Pfa)
Pd = 0.9;
VCell = 0.0609; % Inlined value of cell volume;
Kc = Pfa/VCell; % Clutter density

% Birth rate
birthRate = 0.05*(5 + Pfa*48000)/0.1;

6 Featured Examples

6-478

% Transform function and limits
sensorTransformFcn = @(x,params)x;
sensorTransformParameters = struct;
sensorLimits = bsxfun(@times,[-inf inf],ones(6,1));

% Assemble information into a trackingSensorConfiguration
config = trackingSensorConfiguration('SensorIndex',1,...
 'IsValidTime',true,...% Update every step
 'DetectionProbability',Pd,...% Detection Probability of detectable states
 'ClutterDensity',Kc,...% Clutter Density
 'SensorTransformFcn',sensorTransformFcn,...
 'SensorTransformParameters',sensorTransformParameters,...
 'SensorLimits',sensorLimits,...
 'MaxNumDetsPerObject',1,...
 'FilterInitializationFcn',@initcvgmphd);

tracker = trackerPHD('SensorConfigurations', config,...
 'BirthRate',birthRate);

end

function radar = setupRadar(Pfa)
Pd = 0.9;
radar = monostaticRadarSensor(1,...
 'UpdateRate',10,...
 'DetectionProbability',Pd,...
 'FalseAlarmRate',Pfa,...
 'FieldOfView',[120 1],...
 'ScanMode','No Scanning',...
 'DetectionCoordinates','Scenario',...% Report in scenario frame
 'HasINS',true,...% Enable INS to report in scenario frame
 'ReferenceRange',300,...% Short-range
 'ReferenceRCS',10,...
 'MaxUnambiguousRange',400,...% Short-range
 'RangeResolution',1,...
 'AzimuthResolution',1,...
 'HasFalseAlarms',true);
end

 Track Point Targets in Dense Clutter Using GM-PHD Tracker

6-479

Introduction to Tracking Metrics
While designing a multi-object tracking system, it is essential to devise a method to evaluate its
performance against the available ground truth. This ground truth is typically available from a
simulation environment or by using techniques like ground-truth extraction using manual or
automated labeling on recorded data. Though it is possible to qualitatively evaluate a tracking
algorithm using visualization tools, the approach is usually not scalable. This example introduces
different quantitative analysis tools in Sensor Fusion and Tracking Toolbox™ for assessing a tracker's
performance. You will also use some common events like false tracks, track swaps etc. encountered
while tracking multiple objects to understand the strengths and limitations of these tools.

Assignment and Error Metrics

The general workflow for evaluating a multi-object tracker in the presence of ground truth can be
divided into 2 main steps. First, tracks are assigned to truths using an assignment algorithm. Second,
using the computed assignment as an input, state-estimation accuracy for each track is computed. In
each step, some key metrics for tracker's performance can be obtained. In Sensor Fusion and
Tracking Toolbox™, the metrics corresponding to these two steps are termed as assignment metrics
and error metrics respectively.

The assignment metrics assesses the characteristics of a tracker resulting due to incorrect
assignment of sensor data to tracks due to ambiguity, missed targets or presence of false alarms.
Incorrect assignment of sensor data can result in events like swapping of tracks between targets,
creation of redundant tracks for a target, dropping of a true target track and creation of a false track.
On the other hand, error metrics provide an assessment on state-estimation or object-level accuracy
of the tracker. Even when a tracker does a good job at assignment, inaccuracies at track level can
happen due to noise in the measurements as well as inaccuracies in modeling the target's motion
model and sensor measurement model.

Tracks and Truths Definition

The assignment metrics use a gated greedy nearest-neighbor approach which allows many-to-one
track assignments, which means that multiple tracks can be assigned to the same truth. At each step,
the metrics aims to assign tracks to truths while accounting for their assignment in the previous time
step. This helps the assignment metrics classify tracks into certain categories based on the current as
well as previous assignments. The categories used by the assignment metrics for tracks are described
in the images below.

6 Featured Examples

6-480

The assignments metrics also represents truths as different categories of "targets" from the tracker's
perspective. This helps the assignment metrics to record events such as track establishment and
target break. The establishment and break events are shown in the image below.

 Introduction to Tracking Metrics

6-481

By classifying tracks and truths into multiple categories, the assignment metrics output a cumulative
analysis of the tracker's performance. The metrics also provide detailed information about
assignment information for each truth and track. Furthermore, the assignment results at each step
from the assignment metrics can also be used to evaluate the error metrics. The error metrics output
a cumulative analysis of a tracker's accuracy in state-estimation. Similar to assignment metrics, error
metrics also provide detailed information for each track and truth.

Next, you will learn how to use the assignment and error metrics in MATLAB.

Compute and Analyze Metrics

To use the assignment metrics, you create the trackAssignmentMetric System object™. You also
specify properties of the object using name-value pairs to configure the metric for different
applications. In this example, you specify the assignment and divergence distance as absolute error in
position between track and truth. You also specify the distance thresholds for assignment and
divergence of a track.

assignmentMetrics = trackAssignmentMetrics(...
 'AssignmentDistance','posabserr',...
 'DivergenceDistance','posabserr',...
 'DivergenceThreshold',1,...
 'AssignmentThreshold',0.85)

assignmentMetrics =
 trackAssignmentMetrics with properties:

 DistanceFunctionFormat: 'built-in'
 MotionModel: 'constvel'
 AssignmentThreshold: 0.8500

6 Featured Examples

6-482

 DivergenceThreshold: 1
 AssignmentDistance: 'posabserr'
 DivergenceDistance: 'posabserr'

To use the error metrics, you create the trackErrorMetrics System object. Since no name-value
pairs are provided, the default values are used. In this example, the targets are assumed to be
tracked using a constant-velocity model.

errorMetrics = trackErrorMetrics

errorMetrics =
 trackErrorMetrics with properties:

 ErrorFunctionFormat: 'built-in'
 MotionModel: 'constvel'

The assignment and error metrics are driven by simulated tracks and truths by using a helper class,
helperMetricEvaluationScenarios. An object of this class outputs a list of tracks and truths at
each time step.

trackTruthSimulator = helperMetricEvaluationScenarios;

You also visualize the results of assignment and error metrics using a helper class named
helperMetricEvaluationDisplay. These helper classes are included with the example in the
same working folder as this script.

display = helperMetricEvaluationDisplay(...
 'PlotTrackClassification',true,...
 'PlotTruthClassification',true,...
 'PlotTrackErrors',false,...
 'PlotTruthErrors',false,...
 'PlotAssignments',true,...
 'RecordGIF',true,...
 'ErrorToPlot','posRMS');

You generate the list of tracks and truths at each time and run the assignment and error metrics
using the following workflow.

% Time stamps at which the metrics are updated
timeStamps = 0:0.1:10;
n = numel(timeStamps);

% Initialization of recorded variables
posRMSE = zeros(n,1);
velRMSE = zeros(n,1);
posANEES = zeros(n,1);
velANEES = zeros(n,1);
truthError = cell(n,1);
trackError = cell(n,1);

% Loop over time stamps
for i = 1 : n
 % Current time
 time = timeStamps(i);

 % Generate tracks and truths using simulation

 Introduction to Tracking Metrics

6-483

 [tracks, truths] = trackTruthSimulator(time);

 % You provide the tracks and truths as input to the assignment metrics.
 % This outputs a cumulative summary from all the tracks and the truths.
 [trackAssignmentSummary(i), truthAssignmentSummary(i)] = assignmentMetrics(tracks, truths); %#ok<SAGROW>

 % For detailed assignment information about each track, you use the
 % trackMetricsTable method.
 trackTable = trackMetricsTable(assignmentMetrics);

 % Similarly, for detailed assignment information about each truth, you
 % use the truthMetricsTable method.
 truthTable = truthMetricsTable(assignmentMetrics);

 % For running error metrics, you obtain the current assignment of
 % tracks to truths using the currentAssignment method.
 [assignedTrackIDs, assignedTruthIDs] = currentAssignment(assignmentMetrics);

 % The current assignment information as well as the list of tracks and
 % truths at the current time can then be passed as an input to the
 % error metrics.
 [posRMSE(i),velRMSE(i),posANEES(i),velANEES(i)] = errorMetrics(tracks, assignedTrackIDs, truths, assignedTruthIDs);

 % For detailed error information about each record truth and track, you
 % use the cumulative metric methods on the error metrics.
 trackError{i} = cumulativeTrackMetrics(errorMetrics);
 truthError{i} = cumulativeTruthMetrics(errorMetrics);

 display(tracks, truths, assignedTrackIDs, assignedTruthIDs, trackTable, truthTable);
end

Analyze Assignment Metrics

The animation below shows a visual representation of the assignment metrics. In the beginning, both
P1 and P2 did not have any associated tracks due to establishment delay. Therefore, they were both
categorized as missed targets. Around X = 5 meters, P1 was not tracked for a few time steps. Notice
that the assignment metrics outputs P2 as a dropped target during this time. When the tracks
swapped between P1 and P2, they were initially declared divergent as they moved out of divergence
thresholds. After a few time steps, the tracks reached assignment gate of new truths and became
associated to the new truth.

6 Featured Examples

6-484

The visualization of the metric for each track and truth can help in easier understanding of different
events. However, it can become overwhelming for large number of tracks and truths. An alternate
approach is to use the summarized output of the assignment metrics. These outputs provide an
overall summary of the assignment metrics up to the current time step. The fields and values of the
assignment metrics summary at end of the simulation is shown below.

disp(trackAssignmentSummary(end));

 TotalNumTracks: 5
 NumFalseTracks: 1
 MaxSwapCount: 1
 TotalSwapCount: 2
 MaxDivergenceCount: 1
 TotalDivergenceCount: 3
 MaxDivergenceLength: 7
 TotalDivergenceLength: 17
 MaxRedundancyCount: 1
 TotalRedundancyCount: 1
 MaxRedundancyLength: 34
 TotalRedundancyLength: 34

disp(truthAssignmentSummary(end));

 TotalNumTruths: 2
 NumMissingTruths: 0
 MaxEstablishmentLength: 5
 TotalEstablishmentLength: 10

 Introduction to Tracking Metrics

6-485

 MaxBreakCount: 2
 TotalBreakCount: 4
 MaxBreakLength: 9
 TotalBreakLength: 9

By capturing the assignment summary at each step, you can also plot the cumulative analysis. The
following plots show a subset of the fields for both track and truth assignment summary.

helperPlotStructArray(display,trackAssignmentSummary);

helperPlotStructArray(display,truthAssignmentSummary);

6 Featured Examples

6-486

Analyze Error Metrics

Similar to assignment metrics, the error metrics can also be computed and visualized per track and
truth. The fields of the estimation error for each track and truth at the end of simulation are shown
below. Each of these fields represent the cumulative error over each track and truth.

Estimation error for each track

disp(trackError{end});

 TrackID posRMS velRMS posANEES velANEES
 _______ _______ ________ ________ _________

 1 0.72278 0.87884 0.52241 0.77236
 2 0.16032 0.083823 0.025702 0.0070263
 3 0.52898 1.3192 0.27982 1.7403
 4 0.74411 2.112 0.55369 4.4604

Estimation error for each truth

 Introduction to Tracking Metrics

6-487

disp(truthError{end});

 TruthID posRMS velRMS posANEES velANEES
 _______ _______ ______ ________ ________

 1 0.52259 1.3918 0.2731 1.9372
 2 0.58988 1.259 0.34795 1.5851

By recording the errors at each time-step, you can also plot error vs time for each track and truth.
The following plots show the RMS error in position for each track and truth. After a track is deleted,
the error in its estimate remains constant. Notice that in the first-half of the simulation, the error in
estimate of T3 is higher than that of T4 because the trajectory of T3 did not match the trajectory of
P2 perfectly. Also notice the drop in error for estimate of T3 in the first-half as it slowly converged to
the true position. During the track-swap event. the error in estimate of both T3 and T4 increased till
their assignments switched.

% A utility to plot the table array. 'posRMS' is the field to plot
helperPlotTableArray(display,trackError,'posRMS');

6 Featured Examples

6-488

The error in estimate of each truth is simply the cumulation of estimation error of all tracks assigned
to it. When P2 was assigned a redundant track around 8th time-step of the simulation, its estimation
error jumped. As the redundant track approached P2, the error decreases, but again increases when
its associated track diverged.

helperPlotTableArray(display,truthError,'posRMS');

For a large number of tracks and truths, you can also use cumulative error metrics for all assigned
tracks during their life-cycle. Notice the increase in error when the tracks swapped (near the 80th
step). Also notice the smaller peak around the 25th time step when T1 diverted from its assigned
truth P2 and was overtaken by the redundant track T3.

f = figure('Units','normalized','Position',[0.1 0.1 0.6 0.6]);
ax = axes(f);

subplot(2,2,1)
plot(posRMSE,'LineWidth',2);
xlabel('Time step');

 Introduction to Tracking Metrics

6-489

ylabel('RMS Error in Position (m)');
grid('on');

subplot(2,2,2)
plot(velRMSE,'LineWidth',2);
xlabel('Time step');
ylabel('RMS Error in Velocity (m/s)');
grid('on');

subplot(2,2,3)
plot(posANEES,'LineWidth',2);
xlabel('Time step');
ylabel('Average Normalized Error in Position');
grid('on');

subplot(2,2,4)
plot(velANEES,'LineWidth',2);
xlabel('Time step');
ylabel('Average Normalized Error in Velocity');
grid('on');

sgtitle('Cumulative errors for all tracks','FontWeight','bold');

6 Featured Examples

6-490

Summarizing Metrics as Scores

A common use-case for evaluating the performance of a multi-object tracker is to tune its parameters.
This is typically done by combining the metrics into a single cost value that can serve as a function
for an optimization algorithm. The assignment and error metrics provide several different measures
of effectiveness (MoEs) and can be combined by first choosing the most relevant metrics and then
performing a weighted combination depending on the application. The selection of the correct MoEs
as well as their combination into a single score can be challenging. As an alternative to this approach,
you can use the Optimal SubPattern Assignment (OSPA) [1] metric and Generalized Optimal
SubPattern Assignment (GOSPA) [2] metric. Both OSPA and GOSPA metric assess the performance of
a multi-object tracker by combining both assignment as well as state-estimation accuracy into a
single cost value. Next, you will learn about OSPA and GOSPA metric and the workflow to compute
these metrics in MATLAB.

 Introduction to Tracking Metrics

6-491

OSPA Metric

The OSPA metric can be considered as a statistical distance between multiple tracks and truths. To
compute the OSPA metric, the algorithm first assigns existing tracks and truths to each other using a
Global Nearest Neighbor (GNN) algorithm. Once the assignment is computed, the metric divides the
overall distance into two sub-components - localization and cardinality-mismatch. The localization
component captures the errors resulting from state-estimation accuracy, while the cardinality-
mismatch component captures the effect of redundant tracks, false tracks and missed truths. The
traditional OSPA metric does not take into account the temporal history of tracks i.e. the assignments
from previous step do not affect the metric at the current step. Therefore, effects like track-switches
are not captured in the traditional OSPA metric. To circumvent this, a new sub-component was
introduced for OSPA called the "labeling" component [3]. Combination of traditional OSPA with
"labeling" component is sometimes referred to as "OSPA for Tracks" (OSPA-T) or Labelled-OSPA
(LOSPA) [4].

To use the OSPA metric in MATLAB, you use the trackOSPAMetric System object. You can switch
from OSPA to Labelled-OSPA by providing a non-zero valued LabelingError property. To
understand how each sub-component is calculated, refer to the "Algorithms" section of
trackOSPAMetric.

ospaMetric = trackOSPAMetric('Distance','posabserr',...
 'CutoffDistance',1,...
 'LabelingError',0.25);

Next you run the same scenario and compute the OSPA metric at each time step.

timeStamps = 0:0.1:10;
n = numel(timeStamps);

% Scene simulation
trackTruthSimulator = helperMetricEvaluationScenarios;

% Initialize variables
ospa = zeros(n,1);
locComponent = zeros(n,1);
cardComponent = zeros(n,1);
labelingComponent = zeros(n,1);

% Loop over time stamps
for i = 1:numel(timeStamps)
 time = timeStamps(i);

 % Track and truth
 [tracks, truths] = trackTruthSimulator(time);

 % Call the System object as a function and record OSPA and all 3 components
 [ospa(i),locComponent(i),cardComponent(i),labelingComponent(i)] = ospaMetric(tracks, truths);
end

Analyze OSPA Metric

figure('Units','normalized','Position',[0.1 0.1 0.6 0.6]);

subplot(2,1,1);
plot(ospa,'LineWidth',2);
xlabel('Time step');
ylabel('Cost');

6 Featured Examples

6-492

title('OSPA');
grid('on');

subplot(2,1,2);
plot([locComponent cardComponent labelingComponent],'LineWidth',2);
xlabel('Time step');
ylabel('Component Cost');
title('OSPA Components');
legend('Localization','Cardinality-mismatch','Labeling');
grid('on');

Notice the correlation between OSPA metric and different events in the scenario. The OSPA is high
initially because of establishment delay. After establishment, the OSPA stays still relatively high due
to the presence of a redundant track. After the redundant track was deleted, the OSPA dropped to a
lower value. Around 50th time step the OSPA gained value as truth P1 was dropped. Notice that while
the OSPA metric captures all these events correctly by providing a higher value, it does not provide
finer details about each truth and track and the accuracy in their estimate. The only information
available from OSPA is via its components. A higher localization component indicates that the

 Introduction to Tracking Metrics

6-493

assigned tracks do not estimate the state of the truths correctly. This localization component is
computed using the same type of distance as the assignment. A higher cardinality component
indicates the presence of missed targets and false or redundant tracks. A higher labeling error
indicates that the tracks are not labelled correctly, which indicates that the tracks are associated to
their closest available truths.

GOSPA Metric

The approach used to compute GOSPA is similar to OSPA metric. Using a slightly different
mathematical formulation, the GOSPA metric additionally computes subcomponents such as "missed
targets component" and "false tracks component". Similar to traditional OSPA, the GOSPA also does
not take into account temporal history of tracks. However, a metric similar to Labelled-OSPA can be
achieved by adding a switching component [5]. The switching component captures the effect of
switching assignments between truths. Each assignment change for the truth is penalized after being
categorized as half-switch or full-switch. A half-switch refers to the event when a truth switches
assignment from a track to being unassigned or vice-versa. A full-switch refers to the event when a
truth switches assignment from one track to another.

To use the GOSPA metric in MATLAB, you create the trackGOSPAMetric System object. To account
for track-switching, you provide a positive value for SwitchingPenalty.

gospaMetric = trackGOSPAMetric('Distance','posabserr',...
 'CutoffDistance',1,...
 'SwitchingPenalty',0.25);

Next you run the same scenario and compute the GOSPA metric at each time step.

timeStamps = 0:0.1:10;
n = numel(timeStamps);
trackTruthSimulator = helperMetricEvaluationScenarios;

% Initialize variables
labeledGospa = zeros(n,1);
traditionalGospa = zeros(n,1);
locComponent = zeros(n,1);
missedTargetComponent = zeros(n,1);
falseTrackComponent = zeros(n,1);
switchingComponent = zeros(n,1);

% Loop over time stamps
for i = 1:numel(timeStamps)
 time = timeStamps(i);

 % Track and truth
 [tracks, truths] = trackTruthSimulator(time);

 % Call the System object as a function and get all 4 components
 [labeledGospa(i),traditionalGospa(i),switchingComponent(i),locComponent(i),missedTargetComponent(i),falseTrackComponent(i)] = gospaMetric(tracks, truths);
end

Analyze Results

figure('Units','normalized','Position',[0.1 0.1 0.6 0.6]);

subplot(2,1,1);
plot(labeledGospa,'LineWidth',2);
xlabel('Time step');

6 Featured Examples

6-494

ylabel('Cost');
title('GOSPA');
grid('on');

subplot(2,1,2);
plot([locComponent missedTargetComponent falseTrackComponent switchingComponent],'LineWidth',2);
xlabel('Time step');
ylabel('Component Cost');
title('GOSPA Components');
legend('Localization','Missed Target','False Track','Switching');
grid('on');

Notice that the GOSPA metric also captures the effect of different events during the scenario similar
to the OSPA metric. In contrast to OSPA, it also provides information if the metric is higher due to
false tracks or missed targets. Notice the peak is missed target component around 50th time step.
This peak denotes the event when P1 was missed for a few steps. The peak around 80th time-step in
missed target component denotes the event when the tracks swapped. The delay between divergence
and reassignment resulted in missed targets as well as a false track components.

 Introduction to Tracking Metrics

6-495

The peaks in the track switching component denote different events. The first peak accounts for
truths switching from unassigned to assigned. The second peak accounts for the switching of tracks
on P2. The third and fourth peak captures that truth P1 was unassigned and then assigned to another
track respectively. The last two peaks account for truth unassignment and then reassignment.

Similar to OSPA, GOSPA also does not provide detailed information about each track and truth. The
information from GOSPA is available via its components. As the name states, a higher missed target
component denotes that targets are not being tracked and a higher false track component denotes
the presence of false tracks. A higher switching penalty denotes events like establishment, track
swaps and dropped tracks. The subdivision of components to include missed targets and false tracks
assists in modifying the correct parameter of the tracker. For example, if false tracks are being
created, a typical solution is to try and increase the threshold for track-confirmation.

Summary

In this example you learned about three different tools to analyze the performance of a multi-object
tracking system. You also learned about the workflow in MATLAB to use these metrics. You also
leaned about the type of information they provide and how it can be analyzed. The tools described in
this example are flexible and can be customized for different applications and use-cases. There are
"built-in" options available on all the tools to specify a different types of distances to be used for the
metric. For example, absolute error in position or velocity or normalized error in position or velocity.
You can also specify three different motion models for the tracks: constant velocity, constant turn-rate
and constant acceleration. These "built-in" functionalities support tracks in form of objectTrack
and truths generated by scenario simulations using trackingScenario. If the format of tracks and
truths for your application is different, you can pre-process them to convert them. This allows you to
use all the "built-in" functionality of the metrics. Alternatively, you can specify a custom distance
function between a track and a truth. This allows you to control the distance as well as the format of
each track and truth. To switch between custom and built-in functionality for OSPA and GOSPA
metric, specify the Distance as 'custom'. To switch between custom and built-in functionality for
assignment and error metrics, change the DistanceFunctionFormat and ErrorFunctionFormat
to 'custom' for assignment and error metrics respectively.

References

[1] Schuhmacher, Dominic, Ba-Tuong Vo, and Ba-Ngu Vo. "A consistent metric for performance
evaluation of multi-object filters." IEEE transactions on signal processing 56.8 (2008): 3447-3457.

[2] Rahmathullah, Abu Sajana, Ángel F. García-Fernández, and Lennart Svensson. "Generalized
optimal sub-pattern assignment metric." 2017 20th International Conference on Information Fusion
(Fusion). IEEE, 2017.

[3] Ristic, Branko, et al. "A metric for performance evaluation of multi-target tracking algorithms."
IEEE Transactions on Signal Processing 59.7 (2011): 3452-3457.

[4] Mahler, Ronald PS. Advances in statistical multisource-multitarget information fusion. Artech
House, 2014.

[5] Rahmathullah, Abu Sajana, Ángel F. García-Fernández, and Lennart Svensson. "A metric on the
space of finite sets of trajectories for evaluation of multi-target tracking algorithms." arXiv preprint
arXiv:1605.01177 (2016).

6 Featured Examples

6-496

Track-Level Fusion of Radar and Lidar Data
This example shows you how to generate an object-level track list from measurements of a radar and
a lidar sensor and further fuse them using a track-level fusion scheme. You process the radar
measurements using an extended object tracker and the lidar measurements using a joint
probabilistic data association (JPDA) tracker. You further fuse these tracks using a track-level fusion
scheme. The schematic of the workflow is shown below.

Setup Scenario for Synthetic Data Generation

The scenario used in this example is created using drivingScenario (Automated Driving Toolbox).
The data from radar and lidar sensors is simulated using drivingRadarDataGenerator
(Automated Driving Toolbox) and lidarPointCloudGenerator (Automated Driving Toolbox),
respectively. The creation of the scenario and the sensor models is wrapped in the helper function
helperCreateRadarLidarScenario. For more information on scenario and synthetic data
generation, refer to “Create Driving Scenario Programmatically” (Automated Driving Toolbox).

% For reproducible results
rng(2020);

% Create scenario, ego vehicle and get radars and lidar sensor
[scenario, egoVehicle, radars, lidar] = helperCreateRadarLidarScenario;

The ego vehicle is mounted with four 2-D radar sensors. The front and rear radar sensors have a field
of view of 45 degrees. The left and right radar sensors have a field of view of 150 degrees. Each radar
has a resolution of 6 degrees in azimuth and 2.5 meters in range. The ego is also mounted with one 3-
D lidar sensor with a field of view of 360 degrees in azimuth and 40 degrees in elevation. The lidar
has a resolution of 0.2 degrees in azimuth and 1.25 degrees in elevation (32 elevation channels).
Visualize the configuration of the sensors and the simulated sensor data in the animation below.
Notice that the radars have higher resolution than objects and therefore return multiple
measurements per object. Also notice that the lidar interacts with the low-poly mesh of the actor as
well as the road surface to return multiple points from these objects.

 Track-Level Fusion of Radar and Lidar Data

6-497

Radar Tracking Algorithm

As mentioned, the radars have higher resolution than the objects and return multiple detections per
object. Conventional trackers such as Global Nearest Neighbor (GNN) and Joint Probabilistic Data
Association (JPDA) assume that the sensors return at most one detection per object per scan.
Therefore, the detections from high-resolution sensors must be either clustered before processing it
with conventional trackers or must be processed using extended object trackers. Extended object
trackers do not require pre-clustering of detections and usually estimate both kinematic states (for
example, position and velocity) and the extent of the objects. For a more detailed comparison
between conventional trackers and extended object trackers, refer to the “Extended Object Tracking
of Highway Vehicles with Radar and Camera” on page 6-147 example.

In general, extended object trackers offer better estimation of objects as they handle clustering and
data association simultaneously using temporal history of tracks. In this example, the radar
detections are processed using a Gaussian mixture probability hypothesis density (GM-PHD) tracker
(trackerPHD and gmphd) with a rectangular target model. For more details on configuring the
tracker, refer to the "GM-PHD Rectangular Object Tracker" section of the “Extended Object Tracking
of Highway Vehicles with Radar and Camera” on page 6-147 example.

The algorithm for tracking objects using radar measurements is wrapped inside the helper class,
helperRadarTrackingAlgorithm, implemented as a System object™. This class outputs an array
of objectTrack objects and define their state according to the following convention:

6 Featured Examples

6-498

radarTrackingAlgorithm = helperRadarTrackingAlgorithm(radars);

Lidar Tracking Algorithm

Similar to radars, the lidar sensor also returns multiple measurements per object. Further, the sensor
returns a large number of points from the road, which must be removed before used as inputs for an
object-tracking algorithm. While lidar data from obstacles can be directly processed via extended
object tracking algorithm, conventional tracking algorithms are still more prevalent for tracking
using lidar data. The first reason for this trend is mainly observed due to higher computational
complexity of extended object trackers for large data sets. The second reason is the investments into
advanced Deep learning-based detectors such as PointPillars [1], VoxelNet [2] and PIXOR [3], which
can segment a point cloud and return bounding box detections for the vehicles. These detectors can
help in overcoming the performance degradation of conventional trackers due to improper clustering.

In this example, the lidar data is processed using a conventional joint probabilistic data association
(JPDA) tracker, configured with an interacting multiple model (IMM) filter. The pre-processing of lidar
data to remove point cloud is performed by using a RANSAC-based plane-fitting algorithm and
bounding boxes are formed by performing a Euclidian-based distance clustering algorithm. For more
information about the algorithm, refer to the “Track Vehicles Using Lidar: From Point Cloud to Track
List” on page 6-351 example. Compared the linked example, the tracking is performed in the scenario
frame and the tracker is tuned differently to track objects of different sizes. Further the states of the
variables are defined differently to constrain the motion of the tracks in the direction of its estimated
heading angle.

The algorithm for tracking objects using lidar data is wrapped inside the helper class,
helperLidarTrackingAlgorithm implemented as System object. This class outputs an array of
objectTrack objects and defines their state according to the following convention:

 Track-Level Fusion of Radar and Lidar Data

6-499

The states common to the radar algorithm are defined similarly. Also, as a 3-D sensor, the lidar
tracker outputs three additional states, , and , which refer to z-coordinate (m), z-velocity (m/s),
and height (m) of the tracked object respectively.

lidarTrackingAlgorithm = helperLidarTrackingAlgorithm(lidar);

Set Up Fuser, Metrics, and Visualization

Fuser

Next, you will set up a fusion algorithm for fusing the list of tracks from radar and lidar trackers.
Similar to other tracking algorithms, the first step towards setting up a track-level fusion algorithm is
defining the choice of state vector (or state-space) for the fused or central tracks. In this case, the
state-space for fused tracks is chosen to be same as the lidar. After choosing a central track state-
space, you define the transformation of the central track state to the local track state. In this case,
the local track state-space refers to states of radar and lidar tracks. To do this, you use a
fuserSourceConfiguration object.

Define the configuration of the radar source. The helperRadarTrackingAlgorithm outputs tracks
with SourceIndex set to 1. The SourceIndex is provided as a property on each tracker to uniquely
identify it and allows a fusion algorithm to distinguish tracks from different sources. Therefore, you
set the SourceIndex property of the radar configuration as same as those of the radar tracks. You
set IsInitializingCentralTracks to true to let that unassigned radar tracks initiate new
central tracks. Next, you define the transformation of a track in central state-space to the radar state-
space and vice-versa. The helper functions central2radar and radar2central perform the two
transformations and are included at the end of this example.

radarConfig = fuserSourceConfiguration('SourceIndex',1,...
 'IsInitializingCentralTracks',true,...
 'CentralToLocalTransformFcn',@central2radar,...
 'LocalToCentralTransformFcn',@radar2central);

Define the configuration of the lidar source. Since the state-space of a lidar track is same as central
track, you do not define any transformations.

lidarConfig = fuserSourceConfiguration('SourceIndex',2,...
 'IsInitializingCentralTracks',true);

The next step is to define the state-fusion algorithm. The state-fusion algorithm takes multiple states
and state covariances in the central state-space as input and returns a fused estimate of the state and
the covariances. In this example, you use a covariance intersection algorithm provided by the helper
function, helperRadarLidarFusionFcn. A generic covariance intersection algorithm for two
Gaussian estimates with mean and covariance can be defined according to the following
equations:

where and are the fused state and covariance and and are mixing coefficients from each
estimate. Typically, these mixing coefficients are estimated by minimizing the determinant or the
trace of the fused covariance. In this example, the mixing weights are estimated by minimizing the
determinant of positional covariance of each estimate. Furthermore, as the radar does not estimate 3-
D states, 3-D states are only fused with lidars. For more details, refer to the
helperRadarLidarFusionFcn function shown at the end of this script.

6 Featured Examples

6-500

Next, you assemble all the information using a trackFuser object.

% The state-space of central tracks is same as the tracks from the lidar,
% therefore you use the same state transition function. The function is
% defined inside the helperLidarTrackingAlgorithm class.
f = lidarTrackingAlgorithm.StateTransitionFcn;

% Create a trackFuser object
fuser = trackFuser('SourceConfigurations',{radarConfig;lidarConfig},...
 'StateTransitionFcn',f,...
 'ProcessNoise',diag([1 3 1]),...
 'HasAdditiveProcessNoise',false,...
 'AssignmentThreshold',[250 inf],...
 'ConfirmationThreshold',[3 5],...
 'DeletionThreshold',[5 5],...
 'StateFusion','Custom',...
 'CustomStateFusionFcn',@helperRadarLidarFusionFcn);

Metrics

In this example, you assess the performance of each algorithm using the Generalized Optimal
SubPattern Assignment Metric (GOSPA) metric. You set up three separate metrics using
trackGOSPAMetric for each of the trackers. The GOSPA metric aims to evaluate the performance of
a tracking system by providing a scalar cost. A lower value of the metric indicates better performance
of the tracking algorithm.

To use the GOSPA metric with custom motion models like the one used in this example, you set the
Distance property to 'custom' and define a distance function between a track and its associated
ground truth. These distance functions, shown at the end of this example are
helperRadarDistance, and helperLidarDistance.

% Radar GOSPA
gospaRadar = trackGOSPAMetric('Distance','custom',...
 'DistanceFcn',@helperRadarDistance,...
 'CutoffDistance',25);

% Lidar GOSPA
gospaLidar = trackGOSPAMetric('Distance','custom',...
 'DistanceFcn',@helperLidarDistance,...
 'CutoffDistance',25);

% Central/Fused GOSPA
gospaCentral = trackGOSPAMetric('Distance','custom',...
 'DistanceFcn',@helperLidarDistance,...% State-space is same as lidar
 'CutoffDistance',25);

Visualization

The visualization for this example is implemented using a helper class
helperLidarRadarTrackFusionDisplay. The display is divided into 4 panels. The display plots
the measurements and tracks from each sensor as well as the fused track estimates. The legend for
the display is shown below. Furthermore, the tracks are annotated by their unique identity (TrackID)
as well as a prefix. The prefixes "R", "L" and "F" stand for radar, lidar, and fused estimate,
respectively.

% Create a display.
% FollowActorID controls the actor shown in the close-up

 Track-Level Fusion of Radar and Lidar Data

6-501

% display
display = helperLidarRadarTrackFusionDisplay('FollowActorID',3);

% Show persistent legend
showLegend(display,scenario);

Run Scenario and Trackers

Next, you advance the scenario, generate synthetic data from all sensors and process it to generate
tracks from each of the systems. You also compute the metric for each tracker using the ground truth
available from the scenario.

% Initialzie GOSPA metric and its components for all tracking algorithms.
gospa = zeros(3,0);
missTarget = zeros(3,0);
falseTracks = zeros(3,0);

% Initialize fusedTracks
fusedTracks = objectTrack.empty(0,1);

% A counter for time steps elapsed for storing gospa metrics.
idx = 1;

% Ground truth for metrics. This variable updates every time-step
% automatically being a handle to the actors.
groundTruth = scenario.Actors(2:end);

while advance(scenario)
 % Current time
 time = scenario.SimulationTime;

 % Collect radar and lidar measurements and ego pose to track in

6 Featured Examples

6-502

 % scenario frame. See helperCollectSensorData below.
 [radarDetections, ptCloud, egoPose] = helperCollectSensorData(egoVehicle, radars, lidar, time);

 % Generate radar tracks
 radarTracks = radarTrackingAlgorithm(egoPose, radarDetections, time);

 % Generate lidar tracks and analysis information like bounding box
 % detections and point cloud segmentation information
 [lidarTracks, lidarDetections, segmentationInfo] = ...
 lidarTrackingAlgorithm(egoPose, ptCloud, time);

 % Concatenate radar and lidar tracks
 localTracks = [radarTracks;lidarTracks];

 % Update the fuser. First call must contain one local track
 if ~(isempty(localTracks) && ~isLocked(fuser))
 fusedTracks = fuser(localTracks,time);
 end

 % Capture GOSPA and its components for all trackers
 [gospa(1,idx),~,~,~,missTarget(1,idx),falseTracks(1,idx)] = gospaRadar(radarTracks, groundTruth);
 [gospa(2,idx),~,~,~,missTarget(2,idx),falseTracks(2,idx)] = gospaLidar(lidarTracks, groundTruth);
 [gospa(3,idx),~,~,~,missTarget(3,idx),falseTracks(3,idx)] = gospaCentral(fusedTracks, groundTruth);

 % Update the display
 display(scenario, radars, radarDetections, radarTracks, ...
 lidar, ptCloud, lidarDetections, segmentationInfo, lidarTracks,...
 fusedTracks);

 % Update the index for storing GOSPA metrics
 idx = idx + 1;
end

% Update example animations
updateExampleAnimations(display);

Evaluate Performance

Evaluate the performance of each tracker using visualization as well as quantitative metrics. Analyze
different events in the scenario and understand how the track-level fusion scheme helps achieve a
better estimation of the vehicle state.

Track Maintenance

The animation below shows the entire run every three time-steps. Note that each of the three
tracking systems - radar, lidar, and the track-level fusion - were able to track all four vehicles in the
scenario and no false tracks were confirmed.

 Track-Level Fusion of Radar and Lidar Data

6-503

You can also quantitatively measure this aspect of the performance using "missed target" and "false
track" components of the GOSPA metric. Notice in the figures below that missed target component
starts from a higher value due to establishment delay and goes down to zero in about 5-10 steps for
each tracking system. Also, notice that the false track component is zero for all systems, which
indicates that no false tracks were confirmed.

% Plot missed target component
figure; plot(missTarget','LineWidth',2); legend('Radar','Lidar','Fused');
title("Missed Target Metric"); xlabel('Time step'); ylabel('Metric'); grid on;

% Plot false track component
figure; plot(falseTracks','LineWidth',2); legend('Radar','Lidar','Fused');
title("False Track Metric"); xlabel('Time step'); ylabel('Metric'); grid on;

6 Featured Examples

6-504

 Track-Level Fusion of Radar and Lidar Data

6-505

Track-level Accuracy

The track-level or localization accuracy of each tracker can also be quantitatively assessed by the
GOSPA metric at each time step. A lower value indicates better tracking accuracy. As there were no
missed targets or false tracks, the metric captures the localization errors resulting from state
estimation of each vehicle.

Note that the GOSPA metric for fused estimates is lower than the metric for individual sensor, which
indicates that track accuracy increased after fusion of track estimates from each sensor.

% Plot GOSPA
figure; plot(gospa','LineWidth',2); legend('Radar','Lidar','Fused');
title("GOSPA Metric"); xlabel('Time step'); ylabel('Metric'); grid on;

6 Featured Examples

6-506

Closely-spaced targets

As mentioned earlier, this example uses a Euclidian-distance based clustering and bounding box
fitting to feed the lidar data to a conventional tracking algorithm. Clustering algorithms typically
suffer when objects are closely-spaced. With the detector configuration used in this example, when
the passing vehicle approaches the vehicle in front of the ego vehicle, the detector clusters the point
cloud from each vehicle into a bigger bounding box. You can notice in the animation below that the
track drifted away from the vehicle center. Because the track was reported with higher certainty in
its estimate for a few steps, the fused estimated was also affected initially. However, as the
uncertainty increases, its association with the fused estimate becomes weaker. This is because the
covariance intersection algorithm chooses a mixing weight for each assigned track based on the
certainty of each estimate.

 Track-Level Fusion of Radar and Lidar Data

6-507

This effect is also captured in the GOSPA metric. You can notice in the GOSPA metric plot above that
the lidar metric shows a peak around the 65th time step.

The radar tracks are not affected during this event because of two main reasons. Firstly, the radar
sensor outputs range-rate information in each detection, which is different beyond noise-levels for the
passing car as compared to the slower moving car. This results in an increased statistical distance
between detections from individual cars. Secondly, extended object trackers evaluate multiple
possible clustering hypothesis against predicted tracks, which results in rejection of improper
clusters and acceptance of proper clusters. Note that for extended object trackers to properly choose
the best clusters, the filter for the track must be robust to a degree that can capture the difference
between two clusters. For example, a track with high process noise and highly uncertain dimensions
may not be able to properly claim a cluster because of its premature age and higher flexibility to
account for uncertain events.

Targets at long range

As targets recede away from the radar sensors, the accuracy of the measurements degrade because
of reduced signal-to-noise ratio at the detector and the limited resolution of the sensor. This results in
high uncertainty in the measurements, which in turn reduces the track accuracy. Notice in the close-
up display below that the track estimate from the radar is further away from the ground truth for the
radar sensor and is reported with a higher uncertainty. However, the lidar sensor reports enough
measurements in the point cloud to generate a "shrunk" bounding box. The shrinkage effect modeled
in the measurement model for lidar tracking algorithm allows the tracker to maintain a track with
correct dimensions. In such situations, the lidar mixing weight is higher than the radar and allows the
fused estimate to be more accurate than the radar estimate.

6 Featured Examples

6-508

Summary

In this example, you learned how to set up a track-level fusion algorithm for fusing tracks from radar
and lidar sensors. You also learned how to evaluate a tracking algorithm using the Generalized
Optimal Subpattern Metric and its associated components.

Utility Functions

collectSensorData

A function to generate radar and lidar measurements at the current time-step.

function [radarDetections, ptCloud, egoPose] = helperCollectSensorData(egoVehicle, radars, lidar, time)

% Current poses of targets with respect to ego vehicle
tgtPoses = targetPoses(egoVehicle);

radarDetections = cell(0,1);
for i = 1:numel(radars)
 thisRadarDetections = step(radars{i},tgtPoses,time);
 radarDetections = [radarDetections;thisRadarDetections]; %#ok<AGROW>
end

% Generate point cloud from lidar
rdMesh = roadMesh(egoVehicle);
ptCloud = step(lidar, tgtPoses, rdMesh, time);

% Compute pose of ego vehicle to track in scenario frame. Typically
% obtained using an INS system. If unavailable, this can be set to
% "origin" to track in ego vehicle's frame.
egoPose = pose(egoVehicle);

 Track-Level Fusion of Radar and Lidar Data

6-509

end

radar2cental

A function to transform a track in the radar state-space to a track in the central state-space.

function centralTrack = radar2central(radarTrack)

% Initialize a track of the correct state size
centralTrack = objectTrack('State',zeros(10,1),...
 'StateCovariance',eye(10));

% Sync properties of radarTrack except State and StateCovariance with
% radarTrack See syncTrack defined below.
centralTrack = syncTrack(centralTrack,radarTrack);

xRadar = radarTrack.State;
PRadar = radarTrack.StateCovariance;

H = zeros(10,7); % Radar to central linear transformation matrix
H(1,1) = 1;
H(2,2) = 1;
H(3,3) = 1;
H(4,4) = 1;
H(5,5) = 1;
H(8,6) = 1;
H(9,7) = 1;

xCentral = H*xRadar; % Linear state transformation
PCentral = H*PRadar*H'; % Linear covariance transformation

PCentral([6 7 10],[6 7 10]) = eye(3); % Unobserved states

% Set state and covariance of central track
centralTrack.State = xCentral;
centralTrack.StateCovariance = PCentral;

end

central2radar

A function to transform a track in the central state-space to a track in the radar state-space.

function radarTrack = central2radar(centralTrack)

% Initialize a track of the correct state size
radarTrack = objectTrack('State',zeros(7,1),...
 'StateCovariance',eye(7));

% Sync properties of centralTrack except State and StateCovariance with
% radarTrack See syncTrack defined below.
radarTrack = syncTrack(radarTrack,centralTrack);

xCentral = centralTrack.State;
PCentral = centralTrack.StateCovariance;

H = zeros(7,10); % Central to radar linear transformation matrix

6 Featured Examples

6-510

H(1,1) = 1;
H(2,2) = 1;
H(3,3) = 1;
H(4,4) = 1;
H(5,5) = 1;
H(6,8) = 1;
H(7,9) = 1;

xRadar = H*xCentral; % Linear state transformation
PRadar = H*PCentral*H'; % Linear covariance transformation

% Set state and covariance of radar track
radarTrack.State = xRadar;
radarTrack.StateCovariance = PRadar;
end

syncTrack

A function to syncs properties of one track with another except the "State" and "StateCovariance"
property

function tr1 = syncTrack(tr1,tr2)
props = properties(tr1);
notState = ~strcmpi(props,'State');
notCov = ~strcmpi(props,'StateCovariance');

props = props(notState & notCov);
for i = 1:numel(props)
 tr1.(props{i}) = tr2.(props{i});
end
end

pose

A function to return pose of the ego vehicle as a structure.

function egoPose = pose(egoVehicle)
egoPose.Position = egoVehicle.Position;
egoPose.Velocity = egoVehicle.Velocity;
egoPose.Yaw = egoVehicle.Yaw;
egoPose.Pitch = egoVehicle.Pitch;
egoPose.Roll = egoVehicle.Roll;
end

helperLidarDistance

Function to calculate a normalized distance between the estimate of a track in radar state-space and
the assigned ground truth.

function dist = helperLidarDistance(track, truth)

% Calculate the actual values of the states estimated by the tracker

% Center is different than origin and the trackers estimate the center
rOriginToCenter = -truth.OriginOffset(:) + [0;0;truth.Height/2];
rot = quaternion([truth.Yaw truth.Pitch truth.Roll],'eulerd','ZYX','frame');
actPos = truth.Position(:) + rotatepoint(rot,rOriginToCenter')';

 Track-Level Fusion of Radar and Lidar Data

6-511

% Actual speed and z-rate
actVel = [norm(truth.Velocity(1:2));truth.Velocity(3)];

% Actual yaw
actYaw = truth.Yaw;

% Actual dimensions.
actDim = [truth.Length;truth.Width;truth.Height];

% Actual yaw rate
actYawRate = truth.AngularVelocity(3);

% Calculate error in each estimate weighted by the "requirements" of the
% system. The distance specified using Mahalanobis distance in each aspect
% of the estimate, where covariance is defined by the "requirements". This
% helps to avoid skewed distances when tracks under/over report their
% uncertainty because of inaccuracies in state/measurement models.

% Positional error.
estPos = track.State([1 2 6]);
reqPosCov = 0.1*eye(3);
e = estPos - actPos;
d1 = sqrt(e'/reqPosCov*e);

% Velocity error
estVel = track.State([3 7]);
reqVelCov = 5*eye(2);
e = estVel - actVel;
d2 = sqrt(e'/reqVelCov*e);

% Yaw error
estYaw = track.State(4);
reqYawCov = 5;
e = estYaw - actYaw;
d3 = sqrt(e'/reqYawCov*e);

% Yaw-rate error
estYawRate = track.State(5);
reqYawRateCov = 1;
e = estYawRate - actYawRate;
d4 = sqrt(e'/reqYawRateCov*e);

% Dimension error
estDim = track.State([8 9 10]);
reqDimCov = eye(3);
e = estDim - actDim;
d5 = sqrt(e'/reqDimCov*e);

% Total distance
dist = d1 + d2 + d3 + d4 + d5;

end

helperRadarDistance

Function to calculate a normalized distance between the estimate of a track in radar state-space and
the assigned ground truth.

6 Featured Examples

6-512

function dist = helperRadarDistance(track, truth)

% Calculate the actual values of the states estimated by the tracker

% Center is different than origin and the trackers estimate the center
rOriginToCenter = -truth.OriginOffset(:) + [0;0;truth.Height/2];
rot = quaternion([truth.Yaw truth.Pitch truth.Roll],'eulerd','ZYX','frame');
actPos = truth.Position(:) + rotatepoint(rot,rOriginToCenter')';
actPos = actPos(1:2); % Only 2-D

% Actual speed
actVel = norm(truth.Velocity(1:2));

% Actual yaw
actYaw = truth.Yaw;

% Actual dimensions. Only 2-D for radar
actDim = [truth.Length;truth.Width];

% Actual yaw rate
actYawRate = truth.AngularVelocity(3);

% Calculate error in each estimate weighted by the "requirements" of the
% system. The distance specified using Mahalanobis distance in each aspect
% of the estimate, where covariance is defined by the "requirements". This
% helps to avoid skewed distances when tracks under/over report their
% uncertainty because of inaccuracies in state/measurement models.

% Positional error
estPos = track.State([1 2]);
reqPosCov = 0.1*eye(2);
e = estPos - actPos;
d1 = sqrt(e'/reqPosCov*e);

% Speed error
estVel = track.State(3);
reqVelCov = 5;
e = estVel - actVel;
d2 = sqrt(e'/reqVelCov*e);

% Yaw error
estYaw = track.State(4);
reqYawCov = 5;
e = estYaw - actYaw;
d3 = sqrt(e'/reqYawCov*e);

% Yaw-rate error
estYawRate = track.State(5);
reqYawRateCov = 1;
e = estYawRate - actYawRate;
d4 = sqrt(e'/reqYawRateCov*e);

% Dimension error
estDim = track.State([6 7]);
reqDimCov = eye(2);
e = estDim - actDim;
d5 = sqrt(e'/reqDimCov*e);

 Track-Level Fusion of Radar and Lidar Data

6-513

% Total distance
dist = d1 + d2 + d3 + d4 + d5;

% A constant penality for not measuring 3-D state
dist = dist + 3;

end

helperRadarLidarFusionFcn

Function to fuse states and state covariances in central track state-space

function [x,P] = helperRadarLidarFusionFcn(xAll,PAll)
n = size(xAll,2);
dets = zeros(n,1);

% Initialize x and P
x = xAll(:,1);
P = PAll(:,:,1);

onlyLidarStates = false(10,1);
onlyLidarStates([6 7 10]) = true;

% Only fuse this information with lidar
xOnlyLidar = xAll(onlyLidarStates,:);
POnlyLidar = PAll(onlyLidarStates,onlyLidarStates,:);

% States and covariances for intersection with radar and lidar both
xToFuse = xAll(~onlyLidarStates,:);
PToFuse = PAll(~onlyLidarStates,~onlyLidarStates,:);

% Sorted order of determinants. This helps to sequentially build the
% covariance with comparable determinations. For example, two large
% covariances may intersect to a smaller covariance, which is comparable to
% the third smallest covariance.
for i = 1:n
 dets(i) = det(PToFuse(1:2,1:2,i));
end
[~,idx] = sort(dets,'descend');
xToFuse = xToFuse(:,idx);
PToFuse = PToFuse(:,:,idx);

% Initialize fused estimate
thisX = xToFuse(:,1);
thisP = PToFuse(:,:,1);

% Sequential fusion
for i = 2:n
 [thisX,thisP] = fusecovintUsingPos(thisX, thisP, xToFuse(:,i), PToFuse(:,:,i));
end

% Assign fused states from all sources
x(~onlyLidarStates) = thisX;
P(~onlyLidarStates,~onlyLidarStates,:) = thisP;

% Fuse some states only with lidar source
valid = any(abs(xOnlyLidar) > 1e-6,1);

6 Featured Examples

6-514

xMerge = xOnlyLidar(:,valid);
PMerge = POnlyLidar(:,:,valid);

if sum(valid) > 1
 [xL,PL] = fusecovint(xMerge,PMerge);
elseif sum(valid) == 1
 xL = xMerge;
 PL = PMerge;
else
 xL = zeros(3,1);
 PL = eye(3);
end

x(onlyLidarStates) = xL;
P(onlyLidarStates,onlyLidarStates) = PL;

end

function [x,P] = fusecovintUsingPos(x1,P1,x2,P2)
% Covariance intersection in general is employed by the following
% equations:
% P^-1 = w1*P1^-1 + w2*P2^-1
% x = P*(w1*P1^-1*x1 + w2*P2^-1*x2);
% where w1 + w2 = 1
% Usually a scalar representative of the covariance matrix like "det" or
% "trace" of P is minimized to compute w. This is offered by the function
% "fusecovint". However. in this case, the w are chosen by minimizing the
% determinants of "positional" covariances only.
n = size(x1,1);
idx = [1 2];
detP1pos = det(P1(idx,idx));
detP2pos = det(P2(idx,idx));
w1 = detP2pos/(detP1pos + detP2pos);
w2 = detP1pos/(detP1pos + detP2pos);
I = eye(n);

P1inv = I/P1;
P2inv = I/P2;

Pinv = w1*P1inv + w2*P2inv;
P = I/Pinv;

x = P*(w1*P1inv*x1 + w2*P2inv*x2);

end

References

[1] Lang, Alex H., et al. "PointPillars: Fast encoders for object detection from point clouds."
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

[2] Zhou, Yin, and Oncel Tuzel. "Voxelnet: End-to-end learning for point cloud based 3d object
detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

 Track-Level Fusion of Radar and Lidar Data

6-515

[3] Yang, Bin, Wenjie Luo, and Raquel Urtasun. "Pixor: Real-time 3d object detection from point
clouds." Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2018.

6 Featured Examples

6-516

Tuning a Multi-Object Tracker
This example shows how to tune and run a tracker to track multiple objects in the scene. The example
explains and demonstrates the importance of key properties of the trackers in the Sensor Fusion and
Tracking Toolbox.

Default Tracker Configuration

In order to test the capability of a tracker to track multiple objects, you set up a basic scenario. In the
scenario, you define three objects with each moving along a straight line at a constant velocity.
Initially, you set the object velocities to be 48 m/s, 60 m/s, and 72 m/s, respectively.

stopTime = 10;
v = 60;
scenario = trackingScenario;
scenario.StopTime = stopTime;
scenario.UpdateRate = 0;
p1 = platform(scenario);
p1.Trajectory = waypointTrajectory([20 10 0; 20 .8*v*stopTime-10 0], [0 stopTime]);
p2 = platform(scenario);
p2.Trajectory = waypointTrajectory([0 0 0; 0 v*stopTime 0], [0 stopTime]);
p3 = platform(scenario);
p3.Trajectory = waypointTrajectory([-20 -10 0; -20 1.2*v*stopTime+10 0], [0 stopTime]);

In addition, you define a radar that stares at the scene and updates 5 times per second. You mount it
on a platform located on the side of the moving objects.

pRadar = platform(scenario);
pRadar.Trajectory = kinematicTrajectory('Position', [-v*stopTime 0.5*v*stopTime 0]);
radar = fusionRadarSensor(1, 'No scanning', 'UpdateRate', 5, ...
 'MountingAngles', [0 0 0], 'AzimuthResolution', 1, ...
 'FieldOfView', [100 1], 'HasINS', true, 'DetectionCoordinates', 'Scenario');

pRadar.Sensors = radar;

You create a theater plot to display the scene.

fig = figure;
ax = axes(fig);
tp = theaterPlot('Parent', ax, 'XLimits', [-11*v 100], 'YLimits', [-50 15*v], 'ZLimits', [-100 100]);
rp = platformPlotter(tp, 'DisplayName', 'Radar', 'Marker', 'd');
pp = platformPlotter(tp, 'DisplayName', 'Platforms');
dp = detectionPlotter(tp, 'DisplayName', 'Detections');
trp = trackPlotter(tp, 'DisplayName', 'Tracks', 'ConnectHistory', 'on', 'ColorizeHistory', 'on');
covp = coveragePlotter(tp, 'DisplayName', 'Radar Coverage', 'Alpha', [0.1 0]);

Finally, you create a default trackerGNN object, run the scenario, and observe the results. You use
trackGOSPAMetric to evaluate the tracker performance.

tracker = trackerGNN;
tgm = trackGOSPAMetric("Distance","posabserr");
gospa = zeros(1,51); % number of timesteps is 51
i = 0;

% Define the random number generator seed for repeatable results
s = rng(2019);
while advance(scenario)

 Tuning a Multi-Object Tracker

6-517

 % Get detections
 dets = detect(scenario);

 % Update the tracker
 if isLocked(tracker) || ~isempty(dets)
 [tracks, ~, ~, info] = tracker(dets, scenario.SimulationTime);
 end

 % Evaluate GOSPA
 i = i + 1;
 truth = platformPoses(scenario);
 gospa(i) = tgm(tracks, truth);

 % Update the display
 updateDisplay(rp, pp, dp, trp, covp, scenario, dets, tracks);
end

rng(s)
figure
plot(gospa)
title('Generalized OSPA vs. Timestep')

6 Featured Examples

6-518

You observe that the tracker was not able to track the three objects. At some point, additional tracks
are confirmed and shown in addition to the three expected tracks for the three moving objects. As a
result, the value of the GOSPA metric increases. Note that lower values of the GOSPA metric indicate
better tracker performance.

Assignment Threshold

You look at the info struct that the tracker outputs and observe that the CostMatrix and the
Assignments do not show an assignment of pairs of tracks and objects you expect to happen. This
means that the AssignmentThreshold is too small and should be increased. Increase the
assignment threshold to 50.

release(tracker);
tracker.AssignmentThreshold = 50;
rerunScenario(scenario, tracker, tgm, tp);

 Tuning a Multi-Object Tracker

6-519

6 Featured Examples

6-520

The assignment threshold property also has a maximum distance from a detection that you can set.
This is the last element in the AssignmentThreshold value. You can use this value to speed the
tracker up when handling large number of detections and tracks. Refer to the “How to Efficiently
Track Large Numbers of Objects” on page 6-302 example for more details. Here, you set the value to
2000 instead of inf, which will reduce the number of combinations of tracks and detections that are
used to calculate the assignment cost.

release(tracker);
tracker.AssignmentThreshold = [50 2000];
rerunScenario(scenario, tracker, tgm, tp);

 Tuning a Multi-Object Tracker

6-521

6 Featured Examples

6-522

Filter Initialization Function

The results above show that the tracker is capable of maintaining three tracks for the three moving
objects without creating false tracks. However, would the tracker's performance hold if the objects
move at a faster speed? To check that, you modify the scenario and increase the object speeds to be
160, 200, and 240 m/s, respectively.

v = 200;
p1.Trajectory = waypointTrajectory([20 -10 0; 20 0.8*v*stopTime-10 0], [0 stopTime]);
p2.Trajectory = waypointTrajectory([0 0 0; 0 v*stopTime 0], [0 stopTime]);
p3.Trajectory = waypointTrajectory([-20 10 0; -20 1.2*v*stopTime+10 0], [0 stopTime]);
pRadar.Trajectory = kinematicTrajectory('Position', [-v*stopTime 0.5*v*stopTime 0]);
tp.XLimits = [-100-v*stopTime 300];
tp.YLimits = [-100 100+v*1.2*stopTime];
release(radar);
radar.RangeLimits(2) = 3000;
rerunScenario(scenario, tracker, tgm, tp);

 Tuning a Multi-Object Tracker

6-523

6 Featured Examples

6-524

As you probably expected, the tracker could not establish stable tracks of the three objects. A
possible solution is to increase the AssignmentThreshold even further to allow tracks to be
updated. However, this option may increase the chance of random false tracks being assigned to
multiple detections and getting confirmed. So, you choose to modify how a filter is being initialized.

You set the FilterInitializationFcn property to the function initFastCVEKF. The function is
the same as the default initcvekf except it increases the uncertainty in the velocity components of
the state. It allows the initial state to account for larger unknown velocity values, but once the track
establishes, the uncertainty decreases again.

release(tracker)
tracker.FilterInitializationFcn = @initFastCVEKF;
rerunScenario(scenario, tracker, tgm, tp);

 Tuning a Multi-Object Tracker

6-525

6 Featured Examples

6-526

You observe that the tracker is once again able to maintain the tracks, and there are 3 tracks for the
three moving objects, even though they are moving faster now. The GOSPA value is also reduced after
a few steps.

Confirmation and Deletion Thresholds

You want to make sure that your tracker is robust to a higher false alarm rate. To do that, you
configure the radar to have a false alarm rate that is 250 times higher than previously.

You zoom out to view a larger portion of the scene and to see if false tracks are created.

release(radar);
radar.FalseAlarmRate = 2.5e-4;
tp.XLimits = [-2100 300];
tp.YLimits = [-100 3100];
tp.ZLimits = [-1000 1000];
rerunScenario(scenario, tracker, tgm, tp);

 Tuning a Multi-Object Tracker

6-527

6 Featured Examples

6-528

There are a few false tracks being created (not all of them shown) and they increase the GOSPA
value.

You want to delete false tracks more quickly, for which you use the DeletionThreshold property.
The default value for deletion threshold is [5 5], which requires 5 consecutive misses before a
confirmed track is deleted. You can make the deletion process quicker by reducing this value to [3 3],
or 3-out-of-3 misses. Alternatively, since the radar DetectionProbability is high, you can even
delete a track after 2-out-of-3 misses, by setting:

release(tracker)
tracker.DeletionThreshold = [2 3];
rerunScenario(scenario, tracker, tgm, tp);

 Tuning a Multi-Object Tracker

6-529

6 Featured Examples

6-530

As expected, reducing the number of steps it takes to delete tracks decreases the GOSPA value
because these false tracks are short-lived. However, these false tracks are still confirmed and
deteriorate the overall tracking quality.

So, you want to make the confirmation of new tracks more stringent in attempt to reduce the number
of false tracks. Consider the tracker ConfirmationThreshold property.

disp(tracker.ConfirmationThreshold);

 2 3

The value shows that the tracker confirms every track if it is assigned two detections in the first three
updates. You decide to make it harder to confirm a track and reset the value to be 3-out-of-4
assignments.

release(tracker)
tracker.ConfirmationThreshold = [3 4];
rerunScenario(scenario, tracker, tgm, tp);

 Tuning a Multi-Object Tracker

6-531

6 Featured Examples

6-532

By making track confirmation more stringent you were able to eliminate the false tracks. As a result,
the GOSPA values are down to around 20 again, except for the first few steps.

Maximum Number of Tracks

Making the confirmation more stringent allowed you to eliminate false tracks. However, the tracker
still initializes a track for each false detection, which you can observe by looking at the number of
tracks the tracker currently maintains.

The number of tracks fluctuates through the lifetime of the tracker. However, you don't want it to
exceed the maximum number of tracks that the tracker can maintain, defined by MaxNumTracks,
which is by default 100. If the tracker exceeds this number, it issues a warning that a new track could
not be added, but the execution can continue.

Increase the maximum number of tracks to allow the tracker to track even with a higher false alarm
rate without issuing the warning. You also want to make track confirmation even more stringent to
reduce the number of false tracks and reduce the GOSPA metric.

release(tracker)
tracker.MaxNumTracks = 200;
tracker.ConfirmationThreshold = [5 6];

release(radar)
radar.FalseAlarmRate = 1e-3;
rerunScenario(scenario, tracker, tgm, tp);

 Tuning a Multi-Object Tracker

6-533

6 Featured Examples

6-534

Note that making track confirmation more stringent requires more steps to confirm tracks. As a
result, for the first few steps, there are no confirmed tracks and the GOSPA value remains high. You
can compare that with the GOSPA graphs in the beginning of this example.

Try Another Tracker

You want to try using another tracker, in this case, the Joint Probabilistic Data Association tracker,
trackerJPDA. Many of the properties defined for the previous tracker are still valid in the JPDA
tracker. You use the helperGNN2JPDA to construct the JPDA tracker.

jpda = helperGNN2JPDA(tracker);
jpda.ClutterDensity = 1e-3;
rerunScenario(scenario, tracker, tgm, tp);

 Tuning a Multi-Object Tracker

6-535

6 Featured Examples

6-536

Summary

In this example, you learned to set up multi-object trackers in order to maintain tracks of the real
objects in the scene, avoid false tracks, maintain the right number of tracks, and switch between
different trackers.

When tuning a multi-object tracker, consider changing the following properties:

FilterInitializationFcn — defines the filter used to initialize a new track with an unassigned
detection.

• The function defines the motion and measurement models.
• Check that the state uncertainties are correctly represented by the StateCovariance of the filter.

For example, a large initial velocity covariance allows tracking fast moving objects.

AssignmentThreshold — maximum normalized distance used in the assignment of detections to
tracks.

• Decrease this value to speed up assignment, especially in large scenes with many tracks and to
avoid false tracks, redundant tracks, and track swaps. If using a trackerJPDA, reducing this
value reduces the number of detections that are considered as assigned to a single track. If using
a trackerTOMHT, reducing the assignment thresholds reduces the number of track branches that
are created.

• Increase this value to avoid tracks diverging and breaking even in the presence of new detections.

MaxNumTracks — maximum number of tracks maintained by the tracker.

 Tuning a Multi-Object Tracker

6-537

• Decrease this value to minimize memory usage and speed up tracker initialization.
• Increase this value to avoid new tracks not being initialized because the limit was reached.

ConfirmationThreshold — controls the confirmation of new tracks.

• Decrease this value to confirm more tracks and to confirm tracks more quickly.
• Increase this value to lower the number of false tracks.

DeletionThreshold — controls the coasting and deletion of tracks.

• Decrease this value to delete tracks more quickly (for example when the probability of detection is
high).

• Increase this value to compensate for a lower probability of detection (for example coast tracks
during occlusions).

You can refer to the following examples for additional details: “How to Generate C Code for a
Tracker” on page 6-295, “Introduction to Track Logic” on page 6-77, “Tracking Closely Spaced
Targets Under Ambiguity” on page 6-167, and “Track Point Targets in Dense Clutter Using GM-PHD
Tracker” on page 6-468.

Utility Functions

updateDisplay

This function updates the display at every step of the simulation.

function updateDisplay(rp, pp, dp, trp, covp, scenario, dets, tracks)
 % Plot the platform positions
 poses = platformPoses(scenario);
 pos = reshape([poses(1:3).Position], 3, [])'; % Only the platforms
 plotPlatform(pp, pos);
 radarPos = poses(4).Position; % Only the radar
 plotPlatform(rp, radarPos)

 % Plot the detection positions
 if ~isempty(dets)
 ds = [dets{:}];
 dPos = reshape([ds.Measurement], 3, [])';
 else
 dPos = zeros(0,3);
 end
 plotDetection(dp, dPos);

 % Plot the tracks
 tPos = getTrackPositions(tracks, [1 0 0 0 0 0; 0 0 1 0 0 0; 0 0 0 0 1 0]);
 tIDs = string([tracks.TrackID]);
 plotTrack(trp, tPos, tIDs);

 % Plot the coverage
 covcon = coverageConfig(scenario);
 plotCoverage(covp, covcon);
end

rerunScenario

6 Featured Examples

6-538

This function runs the scenario with a given tracker and a track GOSPA metric object. It uses the
theater plot object to display the results.

function info = rerunScenario(scenario, tracker, tgm, tp)
 % Reset the objects after the previous run
 restart(scenario);
 reset(tracker);
 reset(tgm);
 rp = findPlotter(tp, 'DisplayName', 'Radar');
 pp = findPlotter(tp, 'DisplayName', 'Platforms');
 trp = findPlotter(tp, 'DisplayName', 'Tracks');
 dp = findPlotter(tp, 'DisplayName', 'Detections');
 covp = findPlotter(tp, 'DisplayName', 'Radar Coverage');
 clearPlotterData(tp);

 gospa = zeros(1,51); % number of timesteps is 51
 i = 0;
 s = rng(2019);
 while advance(scenario)
 % Get detections
 dets = detect(scenario);

 % Update the tracker
 if isLocked(tracker) || ~isempty(dets)
 [tracks, ~, ~, info] = tracker(dets, scenario.SimulationTime);
 end

 % Evaluate GOSPA
 i = i + 1;
 truth = platformPoses(scenario);
 gospa(i) = tgm(tracks, truth);

 % Update the display
 updateDisplay(rp, pp, dp, trp, covp, scenario, dets, tracks);
 end
 rng(s)
 figure
 plot(gospa(gospa>0))
 title('Generalized OSPA vs. Timestep')
end

initFastCVEKF

This function modifies the default initcvekf filter initialization function to allow for more
uncertainty in the object speed.

function ekf = initFastCVEKF(detection)
 ekf = initcvekf(detection);
 initialCovariance = diag(ekf.StateCovariance);
 initialCovariance([2,4,6]) = 300^2; % Increase the speed covariance
 ekf.StateCovariance = diag(initialCovariance);
end

helperGNN2JPDA

This function provides the JPDA tracker equivalent to the GNN tracker given as an input.

function jpda = helperGNN2JPDA(gnn)
 jpda = trackerJPDA(...

 Tuning a Multi-Object Tracker

6-539

 'MaxNumTracks', gnn.MaxNumTracks, ...
 'AssignmentThreshold', gnn.AssignmentThreshold, ...
 'FilterInitializationFcn', gnn.FilterInitializationFcn, ...
 'MaxNumSensors', gnn.MaxNumSensors, ...
 'ConfirmationThreshold', gnn.ConfirmationThreshold, ...
 'DeletionThreshold', gnn.DeletionThreshold, ...
 'HasCostMatrixInput', gnn.HasCostMatrixInput, ...
 'HasDetectableTrackIDsInput', gnn.HasDetectableTrackIDsInput);

 if strcmpi(gnn.TrackLogic, 'History')
 jpda.TrackLogic = 'History';
 else
 jpda.TrackLogic = 'Integrated';
 jpda.DetectionProbability = gnn.DetectionProbability;
 jpda.ClutterDensity = gnn.FalseAlarmRate / gnn.Volume;
 end
end

6 Featured Examples

6-540

Generate Off-Centered IMU Readings
This example shows how to generate inertial measurement unit (IMU) readings from a sensor that is
mounted on a ground vehicle. Depending on the location of the sensor, the IMU accelerations are
different.

Create Trajectory

Specify the waypoint trajectory of a vehicle and compute the vehicle poses using lookupPose.

% Sampling rate.
Fs = 100;

% Waypoints and times of arrival.
waypoints = [1 1 1; 3 1 1; 3 0 0; 0 0 0];
t = [1; 10; 20; 30];

% Create trajectory and compute pose.
traj = waypointTrajectory(waypoints, t, "SampleRate", Fs);
[posVeh, orientVeh, velVeh, accVeh, angvelVeh] = lookupPose(traj, ...
 t(1):1/Fs:t(end));

Create Sensor and Define Offset

Create two 9-axis imuSensor objects composed of accelerometer, gyroscope, and magnetometer
sensors. One imuSensor object generates readings of an IMU mounted at the vehicle's origin and
the other one generates readings of an IMU mounted at the driver's seat. Next, specify the offset
between the vehicle origin and the IMU mounted at the driver's seat. Call helperPlotIMU to
visualize the locations of the sensors.

% IMU at vehicle origin.
imu = imuSensor("accel-gyro-mag", "SampleRate", Fs);

% IMU at driver's seat.
mountedIMU = imuSensor("accel-gyro-mag", "SampleRate", Fs);

% Position and orientation offset of the vehicle and the mounted IMU.
posVeh2IMU = [2.4 0.5 0.4];
orientVeh2IMU = quaternion([0 0 90], "eulerd", "ZYX", "frame");

% Visualization.
helperPlotIMU(posVeh(1,:), orientVeh(1,:), posVeh2IMU, orientVeh2IMU);

 Generate Off-Centered IMU Readings

6-541

Calculate IMU Trajectory Using Vehicle Trajectory

Compute the ground truth trajectory of the IMU mounted at the driver's seat using the
transformMotion function. This function uses the position and orientation offsets and the vehicle
trajectory to compute the IMU trajectory.

[posIMU, orientIMU, velIMU, accIMU, angvelIMU] = transformMotion(...
 posVeh2IMU, orientVeh2IMU, ...
 posVeh, orientVeh, velVeh, accVeh, angvelVeh);

Generate Sensor Readings

Generate the IMU readings for both the IMU mounted at the vehicle origin and the IMU mounted at
the driver's seat.

% IMU at vehicle origin.
[accel, gyro, mag] = imu(accVeh, angvelVeh, orientVeh);

% IMU at driver's seat.
[accelMounted, gyroMounted, magMounted] = mountedIMU(...
 accIMU, angvelIMU, orientIMU);

Compare Accelerometer Readings

Compare the accelerometer readings of the two IMUs. Notice that the x-axis acceleration is different
because of the off-center location.

6 Featured Examples

6-542

figure('Name', 'Accelerometer Comparison')
subplot(3, 1, 1)
plot([accel(:,1), accelMounted(:,1)])
legend('Aligned with Vehicle', 'Off-centered')
title('Accelerometer')
ylabel('x-axis (m/s^2)')
subplot(3, 1, 2)
plot([accel(:,2), accelMounted(:,2)])
ylabel('y-axis (m/s^2)')
subplot(3, 1, 3)
plot([accel(:,3), accelMounted(:,3)])
ylabel('z-axis (m/s^2)')

Compare Gyroscope Readings

Compare the gyroscope readings of the two IMUs.

figure('Name', 'Gyroscope Comparison')
subplot(3, 1, 1)
plot([gyro(:,1), gyroMounted(:,1)])
ylim([-0.22 0.1])
legend('Aligned with Vehicle', 'Off-centered')
title('Gyroscope')
ylabel('x-axis (rad/s)')
subplot(3, 1, 2)
plot([gyro(:,2), gyroMounted(:,2)])
ylabel('y-axis (rad/s)')
subplot(3, 1, 3)

 Generate Off-Centered IMU Readings

6-543

plot([gyro(:,3), gyroMounted(:,3)])
ylabel('z-axis (rad/s)')

Compare Magnetometer Readings

Compare the magnetometer readings of the two IMUs.

figure('Name', 'Magnetometer Comparison')
subplot(3, 1, 1)
plot([mag(:,1), magMounted(:,1)])
legend('Aligned with Vehicle', 'Off-centered')
title('Magnetometer')
ylabel('x-axis (\muT)')
subplot(3, 1, 2)
plot([mag(:,2), magMounted(:,2)])
ylabel('y-axis (\muT)')
subplot(3, 1, 3)
plot([mag(:,3), magMounted(:,3)])
ylabel('z-axis (\muT)')

6 Featured Examples

6-544

 Generate Off-Centered IMU Readings

6-545

Detect Multipath GPS Reading Errors Using Residual Filtering
in Inertial Sensor Fusion

This example shows how to use the residualgps object function and residual filtering to detect
when new sensor measurements may not be consistent with the current filter state.

Load Trajectory and Sensor Data

Load the MAT-file loggedDataWithMultipath.mat. This file contains simulated IMU and GPS data
as well as the ground truth position and orientation of a circular trajectory. The GPS data contains
errors due to multipath errors in one section of the trajectory. These errors were modelled by adding
white noise to the GPS data to simulate the effects of an urban canyon.

load('loggedDataWithMultipath.mat', ...
 'imuFs', 'accel', 'gyro', ... % IMU readings
 'gpsFs', 'lla', 'gpsVel', ... % GPS readings
 'truePosition', 'trueOrientation', ... % Ground truth pose
 'localOrigin', 'initialState', 'multipathAngles')

% Number of IMU samples per GPS sample.
imuSamplesPerGPS = (imuFs/gpsFs);

% First and last indices corresponding to multipath errors.
multipathIndices = [1850 2020];

Fusion Filter

Create two pose estimation filters using the insfilterNonholonomic object. Use one filter to
process all the sensor readings. Use the other filter to only process the sensor readings that are not
considered outliers.

% Create filters.

% Use this filter to only process sensor readings that are not detected as
% outliers.
gndFusionWithDetection = insfilterNonholonomic('ReferenceFrame', 'ENU', ...
 'IMUSampleRate', imuFs, ...
 'ReferenceLocation', localOrigin, ...
 'DecimationFactor', 2);
% Use this filter to process all sensor readings, regardless of whether or
% not they are outliers.
gndFusionNoDetection = insfilterNonholonomic('ReferenceFrame', 'ENU', ...
 'IMUSampleRate', imuFs, ...
 'ReferenceLocation', localOrigin, ...
 'DecimationFactor', 2);

% GPS measurement noises.
Rvel = 0.01;
Rpos = 1;

% The dynamic model of the ground vehicle for this filter assumes there is
% no side slip or skid during movement. This means that the velocity is
% constrained to only the forward body axis. The other two velocity axis
% readings are corrected with a zero measurement weighted by the
% |ZeroVelocityConstraintNoise| parameter.
gndFusionWithDetection.ZeroVelocityConstraintNoise = 1e-2;

6 Featured Examples

6-546

gndFusionNoDetection.ZeroVelocityConstraintNoise = 1e-2;

% Process noises.
gndFusionWithDetection.GyroscopeNoise = 4e-6;
gndFusionWithDetection.GyroscopeBiasNoise = 4e-14;
gndFusionWithDetection.AccelerometerNoise = 4.8e-2;
gndFusionWithDetection.AccelerometerBiasNoise = 4e-14;
gndFusionNoDetection.GyroscopeNoise = 4e-6;
gndFusionNoDetection.GyroscopeBiasNoise = 4e-14;
gndFusionNoDetection.AccelerometerNoise = 4.8e-2;
gndFusionNoDetection.AccelerometerBiasNoise = 4e-14;

% Initial filter states.
gndFusionWithDetection.State = initialState;
gndFusionNoDetection.State = initialState;

% Initial error covariance.
gndFusionWithDetection.StateCovariance = 1e-9*ones(16);
gndFusionNoDetection.StateCovariance = 1e-9*ones(16);

Initialize Scopes

The HelperPoseViewer scope allows a 3-D visualization comparing the filter estimate and ground
truth. Using multiple scopes can slow the simulation. To disable the scopes, set the corresponding
logical variable to false.

usePoseView = true; % Turn on the 3D pose viewer

if usePoseView
 [viewerWithDetection, viewerNoDetection, annoHandle] ...
 = helperCreatePoseViewers(initialState, multipathAngles);
end

Simulation Loop

The main simulation loop is a for loop with a nested for loop. The first loop executes at the gpsFs,
which is the GPS measurement rate. The nested loop executes at the imuFs, which is the IMU sample
rate. Each scope is updated at the IMU sample rate.

numsamples = numel(trueOrientation);
numGPSSamples = numsamples/imuSamplesPerGPS;

% Log data for final metric computation.
estPositionNoCheck = zeros(numsamples, 3);
estOrientationNoCheck = quaternion.zeros(numsamples, 1);

estPosition = zeros(numsamples, 3);
estOrientation = quaternion.zeros(numsamples, 1);

% Threshold for outlier residuals.
residualThreshold = 6;

idx = 0;
for sampleIdx = 1:numGPSSamples
 % Predict loop at IMU update frequency.
 for i = 1:imuSamplesPerGPS
 idx = idx + 1;

 Detect Multipath GPS Reading Errors Using Residual Filtering in Inertial Sensor Fusion

6-547

 % Use the predict method to estimate the filter state based
 % on the accelData and gyroData arrays.
 predict(gndFusionWithDetection, accel(idx,:), gyro(idx,:));

 predict(gndFusionNoDetection, accel(idx,:), gyro(idx,:));

 % Log the estimated orientation and position.
 [estPositionNoCheck(idx,:), estOrientationNoCheck(idx,:)] ...
 = pose(gndFusionWithDetection);

 [estPosition(idx,:), estOrientation(idx,:)] ...
 = pose(gndFusionNoDetection);

 % Update the pose viewer.
 if usePoseView
 viewerWithDetection(estPositionNoCheck(idx,:), ...
 estOrientationNoCheck(idx,:), ...
 truePosition(idx,:), trueOrientation(idx,:));

 viewerNoDetection(estPosition(idx,:), ...
 estOrientation(idx,:), truePosition(idx,:), ...
 trueOrientation(idx,:));
 end
 end

 % This next section of code runs at the GPS sample rate.

 % Update the filter states based on the GPS data.
 fusegps(gndFusionWithDetection, lla(sampleIdx,:), Rpos, ...
 gpsVel(sampleIdx,:), Rvel);

 % Check the normalized residual of the current GPS reading. If the
 % value is too large, it is considered an outlier and disregarded.
 [res, resCov] = residualgps(gndFusionNoDetection, lla(sampleIdx,:), ...
 Rpos, gpsVel(sampleIdx,:), Rvel);
 normalizedRes = res(1:3) ./ sqrt(diag(resCov(1:3,1:3)).');
 if (all(abs(normalizedRes) <= residualThreshold))
 % Update the filter states based on the GPS data.
 fusegps(gndFusionNoDetection, lla(sampleIdx,:), Rpos, ...
 gpsVel(sampleIdx,:), Rvel);
 if usePoseView
 set(annoHandle, 'String', 'Outlier status: none', ...
 'EdgeColor', 'k');
 end
 else
 if usePoseView
 set(annoHandle, 'String', 'Outlier status: detected', ...
 'EdgeColor', 'r');
 end
 end
end

6 Featured Examples

6-548

 Detect Multipath GPS Reading Errors Using Residual Filtering in Inertial Sensor Fusion

6-549

Error Metric Computation

Calculate the position error for both filter estimates. There is an increase in the position error in the
filter that does not check for any outliers in the GPS measurements.

% Calculate position errors.
posdNoCheck = estPositionNoCheck - truePosition;
posd = estPosition - truePosition;

% Plot results.
t = (0:size(posd,1)-1).' ./ imuFs;
figure('Units', 'normalized', 'Position', [0.2615 0.2833 0.4552 0.3700])
subplot(1, 2, 1)
plot(t, posdNoCheck)
ax = gca;
yLims = get(ax, 'YLim');
hold on
mi = multipathIndices;
fill([t(mi(1)), t(mi(1)), t(mi(2)), t(mi(2))], [7 -5 -5 7], ...
 [1 0 0],'FaceAlpha', 0.2);
set(ax, 'YLim', yLims);
title('Position Error (No outlier removal)')
xlabel('time (s)')
ylabel('error (m)')
legend('x', 'y', 'z', sprintf('outlier\nregion'))

subplot(1, 2, 2)

6 Featured Examples

6-550

plot(t, posd)
ax = gca;
yLims = get(ax, 'YLim');
hold on
mi = multipathIndices;
fill([t(mi(1)), t(mi(1)), t(mi(2)), t(mi(2))], [7 -5 -5 7], ...
 [1 0 0],'FaceAlpha', 0.2);
set(ax, 'YLim', yLims);
title('Position Error (Outlier removal)')
xlabel('time (s)')
ylabel('error (m)')
legend('x', 'y', 'z', sprintf('outlier\nregion'))

Conclusion

The residualgps object function can be used to detect potential outliers in sensor measurements
before using them to update the filter states of the insfilterNonholonomic object. The other pose
estimation filter objects such as, insfilterMARG, insfilterAsync, and insfilterErrorState
also have similar object functions to calculate sensor measurement residuals.

 Detect Multipath GPS Reading Errors Using Residual Filtering in Inertial Sensor Fusion

6-551

IMU Sensor Fusion with Simulink
This example shows how to generate and fuse IMU sensor data using Simulink®. You can accurately
model the behavior of an accelerometer, a gyroscope, and a magnetometer and fuse their outputs to
compute orientation.

Inertial Measurement Unit

An inertial measurement unit (IMU) is a group of sensors consisting of an accelerometer measuring
acceleration and a gyroscope measuring angular velocity. Frequently, a magnetometer is also
included to measure the Earth's magnetic field. Each of these three sensors produces a 3-axis
measurement, and these three measurements constitute a 9-axis measurement.

Attitude Heading and Reference System

An Attitude Heading and Reference System (AHRS) takes the 9-axis sensor readings and computes
the orientation of the device. This orientation is given relative to the NED frame, where N is the
Magnetic North direction. The AHRS block in Simulink accomplishes this using an indirect Kalman
filter structure.

Simulink System

Open the Simulink model that fuses IMU sensor data

open_system('IMUFusionSimulinkModel');

Inputs and Configuration

The inputs to the IMU block are the device's linear acceleration, angular velocity, and the orientation
relative to the navigation frame. The orientation is of the form of a quaternion (a 4-by-1 vector in
Simulink) or rotation matrix (a 3-by-3 matrix in Simulink) that rotates quantities in the navigation
frame to the body frame. In this model, the angular velocity is simply integrated to create an
orientation input. The angular velocity is in rad/s and the linear acceleration is in m/s^2. Because the
AHRS has only one input related to translation (the accelerometer input), it cannot distinguish
between gravity and linear acceleration. Therefore, the AHRS algorithm assumes that linear
acceleration is a slowly varying white noise process. This is a common assumption for 9-axis fusion
algorithms.

6 Featured Examples

6-552

True North vs Magnetic North

Magnetic field parameter on the IMU block dialog can be set to the local magnetic field value.
Magnetic field values can be found on the NOAA website or using the wrldmagm function in the
Aerospace Toolbox™. The magnetic field values on the IMU block dialog correspond the readings of a
perfect magnetometer that is orientated to True North. Therefore, the orientation input to the IMU
block is relative to the NED frame, where N is the True North direction. However, the AHRS filter
navigates towards Magnetic North, which is typical for this type of filter. Therefore, the orientation
input to the IMU and the estimated orientation at the output of the AHRS differ by the declination
angle between True North and Magnetic North.

This simulation is setup for latitude and longitude. The magnetic field at this location is set as
[27.5550, -2.4169, -16.0849] microtesla in the IMU block. The declination at this location is about

Simulation

Simulate the model. The IMU input orientation and the estimated output orientation of the AHRS are
compared using quaternion distance. This is preferable compared to differencing the Euler angle
equivalents, considering the Euler angle singularities.

sim('IMUFusionSimulinkModel');

Estimated Orientation

The difference in estimated vs true orientation should be nearly , which is the declination at this
latitude and longitude.

Gyroscope Bias

The second output of the AHRS filter is the bias-corrected gyroscope reading. In the IMU block, the
gyroscope was given a bias of 0.0545 rad/s or 3.125 deg/s, which should match the steady state value
in the Gyroscope Bias scope block.

Further Exercises

By varying the parameters on the IMU, you should see a corresponding change in orientation on the
output of the AHRS. You can set the parameters on the IMU block to match a real IMU datasheet and
tune the AHRS parameters to meet your requirements.

 IMU Sensor Fusion with Simulink

6-553

https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml#igrfwmm

Track Space Debris Using a Keplerian Motion Model
This example shows how to model earth-centric trajectories using custom motion models within
trackingScenario, how to configure a fusionRadarSensor in monostatic mode to generate
synthetic detections of space debris, and how to setup a multi-object tracker to track the simulated
targets.

Space debris scenario

There are more than 30,000 large debris objects (with diameter larger than 10cm) and more than 1
million smaller debris objects in Low Earth Orbit (LEO) [1]. This debris can be dangerous for human
activities in space, damage operational satellites, and force time sensitive and costly avoidance
maneuvers. As space activity increases, reducing and monitoring the space debris becomes crucial.

You can use Sensor Fusion and Tracking Toolbox™ to model the debris trajectories, generate
synthetic radar detections of this debris, and obtain position and velocity estimates of each object.

First, create a tracking scenario and set the random seed for repeatable results.

s = rng;
rng(2020);
scene = trackingScenario('IsEarthCentered',true, 'InitialAdvance', 'UpdateInterval',...
 'StopTime', 3600, 'UpdateRate', 0.1);

You use the Earth-Centered-Earth-Fixed (ECEF) reference frame. The origin of this frame is at the
center of the Earth and the Z axis points toward the north pole. The X axis points towards the
intersection of the equator and the Greenwich meridian. The Y axis completes the right-handed
system. Platform positions and velocities are defined using Cartesian coordinates in this frame.

Define debris motion model

The helperMotionTrajectory class used in this example defines debris object trajectories using a
custom motion model function.

Trajectories of space objects rotating around the Earth can be approximated with a Keplerian model,
which assumes that Earth is a point-mass body and the objects orbiting around the earth have
negligible masses. Higher order effects in Earth gravitational field and environmental disturbances
are not accounted for. Since the equation of motion is expressed in ECEF frame which is a non-
inertial reference frame, the Coriolis and centripetal forces are accounted for.

The ECEF debris object acceleration vector is

a = −μ
r3 r − 2Ω × d

dt r − Ω × Ω × r ,

where μ is the standard gravitational parameter of the Earth, r is the ECEF debris object position
vector, r is the norm of the position vector, and Ωis the Earth rotation vector.

The function keplerorbit provided below uses a 4th order Runge-Kutta numerical integration of
this equation to propagate the position and velocity in time.

First, we create initial positions and velocities for the space debris objects. This is done by obtaining
the traditional orbital elements (semi-major axis, eccentricity, inclination, longitude of the ascending
node, argument of periapsis, and true anomaly angles) of these objects from random distributions.

6 Featured Examples

6-554

Then convert these orbital elements to position and velocity vectors by using the supporting function
oe2rv.

% Generate a population of debris
numDebris = 100;

range = 7e6 + 1e5*randn(numDebris,1);
ecc = 0.015 + 0.005*randn(numDebris,1);
inc = 80 + 10*rand(numDebris,1);
lan = 360*rand(numDebris,1);
w = 360*rand(numDebris,1);
nu = 360*rand(numDebris,1);

% Convert to initial position and velocity
for i = 1:numDebris
 [r,v] = oe2rv(range(i),ecc(i),inc(i),lan(i),w(i),nu(i));
 data(i).InitialPosition = r; %#ok<SAGROW>
 data(i).InitialVelocity = v; %#ok<SAGROW>
end

% Create platforms and assign them trajectories using the keplerorbit motion model
for i=1:numDebris
 debris(i) = platform(scene); %#ok<SAGROW>
 debris(i).Trajectory = helperMotionTrajectory(@keplerorbit,...
 'SampleRate',0.1,... % integration step 10sec
 'Position',data(i).InitialPosition,...
 'Velocity',data(i).InitialVelocity); %#ok<SAGROW>
end

Model space surveillance radars

In this example, we define four antipodal stations with fan-shaped radar beams looking into space.
The fans cut through the orbits of debris objects to maximize the number of object detections. A pair
of stations are located in the Pacific ocean and in the Atlantic ocean, whereas a second pair of
surveillance stations are located near the poles. Having four dispersed radars allows for the re-
detection of space debris to correct their position estimates and also acquiring new debris detections.

% Create a space surveillance station in the Pacific ocean
station1 = platform(scene,'Position',[10 180 0]);

% Create a second surveillance station in the Atlantic ocean
station2 = platform(scene,'Position',[0 -20 0]);

% Near the North Pole, create a third surveillance station in Iceland
station3 = platform(scene,'Position',[65 -20 0]);

% Create a fourth surveillance station near the south pole
station4 = platform(scene,'Position',[-90 0 0]);

Each station is equipped with a radar modeled with a fusionRadarSensor object. In order to detect
debris objects in the LEO range, the radar has the following requirements:

• Detecting a 10 dBsm object up to 2000 km away
• Resolving objects horizontally and vertically with a precision of 100 m at 2000 km range
• Having a fan-shaped field of view of 120 degrees in azimuth and 30 degrees in elevation
• Looking up into space based on its geo-location

 Track Space Debris Using a Keplerian Motion Model

6-555

% Create fan-shaped monostatic radars to monitor space debris objects
radar1 = fusionRadarSensor(1,...
 'UpdateRate',0.1,... 10 sec
 'ScanMode','No scanning',...
 'MountingAngles',[0 90 0],... look up
 'FieldOfView',[120;30],... degrees
 'ReferenceRange',2e6,... m
 'RangeLimits', [0 2e6],...
 'ReferenceRCS', 10,... dBsm
 'HasFalseAlarms',false,...
 'HasElevation',true,...
 'AzimuthResolution',0.01,... degrees
 'ElevationResolution',0.01,... degrees
 'RangeResolution',100,... m
 'HasINS',true,...
 'DetectionCoordinates','Scenario');
station1.Sensors = radar1;

radar2 = clone(radar1);
radar2.SensorIndex = 2;
station2.Sensors = radar2;

radar3 = clone(radar1);
radar3.SensorIndex = 3;
station3.Sensors = radar3;

radar4 = clone(radar1);
radar4.SensorIndex = 4;
station4.Sensors = radar4;

Visualize the ground truth with trackingGlobeViewer

You use trackingGlobeViewer to visualize all the elements defined in the tracking scenario:
individual debris objects and their trajectories, radar fans, radar detections, and tracks.

f = uifigure;
viewer = trackingGlobeViewer(f, 'Basemap','satellite','ShowDroppedTracks',false);
% Add info box on top of the globe viewer
infotext = simulationInfoText(0,0,0);
infobox = uilabel(f,'Text',infotext,'FontColor',[1 1 1],'FontSize',11,...
 'Position',[10 20 300 70],'Visible','on');

% Show radar beams on the globe
covcon = coverageConfig(scene);
plotCoverage(viewer,covcon, 'ECEF');

while advance(scene)
 infobox.Text = simulationInfoText(scene.SimulationTime, 0, numDebris);
 plotPlatform(viewer, debris, 'ECEF');
end

%Take a snapshot of the scenario
snapshot(viewer);

6 Featured Examples

6-556

On the virtual globe, you can see the space debris represented by white dots with individual trailing
trajectories shown by white lines. Most of the generated debris objects are on orbits with high
inclination angles close to 80 deg.

The trajectories are plotted in ECEF coordinates, and therefore the entire trajectory rotates towards
the west due to Earth rotation. After several orbit periods, all space debris pass through the
surveillance beams of the radars.

Simulate synthetic detections and track space debris

The sensor models use the ground truth to generate synthetic detections. Call the detect method on
the tracking scenario to obtain all the detections in the scene.

A multi-object tracker trackerJPDA is used to create new tracks, associate detections to existing
tracks, estimate their state, and delete divergent tracks. Setting the property
HasDetectableTrackIDsInput to true allows the tracker to accept an input that indicates whether
a tracked object is detectable in the surveillance region. This is important for not penalizing tracks
that are propagated outside of the radar surveillance areas. The utility function isDetectable
calculates which tracks are detectable at each simulation step.

Additionally, a utility function deleteBadTracks is used to delete divergent tracks faster.

 Track Space Debris Using a Keplerian Motion Model

6-557

% Define Tracker
tracker = trackerJPDA('FilterInitializationFcn',@initKeplerUKF,...
 'HasDetectableTrackIDsInput',true,...
 'ClutterDensity',1e-20,...
 'AssignmentThreshold',1e3,...
 'DeletionThreshold',[7 10]);

% Reset scenario, seed, and globe display
restart(scene);
scene.StopTime = 1800; % 30 min
clear(viewer);
% Reduce history depth for debris
viewer.PlatformHistoryDepth = 2;
% Show 10-sigma covariance ellipses for better visibility
viewer.NumCovarianceSigma = 10;
plotCoverage(viewer,covcon, 'ECEF');

% Initialize tracks
confTracks = objectTrack.empty(0,1);
while advance(scene)
 plotPlatform(viewer, debris);
 time = scene.SimulationTime;

 % Generate detections
 detections = detect(scene);
 plotDetection(viewer, detections, 'ECEF');

 % Generate and update tracks
 detectableInput = isDetectable(tracker,time, covcon);
 if isLocked(tracker) || ~isempty(detections)
 [confTracks, ~, allTracks,info] = tracker(detections,time,detectableInput);
 confTracks = deleteBadTracks(tracker,confTracks);
 plotTrack(viewer, confTracks, 'ECEF');
 end

 infobox.Text = simulationInfoText(time, numel(confTracks), numDebris);
 % Move camera during simulation and take snapshots
 switch time
 case 100
 campos(viewer,[90 150 5e6]);
 camorient(viewer,[0 -65 345]);
 drawnow
 im1 = snapshot(viewer);
 case 270
 campos(viewer,[60 -120 2.6e6]);
 camorient(viewer, [20 -45 20]);
 drawnow
 case 380
 campos(viewer,[60 -120 2.6e6]);
 camorient(viewer, [20 -45 20]);
 drawnow
 im2 = snapshot(viewer);
 case 400
 % reset
 campos(viewer,[17.3 -67.2 2.400e7]);
 camorient(viewer, [360 -90 0]);
 drawnow
 case 1500

6 Featured Examples

6-558

 campos(viewer,[54 2.3 6.09e6]);
 camorient(viewer, [0 -73 348]);
 drawnow
 case 1560
 im3 = snapshot(viewer);
 drawnow
 end
end

% Restore random seed
rng(s);

imshow(im1);

On the first snapshot, you can see an object being tracked as track T1 in yellow. This object was only
detected twice, which was not enough to reduce the uncertainty of the track. Therefore, the size of its
covariance ellipse is relatively large. You can also observe another track T2 in blue, which is detected
by the sensor several times. As a result, its corresponding covariance ellipse is much smaller since
more detections were used to correct the state estimate.

imshow(im2);

 Track Space Debris Using a Keplerian Motion Model

6-559

A few minutes later, as seen on the snapshot above, T1 was deleted because the uncertainty of the
track has grown too large without detections. On the other hand, the second track T2 survived due to
the additional detections.

imshow(im3)

6 Featured Examples

6-560

In the screenshot above, you can see that track T15 (in light blue) is about to enter the radar
surveillance area. Track T11 (in orange) was just updated with a detection, which reduced the
uncertainty of its estimated position and velocity. With radar station configuration, after 30 minutes of
surveillance, 18 tracks were initialized and confirmed out of the 100 debris objects. If you increase
the simulation time, the radars will cover 360 degrees in space and eventually more debris can be
tracked. Different radar station locations and configurations could be explored to increase the
number of tracked objects.

Summary

In this example you have learned how to specify your own motion model to move platforms in a
tracking scenario and how to use them to setup a tracker. This enables you to apply sensor fusion and
tracking techniques offered in this toolbox to a wider range of applications, such as the problem of
modelling and tracking space debris in an Earth-Centered-Earth-Fixed coordinate frame as shown in
this example.

Supporting functions

The motion model used in this example is presented below. The state is the ECEF positions and
velocities of the object [x; vx; y; vy; z; vz].

function state = keplerorbit(state,dt)
% keplerorbit performs numerical integration to predict the state of

 Track Space Debris Using a Keplerian Motion Model

6-561

% keplerian bodies. The state is [x;vx;y;vy;z;vz]

% Runge-Kutta 4 integration method:
k1 = kepler(state);
k2 = kepler(state + dt*k1/2);
k3 = kepler(state + dt*k2/2);
k4 = kepler(state + dt*k3);

state = state + dt*(k1+2*k2+2*k3+k4)/6;

 function dstate=kepler(state)
 x =state(1,:);
 vx = state(2,:);
 y=state(3,:);
 vy = state(4,:);
 z=state(5,:);
 vz = state(6,:);

 mu = 398600.4405*1e9; % m^3 s^-2
 omega = 7.292115e-5; % rad/s

 r = norm([x y z]);
 g = mu/r^2;

 % Coordinates are in a non-intertial frame, account for Coriolis
 % and centripetal acceleration
 ax = -g*x/r + 2*omega*vy + omega^2*x;
 ay = -g*y/r - 2*omega*vx + omega^2*y;
 az = -g*z/r;
 dstate = [vx;ax;vy;ay;vz;az];
 end
end

initKeplerUKF initializes a tracking filter with your own motion model. In this example, we use the
same motion model that establishes ground truth, keplerorbit.

function filter = initKeplerUKF(detection)

% assumes radar returns [x y z]
measmodel= @(x,varargin) x([1 3 5],:);
detNoise = detection.MeasurementNoise;
sigpos = 0.4;% m
sigvel = 0.4;% m/s^2
meas = detection.Measurement;
initState = [meas(1); 0; meas(2); 0; meas(3);0];
filter = trackingUKF(@keplerorbit,measmodel,initState,...
 'StateCovariance', diag(repmat([10, 10000].^2,1,3)),...
 'ProcessNoise',diag(repmat([sigpos, sigvel].^2,1,3)),...
 'MeasurementNoise',detNoise);

end

oe2rv converts a set of 6 traditional orbital elements to position and velocity vectors.

function [r,v] = oe2rv(a,e,i,lan,w,nu)
% Reference: Bate, Mueller & White, Fundamentals of Astrodynamics Sec 2.5

mu = 398600.4405*1e9; % m^3 s^-2

6 Featured Examples

6-562

% Express r and v in perifocal system
cnu = cosd(nu);
snu = sind(nu);
p = a*(1 - e^2);
r = p/(1 + e*cnu);
r_peri = [r*cnu ; r*snu ; 0];
v_peri = sqrt(mu/p)*[-snu ; e + cnu ; 0];

% Tranform into Geocentric Equatorial frame
clan = cosd(lan);
slan = sind(lan);
cw = cosd(w);
sw = sind(w);
ci = cosd(i);
si = sind(i);
R = [clan*cw-slan*sw*ci , -clan*sw-slan*cw*ci , slan*si; ...
 slan*cw+clan*sw*ci , -slan*sw+clan*cw*ci , -clan*si; ...
 sw*si , cw*si , ci];
r = R*r_peri;
v = R*v_peri;
end

isDetectable is used in the example to determine which tracks are detectable at a given time.

function detectInput = isDetectable(tracker,time,covcon)

if ~isLocked(tracker)
 detectInput = zeros(0,1,'uint32');
 return
end
tracks = tracker.predictTracksToTime('all',time);
if isempty(tracks)
 detectInput = zeros(0,1,'uint32');
else
 alltrackid = [tracks.TrackID];
 isDetectable = zeros(numel(tracks),numel(covcon),'logical');
 for i = 1:numel(tracks)
 track = tracks(i);
 pos_scene = track.State([1 3 5]);
 for j=1:numel(covcon)
 config = covcon(j);
 % rotate position to sensor frame:
 d_scene = pos_scene(:) - config.Position(:);
 scene2sens = rotmat(config.Orientation,'frame');
 d_sens = scene2sens*d_scene(:);
 [az,el] = cart2sph(d_sens(1),d_sens(2),d_sens(3));
 if abs(rad2deg(az)) <= config.FieldOfView(1)/2 && abs(rad2deg(el)) < config.FieldOfView(2)/2
 isDetectable(i,j) = true;
 else
 isDetectable(i,j) = false;
 end
 end
 end

 detectInput = alltrackid(any(isDetectable,2))';
end
end

 Track Space Debris Using a Keplerian Motion Model

6-563

deleteBadTracks is used to remove tracks that obviously diverged. Specifically, diverged tracks in
this example are tracks whose current position has fallen on the surface of the earth and tracks
whose covariance has become too large.

function tracks = deleteBadTracks(tracker,tracks)
% remove divergent tracks:
% - tracks with covariance > 4*1e8 (20 km standard deviation)
% - tracks with estimated position outside of LEO bounds
n = numel(tracks);
toDelete = zeros(1,n,'logical');
for i=1:numel(tracks)
 [pos, cov] = getTrackPositions(tracks(i),[1 0 0 0 0 0 ; 0 0 1 0 0 0; 0 0 0 0 1 0]);
 if norm(pos) < 6500*1e3 || norm(pos) > 8500*1e3 || max(cov,[],'all') > 4*1e8
 deleteTrack(tracker,tracks(i).TrackID);
 toDelete(i) =true;
 end
end
tracks(toDelete) = [];
end

simulationInfoText is used to display the simulation time, the number of debris, and the current
number of tracks in the scenario.

function text = simulationInfoText(time,numTracks, numDebris)
 text = vertcat(string(['Elapsed simulation time: ' num2str(round(time/60)) ' (min)']),...
 string(['Current number of tracks: ' num2str(numTracks)]),...
 string(['Total number of debris: ' num2str(numDebris)]));
 drawnow limitrate
end

References

[1] https://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers

6 Featured Examples

6-564

https://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers

Simulate and Track En-Route Aircraft in Earth-Centered
Scenarios

This example shows you how to use an Earth-Centered trackingScenario and a geoTrajectory
object to model a flight trajectory that spans thousands of kilometers. You use two different models to
generate synthetic detections of the airplane: a monostatic radar and ADS-B reports. You use a multi-
object tracker to estimate the plane trajectory, compare the tracking performance, and explore the
impact that ADS-B provides on the overall tracking quality.

In the United States, the Federal Aviation Administration (FAA) is responsible for the regulation of
thousands of flights everyday across the entire national airspace. Commercial flights are usually
tracked at all times, from their departure airport to arrival. An air traffic control system is a complex
multilevel system. Airport control towers are responsible for monitoring and handling the immediate
vicinity of the airport while Air Route Traffic Control Centers (ARTCC) are responsible for long range
en-route surveillance across various regions that compose the national airspace.

The capability as well as complexity of air traffic/surveillance radars have increased significantly over
the past decades. The addition of transponders on aircraft adds a two-way communication between
the radar facility and airplanes which allows for very accurate position estimation and benefits
decision making at control centers. In 2020, all airplanes flying above 10,000 feet are required to be
equipped with an Automatic Dependent Surveillance Broadcast (ADS-B) transponder to broadcast
their on-board estimated position. This message is received and processed by air traffic control
centers.

Create an en-route air traffic scenario

You start by creating an Earth-centered scenario.

% Save current random generator state
s = rng;
% Set random seed for predictable results
rng(2020);
% Create scenario
scene = trackingScenario('IsEarthCentered',true,'UpdateRate',1);

Define the airplane model and trajectory

The matfile flightwaypoints attached in this example contains synthesized coordinates and time
information of a flight trajectory from Wichita to Chicago. You use a geoTrajectory object to create
the flight trajectory.

load('flightwaypoints.mat')
flightRoute = geoTrajectory(lla,timeofarrival);
airplane = platform(scene,'Trajectory',flightRoute);

Nowadays, commercial planes are all equipped with GPS receivers. As the backbone of ADS-B, the
accuracy of onboard GPS can be set to conform with ADS-B requirements. The Navigation Accuracy
Category used in ADS-B, for position and velocity are referred to as NACp and NACv, respectively. Per
FAA regulation[1], the NACp must be less than 0.05 nautical miles and the NACv must be less than 10
meters per second. In this example, you use a gpsSensor model with a position accuracy of 50 m
and a velocity accuracy of 10 m/s to configure the adsbTransponder model. You also use a more
realistic RCS signature for the airplane, inspired by that of a Boeing 737.

posAccuracy = 50; % meters
velAccuracy = 10; % m/s

 Simulate and Track En-Route Aircraft in Earth-Centered Scenarios

6-565

gps = gpsSensor('PositionInputFormat','Geodetic','HorizontalPositionAccuracy',posAccuracy,...
 'VerticalPositionAccuracy', posAccuracy,'VelocityAccuracy',10);

adsbTx = adsbTransponder('MW2020','UpdateRate', 1,'GPS', gps,'Category',adsbCategory.Large);

load('737rcs.mat');
airplane.Signatures{1} = boeing737rcs;

Add surveillance stations along the route

There are several models of long-range surveillance radars used by the FAA. The Air Route
Surveillance Radar 4 (ARSR-4) is a radar introduced in the 1990s which can provide 3D returns of
any 1 square-meter object at a long range of 250 nautical miles (463 kilometers). Most of ARSR-4
radars are located along the borders of the continental United-States, while slightly shorter range
radars are mostly located at FAA radar sites on the continent. In this example, a single radar type is
modeled following common specifications of an ARSR-4 as listed below:

• Update rate: 12 sec
• Maximum range (1 meter-square target): 463 km
• Range Resolution: 323 m
• Range Accuracy: 116 m
• Azimuth field of view: 360 deg
• Azimuth Resolution: 1.4 deg
• Azimuth Accuracy: 0.176 deg
• Height Accuracy: 900 m

A platform is added to the scenario for each radar site. The RCS signature of those platforms is set to
be −50 decibel to avoid creating unwanted radar returns.

By default, the radar detections are reported in the radar mounting platform body frame, which in
this case is the local North East Down frame at the position of each radar site. However, in this
example you set the DetectionCoordinates property to Scenario in order to output detections in
the Earth-Centered Earth-Fixed (ECEF) frame, which allows the tracker to process all the detections
from different radar sites in a common frame.

% Model an ARSR-4 radar
updaterate = 1/12;
fov = [360;30.001];
elAccuracy = atan2d(0.9,463); % 900m accuracy @ max range
elBiasFraction = 0.1;

arsr4 = fusionRadarSensor(1,'UpdateRate',updaterate,...
 'FieldOfView',[360 ; 30.001],...
 'HasElevation',true,...
 'ScanMode','Mechanical',...
 'MechanicalAzimuthLimits',[0 360],...
 'MechanicalElevationLimits',[-30 0],...
 'HasINS',true,...
 'HasRangeRate',true,...
 'HasFalseAlarms',false,...
 'ReferenceRange',463000,...
 'ReferenceRCS',0,...
 'RangeLimits', [0 463000],...

6 Featured Examples

6-566

 'AzimuthResolution',1.4,...
 'AzimuthBiasFraction',0.176/1.4,...
 'ElevationResolution',elAccuracy/elBiasFraction,...
 'ElevationBiasFraction',elBiasFraction,...
 'RangeResolution', 323,...
 'RangeBiasFraction',116/323,... Accuracy / Resolution
 'RangeRateResolution',100,...
 'DetectionCoordinates','Scenario');

% Add ARSR-4 radars at each ARTCC site
radarsitesLLA = [41.4228 -88.0583 0;...
 40.6989 -89.8258 0;...
 39.2219 -95.2461 0];

for i=1:3
 radar = clone(arsr4);
 radar.SensorIndex = i;
 platform(scene,'Position',radarsitesLLA(i,:),...
 'Signatures',rcsSignature('Pattern',-50),'Sensors',{radar});
end

You use adsbReceiver to model the reception of ADS-B messages. An ADS-B message contains the
position measured by the airplane own GPS instrument. The message is usually encoded and
broadcasted on 1090 MHz channel for nearby ADS-B receivers to pick up. You define a reception
range of 200 km around each surveillance station. In this example you assume that surveillance
stations have perfect communication between each other. Therefore, a central receiver picks up
broadcasted ADS-B messages within range of at least one station.

% Define central adsbReceiver
adsbRx = adsbReceiver('ReceiverIndex',2);
adsbRange = 2e5;

Visualize the scene

You use the trackingGlobeViewer to display platforms, trajectories, detections, and tracks on
Earth.

viewer = trackingGlobeViewer('Basemap','streets-dark',...
 'TrackLabelScale',1.3,'TrackHistoryDepth',4000,...
 'CoverageMode','Coverage');
% Show radar sites
plotPlatform(viewer,scene.Platforms(2:end));
% Show radar coverage
covcon = coverageConfig(scene);
plotCoverage(viewer,covcon,'ECEF','Alpha',0.1);
% Show flight route
plotTrajectory(viewer,flightRoute);

 Simulate and Track En-Route Aircraft in Earth-Centered Scenarios

6-567

Surveillance radars have an antenna blind cone, sometimes referred to as "cone of silence". It is a
volume of space, directly above the radar, that cannot be surveilled due to antenna scanning
limitations. Overlapping coverages in networks of radars is a common mitigation strategy for this
blind cone region. With an overlapping strategy, however, there can still be areas not fully covered by
the network. In this example, the southernmost radar's cone of silence (shown in orange in the
picture above) is only partially covered by the adjacent radar in the network. This creates a blind spot
where the airplane will not be detected by any radar.

Define a central radar tracker and a track fuser.

Typically, one ARTCC maintains tracks for all objects within its surveillance zone and passes the
tracking information to the next ARTCC as the object flies into a new zone. In this example, you
define a single centralized tracker for all the radars. You use a trackerGNN object to fuse the radar
detections of the plane from multiple radars.

radarGNN = trackerGNN('TrackerIndex',1,...
 'MaxNumTracks',50,...
 'FilterInitializationFcn',@initfilter,...

6 Featured Examples

6-568

 'ConfirmationThreshold',[3 5],...
 'DeletionThreshold',[5 5],...
 'AssignmentThreshold',[250 2000]);

You also fuse radar tracks with ADS-B tracks obtained from the ADS-B receiver. To do this, you
configure a central trackFuser object. You set the ConfirmationThreshold and
DeletionThreshold to account for the update rate difference between the ADS-B receiver rate at 1
Hz, and the radar tracker rate at 1/12 Hz. To allow for at least two radar tracks to be assigned to a
central track, the number of hits must then be at least 2 × 12.

fuser = trackFuser('FuserIndex',3,'MaxNumSources',2,...
 "AssignmentThreshold",[250 500],...
 "StateFusion",'Intersection',...
 'StateFusionParameters','trace',...
 'ConfirmationThreshold',[2 3*12],...
 'DeletionThreshold',[4 4]*12);

Track the flight using radars and ADS-B

In this section, you simulate the scenario and step the radar tracker, track fuser, ADS-B transponder,
and receiver.

% Declare some variables
detBuffer = {};
radarTrackLog = {};
fusedTrackLog = {};
adsbTrackLog = {};
images = {};
snapTimes = [84,564,1128, 2083];

% Track labels and colors
adsblabel = " ADS-B";
radarlabel = " Radar";
fusedlabel = string(sprintf('%s\n',"","Fused"));
adsbclr = [183 70 255]/255;
radarclr = [255 255 17]/255;
fusedclr = [255 105 41]/255;

while advance(scene)
 time = scene.SimulationTime;

 % Update position of airplane on the globe
 plotPlatform(viewer,airplane,'TrajectoryMode','None');

 % Generate and plot synthetic radar detections
 [dets, configs] = detect(scene);
 dets = postProcessDetection(dets);
 detBuffer = [detBuffer; dets]; %#ok<AGROW>
 plotDetection(viewer,detBuffer,'ECEF');

 % tracks
 adsbTracks = objectTrack.empty;
 radarTracks = objectTrack.empty;
 fusedTracks = objectTrack.empty;

 % Generate ADS-B messages
 truePose = pose(airplane, 'true','CoordinateSystem','Geodetic');
 adsbMessage = adsbTx(truePose.Position, truePose.Velocity);

 Simulate and Track En-Route Aircraft in Earth-Centered Scenarios

6-569

 % Messages can be received within range of each surveillance station
 if isWithinRange(radarsitesLLA, truePose.Position, adsbRange)
 adsbTracks = adsbRx(adsbMessage, time);
 end

 % Update radar tracker at end of scan
 if all([configs.IsValidTime]) && (~isempty(detBuffer) || isLocked(radarGNN))
 radarTracks = radarGNN(detBuffer,time);
 detBuffer = {};
 end

 % Fuse tracks
 if isLocked(fuser) || ~isempty([adsbTracks;radarTracks])
 fusedTracks = fuser([adsbTracks;radarTracks],time);
 end

 % plot tracks only once every radar scan
 if all([configs.IsValidTime])

 labels = [repmat(adsblabel,1,numel(adsbTracks)),...
 repmat(radarlabel,1,numel(radarTracks)),...
 repmat(fusedlabel,1,numel(fusedTracks))];

 colors = [repmat(adsbclr, numel(adsbTracks), 1) ;...
 repmat(radarclr, numel(radarTracks), 1);...
 repmat(fusedclr, numel(fusedTracks), 1)];

 plotTrack(viewer,[adsbTracks; radarTracks; fusedTracks],'ECEF',...
 'LabelStyle','Custom',"CustomLabel",labels,'Color',colors,...
 'LineWidth',3);
 end

 % Record the estimated airplane data for metrics
 fusedTrackLog = [fusedTrackLog, {fusedTracks}]; %#ok<AGROW>
 radarTrackLog = [radarTrackLog, {radarTracks}]; %#ok<AGROW>
 adsbTrackLog = [adsbTrackLog, {adsbTracks}]; %#ok<AGROW>

 % Move camera and take snapshots
 images = moveCamera(viewer,airplane,time,snapTimes,images);

end

figure
imshow(images{1});

6 Featured Examples

6-570

At the beginning of the scenario, the airplane is far from the southernmost surveillance station and no
ADS-B message is transmitted. As a result, the airplane is tracked by radar only. Note that ARSR
detections are relatively inaccurate in altitude, which is generally acceptable as air traffic controller
separate airplanes horizontally rather than vertically. The least accurate detections are generated by
radar sites located at longer ranges. These detections are nonetheless associated to the track. In the
figure, the white line represents the true trajectory and the yellow line represents the trajectory
estimated by the radar tracker. The first leg of the flight is far from any radar and the corresponding
detections have high measurement noise. Additionally, the constant velocity motion model does not
model the motion well during the initial flight turn after taking off. The radar track is passed to the
fuser which outputs a fused track, shown in orange, following closely the radar track. The fused track
is different from the radar track because the fuser adds its own process noise to the track state.

figure
imshow(images{2});

 Simulate and Track En-Route Aircraft in Earth-Centered Scenarios

6-571

In the above snapshot, the airplane is within the ADS-B communication range and a new ADS-B track
is established. The fuser processed this new track and improved the accuracy of the fused track.

figure
imshow(images{3});

6 Featured Examples

6-572

In the above snapshot, the airplane enters the cone of silence. The radar tracker deletes the track
after several updates without any new detections. At this point the fuser relies only on the ADS-B
track to estimate the position of the airplane.

figure
imshow(images{4});

 Simulate and Track En-Route Aircraft in Earth-Centered Scenarios

6-573

As the airplane enters the area covered by the second and third surveillance radar stations, a new
radar track is established. Detections from the two radar stations are fused by the radar tracker and
the track fuser fuses the new radar track with the ADS-B track.

Analyze results

You compare the recorded track data for radar and ADS-B. The true position and velocity are
available from the geoTrajectory. You use the OSPA metric to compare the quality of tracking
from radar only, ADS-B only, and from radar fused with ADS-B. You use the default settings of the
trackOSPAMetric object to compare NEES (normalized estimation error squared) for track position
and detection assignment.

ospa = trackOSPAMetric;
radarospa = zeros(ceil(numel(radarTrackLog)/12),1);

% Compute radar tracker OSPA
for i=1:12:numel(radarTrackLog)
 tracks = radarTrackLog{i};
 [truths.Position, ~,truths.Velocity] = lookupPose(flightRoute, i-1,'ECEF');
 radarospa(i) = ospa(tracks, truths);
end

6 Featured Examples

6-574

% Compute ADS-B OSPA
adsbospa = zeros(numel(adsbTrackLog),1);
reset(ospa);
for i=1:numel(adsbTrackLog)
 tracks = adsbTrackLog{i};
 [truths.Position, ~,truths.Velocity] = lookupPose(flightRoute, i-1,'ECEF');
 adsbospa(i) = ospa(tracks, truths);
end

% Compute fused OSPA
fusedospa = zeros(numel(fusedTrackLog),1);
reset(ospa);
for i=1:numel(fusedTrackLog)
 tracks = fusedTrackLog{i};
 [truths.Position, ~,truths.Velocity] = lookupPose(flightRoute, i-1,'ECEF');
 fusedospa(i) = ospa(tracks, truths);
end

% Plot OSPA
figure
hold on
plot((0:12:(numel(radarTrackLog)-1))/60, radarospa(1:12:end), "Color",radarclr);
plot((0:(numel(adsbTrackLog)-1))/60,adsbospa, "Color", adsbclr, 'LineWidth',2);
plot((0:(numel(fusedTrackLog)-1))/60,fusedospa, "Color", fusedclr);
l=legend('Radar','ADS-B','Radar + ADS-B');
l.Color = [0.1 0.1 0.1];
l.TextColor = [1 1 1];
xlabel('Time (min)')
ylabel('OSPA')
ax = gca;
grid on;
box on;
ax.Color = [0.1 0.1 0.1];
ax.GridColor = [1 1 1];

 Simulate and Track En-Route Aircraft in Earth-Centered Scenarios

6-575

The OSPA metric shows improvements obtained from fusing ADS-B tracks with radar tracks. From
simulation time 19 min to 25 min, the radar only OSPA is high because the airplane is flying over the
blind spot of the radar network. The availability of ADS-B in this area significantly increases the
tracking performance, as indicated by the fused OSPA. Additionally, the metric shows two peaks at
the beginning, which can be attributed to the poor performance of a constant-velocity filter during
the initial turns of the trajectory and the unavailability of ADS-B. Around time 40 min, the ADS-B only
OSPA is degraded by the loss of ADS-B availability in the region. In later segements of the simulation,
both radar and ADS-B are available. Radar only OSPA is overall worse than ADS-B only. This is
because the radars have poor vertical accuracy in comparison to a GPS.

Summary

In this example you have learned how to create an Earth-centered scenario and define trajectories
using geodetic coordinates. You also learned how to model Air Route Surveillance Radars and
generate synthetic detections. You feed these detections to a multi-object tracker and estimate the
position, velocity, and heading of the plane. The tracking performance is improved by adding and
fusing of ADS-B information. You modeled ADS-B reports and integrated them to the tracking
solution. In this example, only a single flight was modeled. The benefit of ADS-B can be further
manifested when modeling multiple flights in scenarios where safe separation distances must be
maintained by air traffic controllers.

Supporting functions

initfilter defines the extended Kalman filter used by trackerGNN. Airplane motion is well
approximated by a constant velocity motion model. Therefore, use a relatively small process noise to

6 Featured Examples

6-576

allocate more weight to the dynamics compared to the measurements which are expected to be quite
noisy at long ranges.

function filter = initfilter(detection)
filter = initcvekf(detection);
filter.StateCovariance = 100*filter.StateCovariance; % initcvekf uses measurement noise as the default
filter.ProcessNoise = 0.1;
end

postProcessDetection post-processes the detections by two operations:

1 It removes radar detections that lie below the surface of the Earth as these cannot be created by
a real radar.

2 It increases the detection noise level for the velocity measurement component normal to the
radial component.

function detsout = postProcessDetection(detsin)
n = numel(detsin);
keep = zeros(1,n,'logical');
for i=1:n
 meas = detsin{i}.Measurement(1:3)';
 lla = fusion.internal.frames.ecef2lla(meas);
 if lla(3)>0
 keep(i) = true;
 else
 keep(i) = false;
 end
end
detsout = detsin(keep);

velCovTransversal = 100^2;
for i=1:numel(detsout)
 velCov = detsout{i}.MeasurementNoise(4:6,4:6);
 [P,D] = eig(velCov);
 [m,ind] = min(diag(D));
 D = velCovTransversal * eye(3);
 D(ind,ind) = m;
 correctedCov = P*D*P';
 detsout{i}.MeasurementNoise(4:6,4:6) = correctedCov;
end
end

isWithinRange returns true if the airplane position is within ADS-B receiver range of any of the
surveillance stations.

function flag = isWithinRange(stationsLLA, pos, range)
cartDistance = fusion.internal.frames.lla2ecef(stationsLLA) - fusion.internal.frames.lla2ecef(pos);
flag = any(vecnorm(cartDistance,2,2) < range);
end

moveCamera specifies new camera positions to follow the airplane and take snapshots.

function images = moveCamera(viewer, airplane, time, snapTimes,images)

if mod(time,12) == 0

 pos = airplane.Position;
 if time == 0

 Simulate and Track En-Route Aircraft in Earth-Centered Scenarios

6-577

 campos(viewer, pos(1),pos(2), 2e4);
 elseif time == 1100 % Zoom out
 campos(viewer,pos(1),pos(2), 1e5);
 elseif time == 2000 % Zoom in
 campos(viewer,pos(1),pos(2), 2.6e4);
 else % Keep previous height but follow airplane
 campos(viewer,pos(1),pos(2));
 end
end

% Snapshots
if any(time == snapTimes)
 drawnow
 img = snapshot(viewer);
 images = [images, {img}];
end
end

Reference

[1] FAR §91.227 Automatic Dependent Surveillance-Broadcast (ADS-B) Out equipment performance
requirements

6 Featured Examples

6-578

https://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&sid=3efaad1b0a259d4e48f1150a34d1aa77&rgn=div5&view=text&node=14:2.0.1.3.10&idno=14#se14.2.91_1227
https://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&sid=3efaad1b0a259d4e48f1150a34d1aa77&rgn=div5&view=text&node=14:2.0.1.3.10&idno=14#se14.2.91_1227

Simulate, Detect, and Track Anomalies in a Landing Approach
The example shows how to automatically detect deviations and anomalies in aircraft making final
approaches to an airport runway. In this example, you will model an ideal landing approach trajectory
and generate variants from it, simulate radar tracks, and issue warnings as soon as the tracks deviate
from safe landing rules.

Introduction

Landing is a safety critical stage of flight. An aircraft in final approach to landing must align itself
with the runway, gradually descend to the ground, and reduce its ground speed while keeping it
safely above stall speed. All these steps are done to ensure that the aircraft touches the ground softly
to reduce the risk to passengers and to avoid physical damage to the aircraft or the runway. These
rules can be easily defined by an aviation professional or they can be inferred from tracking data
using machine learning [1]. In this example, you assume that the rules are already defined.

Major airports usually have multiple runways oriented in different directions. Approaching aircraft
are guided by the air traffic controllers in the airport tower to land on one of the runways that is best
aligned against the direction of wind at that time. During the approach, controllers monitor the
aircraft based on tracking systems. Airport traffic has increased over the last decades and, with it,
the workload on air traffic controllers has increased as well. As a result, there is a need to
automatically and reliably alert air traffic controllers to aircraft that approach the landing point in an
unsafe manner: not aligned well with the runway, descending too quickly or too slowly, or
approaching too quickly or too slowly.

Generate and Label Truths

You define a landing approach trajectory into Logan International Airport in Boston, MA using a
geoTrajectory object. The trajectory waypoints are aligned with runway 22L, which runs from
north-east to south-west, and a glide slope of 3 degrees. The time of arrival and climb rate are
defined to slow the approaching aircraft to a safe speed and a smooth touchdown. Note that the
positive value of climb rate is used for a descending trajectory. You use
helperPertScenarioGlobeViewer (see the supporting file) to visualize the trajectory on the map.

baselineApproachTrajectory = geoTrajectory([42.7069 -70.8395 1500; 42.5403 -70.9203 950; 42.3736 -71.001 0],[0;180;400],...
 'ClimbRate', [6; 3.75; 3.75]);

viewer = helperPertScenarioGlobeViewer;
viewer.TargetHistoryLength = 0;
viewer.TrackHistoryLength = 0;
viewer.TrackLabelScale = 0.75;
positionCamera(viewer, [42.3072 -70.8463 12455], [0 -34 335]);
plotTrajectory(viewer, baselineApproachTrajectory, 'Color', [15 255 255]/255, "Width", 1);

For a trajectory coming to land at Logan airport on runway 22L to be safe, the trajectory must satisfy
the following rules:

• The trajectory must be closely aligned with the runway direction.
• The glide slope must be between 2.5 and 4 degrees in the last 20963 meters. At distances above

20963 meters, the altitude must be at least 3000 ft.
• The speed must be between 120 knots and 180 knots at the landing point. The upper speed bound

can increase linearly with distance from the landing point.

 Simulate, Detect, and Track Anomalies in a Landing Approach

6-579

You define these rules using the helperTrajectoryValidationRule (see the supporting file) and
visualize the rules on the map.

% Define and show trajectory rules.
trajRules = defineTrajectoryRules();
showRules(viewer, trajRules)
snap(viewer)

You use the perturbations object function to define a normal distribution around the baseline
trajectory, approachTrajectory. Each waypoint in the trajectory is perturbed with a zero-mean
normal distribution and a standard deviation that gets smaller from the first waypoint to the last (the
landing point). At the first waypoint, the standard deviation is 5e-3 degrees in longitude and 300
meters in altitude. The standard deviation decreases to 1e-3 degrees in longitude and 150 meters in
altitude in the mid-point and then to 1e-4 degrees in longitude and 0 in altitude at the end-point on
the ground.

% Define perturbation to the approach trajectory
perturbations(baselineApproachTrajectory, 'Waypoints', 'Normal', zeros(3,3), [0 5e-3 300; 0 1e-3 150; 0 1e-4 0]);

To create 20 trajectories that are perturbed from the baseline trajectory, first clone the trajectory
and then perturb it.

% Generate perturbed trajectories
s = rng(2021, 'twister'); % Set random noise generator for repeatable results
numTrajectories = 20;
trajectories = cell(1,numTrajectories);

6 Featured Examples

6-580

for i = 1:numTrajectories
 trajectories{i} = clone(baselineApproachTrajectory);
 perturb(trajectories{i});
end

To see which perturbed trajectories satisfy the rules of a safe approach to landing, you use the helper
function validateTrajectory, provided at the bottom of this page. The function declares a
trajectory to be anomalous if at least 1% of the points sampled from it violate any trajectory rule.

[truthAnomalyFlags, truthPercentAnomalousSteps] = validateTrajectory(trajectories, trajRules);

Plot the trajectories in yellow for anomalous trajectories and cyan for safe approaches. Overall, there
are 7 anomalous trajectories out of the 20 generated trajectories.

plotTrajectory(viewer, trajectories(truthAnomalyFlags), 'Color', [255 255 17]/255, "Width", 1);
plotTrajectory(viewer, trajectories(~truthAnomalyFlags), 'Color', [15 255 255]/255, "Width", 1);
positionCamera(viewer, [42.4808 -70.916 1136], [0 0 340]);
snap(viewer)

Define a Scenario

Detecting anomalies in real time based on tracking data is a challenge for several reasons. First,
since the tracking data is imperfect with noise, the tracking results are uncertain. As a result, some
tolerances must be provided to avoid issuing false warnings. Second, the sensors report false
detections, and the tracking system must be careful not to confirm tracks based on these false
detections. The careful confirmation requires that the tracking system takes more time to confirm the

 Simulate, Detect, and Track Anomalies in a Landing Approach

6-581

tracks. To avoid excessive warnings on false tracks, you issue warnings only after a track is
confirmed.

You define an Earth-centered tracking scenario.

% Create an Earth-centered tracking scenario
scenario = trackingScenario('UpdateRate', 1, 'IsEarthCentered', true);

Aircraft approaching landing in an airport are scheduled to avoid aerodynamic impact from one
aircraft on the one following in its wake. The minimum safe time difference between two aircraft is
one minute.

You use the perturbations and perturb object functions again to perturb the TimeOfArrival of
each trajectory and to make sure no additional perturbations are applied to the Waypoints. Then you
attach each trajectory to a new platform. To perturb the entire scenario, you use the perturb object
function.

% Schedule the trajectories and attach each to a platform.
for i = 1:numTrajectories
 perturbations(trajectories{i}, 'TimeOfArrival', 'Uniform',(i-1)*60, (i-1)*60+10);
 perturbations(trajectories{i}, 'Waypoints', 'None');
 platform(scenario, 'Trajectory', trajectories{i});
end
perturb(scenario);

Like other major airports in the USA, Logan uses an Airport Surface Detection Equipment - Model X
(ASDE-X) to track aircraft during final approach and on the ground [2]. ASDE-X relies on an airport
surveillance radar, automatic dependent surveillance–broadcast (ADS–B) reports from the
approaching aircraft, and other methods to provide accurate tracking which is updated every second
(for more details, see [1]).

To simplify the model of this tracking system, you use a statistical radar model,
fusionRadarSensor, attached to the airport tower, and connect the sensor to a trackerGNN
object. You configure the tracker to be conservative about confirming tracks by setting the
ConfirmationThreshold to confirm if a track receives 4-out-of-5 updates.

asdex = fusionRadarSensor(1, ...
 'ScanMode', 'No Scanning', ...
 'MountingAngles', [0 0 0], ...
 'FieldOfView', [360;20], ...
 'UpdateRate', 1, ...
 'ReferenceRange', 40000,...
 'RangeLimits', [0 50000], ...
 'RangeResolution', 100, ...
 'HasElevation', true, ...
 'HasINS', true, ...
 'DetectionCoordinates', 'Scenario', ...
 'FalseAlarmRate', 1e-7, ...
 'ElevationResolution', 0.4, ...
 'AzimuthResolution', 0.4);
p = platform(scenario, 'Position', [42.3606 -71.011 0], 'Sensors', asdex);
tracker = trackerGNN("AssignmentThreshold", [100 2000], "ConfirmationThreshold", [4 5]);
tam = trackAssignmentMetrics('AssignmentThreshold', 100, 'DivergenceThreshold', 200);

6 Featured Examples

6-582

Run the Scenario and Detect Anomalous Tracks

In the following lines, you simulate the scenario and track the approaching aircraft. You use the
validateTracks helper function to generate anomaly warnings for the tracks. You can see the code
for the function at the bottom of this page.

Tracks that violate the safe approach rules are shown in yellow while tracks that follow these rules
are shown in cyan. Note that the warning is issued immediately when the track violates any rule and
is removed when it satisfies all the rules.

% Clean the display and prepare it for the simulation.
clear(viewer)
positionCamera(viewer, [42.3072 -70.8463 12455], [0 -34 335]);
showRules(viewer, trajRules)
clear validateTracks

% Main loop
while advance(scenario)
 % Collect detections
 dets = detect(scenario);

 % Update the tracker and output tracks.
 if ~isempty(dets) || isLocked(tracker)
 tracks = tracker(dets, scenario.SimulationTime);
 else
 tracks = objectTrack.empty;
 end

 % Get platform poses and assignment between tracks and truths.
 poses = platformPoses(scenario,"Quaternion","CoordinateSystem","Cartesian");
 tam(tracks,poses);
 [assignedTrackIDs, assignedTruthIDs] = currentAssignment(tam);

 % Validate the tracks with rules to find anomalous tracks.
 [tracks, trackAnomalyHistory] = validateTracks(tracks, trajRules, assignedTrackIDs, assignedTruthIDs);

 % Visualize
 updateDisplay(viewer,scenario.SimulationTime,[scenario.Platforms{:}],dets,[],tracks);
end

The following gif was taken when for a minute of simulation from the 900 seconds to the 960 seconds.
It shows tracks identified as safe in cyan and tracks identified as anomalous in yellow. This
identification is done at every simulation step as can be seen for track 1893.

 Simulate, Detect, and Track Anomalies in a Landing Approach

6-583

Compare Track Anomaly Reports to Truth

To verify that the anomaly warnings were issued for the right tracks, you use the analyze helper
function, shown at the bottom of this page.

The function uses the trackAnomalyHistory collected during the simulation and compares it to the
truthPercentAnomalousSteps calculated for each trajectory. Similar to truth, tracks are assigned
anomaly flags if they were declared anomalous at least 1% of the time steps. You can see that the
anomalies are issued correctly for the seven trajectories that were found to be anomalous.

comparisonTable = analyze(trackAnomalyHistory ,truthPercentAnomalousSteps);
disp(comparisonTable)

 TruthID Truth Anomaly Flag Track Anomaly Flag
 _______ __________________ __________________

 1 false false
 2 false false
 3 false false
 4 false false
 5 false false
 6 false false
 7 true true
 8 true true

6 Featured Examples

6-584

 9 false false
 10 true true
 11 false false
 12 false false
 13 true true
 14 true true
 15 false false
 16 false false
 17 false false
 18 false false
 19 true true
 20 true true

Summary

In this example, you learned how to use tracking data to generate real-time warnings for anomalies
like an unsafe landing approach.

You used geoTrajectory to define an ideal landing approach trajectory in geographic coordinates.
You then used perturbations and perturb to create 20 trajectories that deviate from the ideal
landing approach trajectory and to schedule the trajectories one after the other in the
trackingScenario. To model an airport tracking system, you simplified the system model using a
statistic radar model, by the fusionRadarSensor System object, and a tracker, by the trackerGNN
System object.

References

1 Raj Deshmukh and Inseok Hwang, "Anomaly Detection Using Temporal Logic Based Learning for
Terminal Airspace Operations", AIAA SciTech Forum, 2019.

2 Federal Aviation Administration, "Fact Sheet - Airport Surface Detection Equipment, Model X
(ASDE-X)". https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=17095 retrieved May
2020.

Supporting Functions

defineTrajectoryRules Define trajectory rules

function trajRules = defineTrajectoryRules
% This function defines rules for safe approach to landing on runway 22L at
% Logan International Airport in Boston, MA.

% The function uses the helperTrajectoryValidationRule attached as a
% supporting file to this example

% The trajectory must be closely aligned with the runway direction.
longitudeRule = helperTrajectoryValidationRule([42.37 42.71], [0.4587, -90.4379], [0.5128, -92.730]);

% The glide slope must be between 2.5 and 4 degrees in the last 20963
% meters. At distances above 20963 meters, the altitude must be at least
% 3000 ft. The rules are relative to range from the runway landing point.
altitudeRule1 = helperTrajectoryValidationRule([100 20963], [sind(2.5) 0], [sind(4) 0]);
altitudeRule2 = helperTrajectoryValidationRule([20963 40000], 3000 * 0.3048, [sind(4) 0]);

% The speed must be between 120 knots and 180 knots at the landing point.
% The upper speed bound can increase linearly with distance from the
% landing point.
speedRule = helperTrajectoryValidationRule([0 40000], 61.733, [1e-3 100]);

 Simulate, Detect, and Track Anomalies in a Landing Approach

6-585

https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=17095

% Collect all the rules.
trajRules = [longitudeRule;altitudeRule1;altitudeRule2;speedRule];
end

validateTrajectory Validate each trajectory

function [truthAnomalyFlags, percentAnomalousSteps] = validateTrajectory(trajectories, rules)
numTrajectories = numel(trajectories);
numAnomalousSteps = zeros(1, numTrajectories);
for tr = 1:numTrajectories
 if iscell(trajectories)
 traj = trajectories{tr};
 elseif numTrajectories == 1
 traj = trajectories;
 else
 traj = trajectories(tr);
 end
 timesamples = (traj.TimeOfArrival(1):traj.TimeOfArrival(end));
 [pos,~,vel] = lookupPose(traj, timesamples);
 posECEF = lookupPose(traj, timesamples, 'ECEF');
 landingPoint = [1.536321 -4.462053 4.276352]*1e6;

 for i = 1:numel(timesamples)
 distance = norm(posECEF(i,:) - landingPoint);
 isLongitudeValid = validate(rules(1),pos(i,1),pos(i,2));
 isAltitudeValid = (validate(rules(2),distance,pos(i,3)) && validate(rules(3),distance,pos(i,3)));
 isSpeedValid = validate(rules(4),distance,norm(vel(i,:)));
 isValid = isLongitudeValid && isAltitudeValid && isSpeedValid;
 numAnomalousSteps(tr) = numAnomalousSteps(tr) + ~isValid;
 end
end
percentAnomalousSteps = numAnomalousSteps ./ numel(timesamples) * 100;
truthAnomalyFlags = (percentAnomalousSteps > 1);
end

validateTrack Validate tracks vs anomaly rules

function [tracks, history] = validateTracks(tracks, rules, assignedTrackIDs, assignedTruthIDs)
persistent trackAnomalyHistory
if isempty(trackAnomalyHistory)
 trackAnomalyHistory = repmat(struct('TrackID', 0, 'AssignedTruthID', 0, 'NumSteps', 0, 'NumAnomalousSteps', 0),30,1);
end

posECEF = getTrackPositions(tracks, [1 0 0 0 0 0; 0 0 1 0 0 0; 0 0 0 0 1 0]);
pos = fusion.internal.frames.ecef2lla(posECEF);
vel = getTrackVelocities(tracks, [0 1 0 0 0 0; 0 0 0 1 0 0; 0 0 0 0 0 1]);
numTracks = numel(tracks);
landingPoint = [1.536321 -4.462053 4.276352]*1e6;

trackIDs = [trackAnomalyHistory.TrackID];

for tr = 1:numTracks
 % Only validate tracks if altitude is greater than 0
 if pos(tr,3) > 15
 distance = norm(posECEF(tr,:) - landingPoint);
 isLongitudeValid = validate(rules(1),pos(tr,1),pos(tr,2));
 isAltitudeValid = (validate(rules(2),distance,pos(tr,3)) && validate(rules(3),distance,pos(tr,3)));

6 Featured Examples

6-586

 isSpeedValid = validate(rules(4),distance,norm(vel(tr,:)));
 isValid = isLongitudeValid && isAltitudeValid && isSpeedValid;
 else
 isValid = true;
 end

 tracks(tr).ObjectClassID = uint8(~isValid) + uint8(isValid)*6; % To get the right color for tracks

 % Update anomlay history
 inHistory = (tracks(tr).TrackID == trackIDs);
 if any(inHistory)
 trackAnomalyHistory(inHistory).NumSteps = trackAnomalyHistory(inHistory).NumSteps + 1;
 trackAnomalyHistory(inHistory).NumAnomalousSteps = trackAnomalyHistory(inHistory).NumAnomalousSteps + ~isValid;
 else
 ind = find(trackIDs == 0, 1, 'first');
 trackAnomalyHistory(ind).AssignedTruthID = assignedTruthIDs(tracks(tr).TrackID == assignedTrackIDs);
 trackAnomalyHistory(ind).TrackID = tracks(tr).TrackID;
 trackAnomalyHistory(ind).NumSteps = 1;
 trackAnomalyHistory(ind).NumAnomalousSteps = ~isValid;
 end
end
history = trackAnomalyHistory;
end

analyze - Analyze the track anomaly history and compare it to the truth anomaly percentage

function comparisonTable = analyze(trackAnomalyHistory, percentTruthAnomalous)
trackAnomalyHistory = trackAnomalyHistory([trackAnomalyHistory.TrackID] > 0);
anomalousSteps = [trackAnomalyHistory.NumAnomalousSteps];
numSteps = [trackAnomalyHistory.NumSteps];
trackAssignedTruths = [trackAnomalyHistory.AssignedTruthID];
assignedTruths = unique(trackAssignedTruths);
numTrackAnomalousSteps = zeros(numel(assignedTruths),1);
numTrackSteps = zeros(numel(assignedTruths),1);

for i = 1:numel(assignedTruths)
 inds = (assignedTruths(i) == trackAssignedTruths);
 numTrackAnomalousSteps(i) = sum(anomalousSteps(inds));
 numTrackSteps(i) = sum(numSteps(inds));
end
percentTrackAnomalous = numTrackAnomalousSteps ./ numTrackSteps * 100;
trueAnomaly = (percentTruthAnomalous > 1)';
anomalyFlags = (percentTrackAnomalous > 1);
comparisonTable = table((1:20)',trueAnomaly, anomalyFlags,...
 'VariableNames', {'TruthID', 'Truth Anomaly Flag', 'Track Anomaly Flag'});
end

 Simulate, Detect, and Track Anomalies in a Landing Approach

6-587

Generate Code for a Track Fuser with Heterogeneous Source
Tracks

This example shows how to generate code for a track-level fusion algorithm in a scenario where the
tracks originate from heterogeneous sources with different state definitions. This example is based on
the “Track-Level Fusion of Radar and Lidar Data” on page 6-497 example, in which the state spaces
of the tracks generated from lidar and radar sources are different.

Define a Track Fuser for Code Generation

You can generate code for a trackFuser using MATLAB® Coder™. To do so, you must modify your
code to comply with the following limitations:

Code Generation Entry Function

Follow the instructions on how to use “System Objects in MATLAB Code Generation” (MATLAB
Coder). For code generation, you must first define an entry-level function, in which the object is
defined. Also, the function cannot use arrays of objects as inputs or outputs. In this example, you
define the entry-level function as the heterogeneousInputsFuser function. The function must be on
the path when you generate code for it. Therefore, it cannot be part of this live script and is attached
in this example. The function accepts local tracks and current time as input and outputs central
tracks.

To preserve the state of the fuser between calls to the function, you define the fuser as a
persistent variable. On the first call, you must define the fuser variable because it is empty. The
rest of the following code steps the trackFuser and returns the fused tracks.

function tracks = heterogeneousInputsFuser(localTracks,time)
%#codegen

persistent fuser
if isempty(fuser)
 % Define the radar source configuration
 radarConfig = fuserSourceConfiguration('SourceIndex',1,...
 'IsInitializingCentralTracks',true,...
 'CentralToLocalTransformFcn',@central2local,...
 'LocalToCentralTransformFcn',@local2central);

 % Define the lidar source configuration
 lidarConfig = fuserSourceConfiguration('SourceIndex',2,...
 'IsInitializingCentralTracks',true,...
 'CentralToLocalTransformFcn',@central2local,...
 'LocalToCentralTransformFcn',@local2central);

 % Create a trackFuser object
 fuser = trackFuser(...
 'MaxNumSources', 2, ...
 'SourceConfigurations',{radarConfig;lidarConfig},...
 'StateTransitionFcn',@helperctcuboid,...
 'StateTransitionJacobianFcn',@helperctcuboidjac,...
 'ProcessNoise',diag([1 3 1]),...
 'HasAdditiveProcessNoise',false,...
 'AssignmentThreshold',[250 inf],...
 'ConfirmationThreshold',[3 5],...
 'DeletionThreshold',[5 5],...

6 Featured Examples

6-588

 'StateFusion','Custom',...
 'CustomStateFusionFcn',@helperRadarLidarFusionFcn);
end

tracks = fuser(localTracks, time);
end

Homogeneous Source Configurations

In this example, you define the radar and lidar source configurations differently than in the original
“Track-Level Fusion of Radar and Lidar Data” on page 6-497 example. In the original example, the
CentralToLocalTransformFcn and LocalToCentralTransformFcn properties of the two source
configurations are different because they use different function handles. This makes the source
configurations a heterogeneous cell array. Such a definition is correct and valid when executing in
MATLAB. However, in code generation, all source configurations must use the same function handles.
To avoid the different function handles, you define one function to transform tracks from central
(fuser) definition to local (source) definition and one function to transform from local to central. Each
of these functions switches between the transform functions defined for the individual sources in the
original example. Both functions are part of the heterogeneousInputsFuser function.

Here is the code for the local2central function, which uses the SourceIndex property to
determine the correct function to use. Since the two types of local tracks transform to the same
definition of central track, there is no need to predefine the central track.

function centralTrack = local2central(localTrack)
switch localTrack.SourceIndex
 case 1 % radar
 centralTrack = radar2central(localTrack);
 otherwise % lidar
 centralTrack = lidar2central(localTrack);
end
end

The function central2local transforms the central track into a radar track if SourceIndex is 1 or
into a lidar track if SourceIndex is 2. Since the two tracks have a different definition of State,
StateCovariance, and TrackLogicState, you must first predefine the output. Here is the code
snippet for the function:

function localTrack = central2local(centralTrack)
state = 0;
stateCov = 1;
coder.varsize('state', [10, 1], [1 0]);
coder.varsize('stateCov', [10 10], [1 1]);
localTrack = objectTrack('State', state, 'StateCovariance', stateCov);

switch centralTrack.SourceIndex
 case 1
 localTrack = central2radar(centralTrack);
 case 2
 localTrack = central2lidar(centralTrack);
 otherwise
 % This branch is never reached but is necessary to force code
 % generation to use the predefined localTrack.
end
end

 Generate Code for a Track Fuser with Heterogeneous Source Tracks

6-589

The functions radar2central and central2radar are the same as in the original example but
moved from the live script to the heterogeneousInputsFuser function. You also add the
lidar2central and central2lidar functions to the heterogeneousInputsFuser function. These
two functions convert from the track definition that the fuser uses to the lidar track definition.

Run the Example in MATLAB

Before generating code, make sure that the example still runs after all the changes made to the fuser.
The file lidarRadarData.mat contains the same scenario as in the original example. It also
contains a set of radar and lidar tracks recorded at each step of that example. You also use a similar
display to visualize the example and define the same trackGOSPAMetric objects to evaluate the
tracking performance.

% Load the scenario and recorded local tracks
load('lidarRadarData.mat','scenario','localTracksCollection')
display = helperTrackFusionCodegenDisplay('FollowActorID',3);
showLegend(display,scenario);

% Radar GOSPA
gospaRadar = trackGOSPAMetric('Distance','custom',...
 'DistanceFcn',@helperRadarDistance,...
 'CutoffDistance',25);

% Lidar GOSPA
gospaLidar = trackGOSPAMetric('Distance','custom',...
 'DistanceFcn',@helperLidarDistance,...
 'CutoffDistance',25);

% Central/Fused GOSPA
gospaCentral = trackGOSPAMetric('Distance','custom',...
 'DistanceFcn',@helperLidarDistance,... % State space is same as lidar
 'CutoffDistance',25);

gospa = zeros(3,0);
missedTargets = zeros(3,0);
falseTracks = zeros(3,0);
% Ground truth for metrics. This variable updates every time step
% automatically, because it is a handle to the actors.
groundTruth = scenario.Actors(2:end);

fuserStepped = false;
fusedTracks = objectTrack.empty;
idx = 1;
clear heterogeneousInputsFuser
while advance(scenario)
 time = scenario.SimulationTime;
 localTracks = localTracksCollection{idx};

 if ~isempty(localTracks) || fuserStepped
 fusedTracks = heterogeneousInputsFuser(localTracks,time);
 fuserStepped = true;
 end

 radarTracks = localTracks([localTracks.SourceIndex]==1);
 lidarTracks = localTracks([localTracks.SourceIndex]==2);

6 Featured Examples

6-590

 % Capture GOSPA and its components for all trackers
 [gospa(1,idx),~,~,~,missedTargets(1,idx),falseTracks(1,idx)] = gospaRadar(radarTracks, groundTruth);
 [gospa(2,idx),~,~,~,missedTargets(2,idx),falseTracks(2,idx)] = gospaLidar(lidarTracks, groundTruth);
 [gospa(3,idx),~,~,~,missedTargets(3,idx),falseTracks(3,idx)] = gospaCentral(fusedTracks, groundTruth);

 % Update the display
 display(scenario,[],[], radarTracks,...
 [],[],[],[], lidarTracks, fusedTracks);

 idx = idx + 1;
end

Generate Code for the Track Fuser

To generate code, you must define the input types for both the radar and lidar tracks and the
timestamp. In both the original script and in the previous section, the radar and lidar tracks are
defined as arrays of objectTrack objects. In code generation, the entry-level function cannot use an
array of objects. Instead, you define an array of structures.

 Generate Code for a Track Fuser with Heterogeneous Source Tracks

6-591

You use the struct oneLocalTrack to define the inputs coming from radar and lidar tracks. In code
generation, the specific data types of each field in the struct must be defined exactly the same as the
types defined for the corresponding properties in the recorded tracks. Furthermore, the size of each
field must be defined correctly. You use the coder.typeof (MATLAB Coder) function to specify fields
that have variable size: State, StateCovariance, and TrackLogicState. You define the
localTracks input using the oneLocalTrack struct and the coder.typeof function, because the
number of input tracks varies from zero to eight in each step. You use the function codegen
(MATLAB Coder) to generate the code.

Notes:

1 If the input tracks use different types for the State and StateCovariance properties, you must
decide which type to use, double or single. In this example, all tracks use double precision and
there is no need for this step.

2 If the input tracks use different definitions of StateParameters, you must first create a
superset of all StateParameters and use that superset in the StateParameters field. A
similar process must be done for the ObjectAttributes field. In this example, all tracks use
the same definition of StateParameters and ObjectAttributes.

% Define the inputs to fuserHeterogeneousInputs for code generation
oneLocalTrack = struct(...
 'TrackID', uint32(0), ...
 'BranchID', uint32(0), ...
 'SourceIndex', uint32(0), ...
 'UpdateTime', double(0), ...
 'Age', uint32(0), ...
 'State', coder.typeof(1, [10 1], [1 0]), ...
 'StateCovariance', coder.typeof(1, [10 10], [1 1]), ...
 'StateParameters', struct, ...
 'ObjectClassID', double(0), ...
 'TrackLogic', 'History', ...
 'TrackLogicState', coder.typeof(false, [1 10], [0 1]), ...
 'IsConfirmed', false, ...
 'IsCoasted', false, ...
 'IsSelfReported', false, ...
 'ObjectAttributes', struct);

localTracks = coder.typeof(oneLocalTrack, [8 1], [1 0]);
fuserInputArguments = {localTracks, time};

codegen heterogeneousInputsFuser -args fuserInputArguments;

Code generation successful.

Run the Example with the Generated Code

You run the generated code like you ran the MATLAB code, but first you must reinitialize the
scenario, the GOSPA objects, and the display.

You use the toStruct object function to convert the input tracks to arrays of structures.

Notes:

1 If the input tracks use different data types for the State and StateCovariance properties,
make sure to cast the State and StateCovariance of all the tracks to the data type you chose
when you defined the oneLocalTrack structure above.

6 Featured Examples

6-592

2 If the input tracks required a superset structure for the fields StateParameters or
ObjectAttributes, make sure to populate these structures correctly before calling the mex
file.

You use the gospaCG variable to keep the GOSPA metrics for this run so that you can compare them
to the GOSPA values from the MATLAB run.

% Rerun the scenario with the generated code
fuserStepped = false;
fusedTracks = objectTrack.empty;
gospaCG = zeros(3,0);
missedTargetsCG = zeros(3,0);
falseTracksCG = zeros(3,0);

idx = 1;
clear heterogeneousInputsFuser_mex
reset(display);
reset(gospaRadar);
reset(gospaLidar);
reset(gospaCentral);
restart(scenario);
while advance(scenario)
 time = scenario.SimulationTime;
 localTracks = localTracksCollection{idx};

 if ~isempty(localTracks) || fuserStepped
 fusedTracks = heterogeneousInputsFuser_mex(toStruct(localTracks),time);
 fuserStepped = true;
 end

 radarTracks = localTracks([localTracks.SourceIndex]==1);
 lidarTracks = localTracks([localTracks.SourceIndex]==2);

 % Capture GOSPA and its components for all trackers
 [gospaCG(1,idx),~,~,~,missedTargetsCG(1,idx),falseTracksCG(1,idx)] = gospaRadar(radarTracks, groundTruth);
 [gospaCG(2,idx),~,~,~,missedTargetsCG(2,idx),falseTracksCG(2,idx)] = gospaLidar(lidarTracks, groundTruth);
 [gospaCG(3,idx),~,~,~,missedTargetsCG(3,idx),falseTracksCG(3,idx)] = gospaCentral(fusedTracks, groundTruth);

 % Update the display
 display(scenario,[],[], radarTracks,...
 [],[],[],[], lidarTracks, fusedTracks);

 idx = idx + 1;
end

 Generate Code for a Track Fuser with Heterogeneous Source Tracks

6-593

At the end of the run, you want to verify that the generated code provided the same results as the
MATLAB code. Using the GOSPA metrics you collected in both runs, you can compare the results at
the high level. Due to numerical roundoffs, there may be small differences in the results of the
generated code relative to the MATLAB code. To compare the results, you use the absolute
differences between GOSPA values and check if they are all smaller than 1e-10. The results show that
the differences are very small.

% Compare the GOSPA values from MATLAB run and generated code
areGOSPAValuesEqual = all(abs(gospa-gospaCG)<1e-10,'all');
disp("Are GOSPA values equal up to the 10th decimal (true/false)? " + string(areGOSPAValuesEqual))

Are GOSPA values equal up to the 10th decimal (true/false)? true

Summary

In this example, you learned how to generate code for a track-level fusion algorithm when the input
tracks are heterogeneous. You learned how to define the trackFuser and its

6 Featured Examples

6-594

SourceConfigurations property to support heterogeneous sources. You also learned how to define
the input in compilation time and how to pass it to the mex file in runtime.

Supporting Functions

The following functions are used by the GOSPA metric.

helperLidarDistance

Function to calculate a normalized distance between the estimate of a track in radar state-space and
the assigned ground truth.

function dist = helperLidarDistance(track, truth)

% Calculate the actual values of the states estimated by the tracker

% Center is different than origin and the trackers estimate the center
rOriginToCenter = -truth.OriginOffset(:) + [0;0;truth.Height/2];
rot = quaternion([truth.Yaw truth.Pitch truth.Roll],'eulerd','ZYX','frame');
actPos = truth.Position(:) + rotatepoint(rot,rOriginToCenter')';

% Actual speed and z-rate
actVel = [norm(truth.Velocity(1:2));truth.Velocity(3)];

% Actual yaw
actYaw = truth.Yaw;

% Actual dimensions.
actDim = [truth.Length;truth.Width;truth.Height];

% Actual yaw rate
actYawRate = truth.AngularVelocity(3);

% Calculate error in each estimate weighted by the "requirements" of the
% system. The distance specified using Mahalanobis distance in each aspect
% of the estimate, where covariance is defined by the "requirements". This
% helps to avoid skewed distances when tracks under/over report their
% uncertainty because of inaccuracies in state/measurement models.

% Positional error.
estPos = track.State([1 2 6]);
reqPosCov = 0.1*eye(3);
e = estPos - actPos;
d1 = sqrt(e'/reqPosCov*e);

% Velocity error
estVel = track.State([3 7]);
reqVelCov = 5*eye(2);
e = estVel - actVel;
d2 = sqrt(e'/reqVelCov*e);

% Yaw error
estYaw = track.State(4);
reqYawCov = 5;
e = estYaw - actYaw;
d3 = sqrt(e'/reqYawCov*e);

% Yaw-rate error

 Generate Code for a Track Fuser with Heterogeneous Source Tracks

6-595

estYawRate = track.State(5);
reqYawRateCov = 1;
e = estYawRate - actYawRate;
d4 = sqrt(e'/reqYawRateCov*e);

% Dimension error
estDim = track.State([8 9 10]);
reqDimCov = eye(3);
e = estDim - actDim;
d5 = sqrt(e'/reqDimCov*e);

% Total distance
dist = d1 + d2 + d3 + d4 + d5;
end

helperRadarDistance

Function to calculate a normalized distance between the estimate of a track in radar state-space and
the assigned ground truth.

function dist = helperRadarDistance(track, truth)
% Calculate the actual values of the states estimated by the tracker

% Center is different than origin and the trackers estimate the center
rOriginToCenter = -truth.OriginOffset(:) + [0;0;truth.Height/2];
rot = quaternion([truth.Yaw truth.Pitch truth.Roll],'eulerd','ZYX','frame');
actPos = truth.Position(:) + rotatepoint(rot,rOriginToCenter')';
actPos = actPos(1:2); % Only 2-D

% Actual speed
actVel = norm(truth.Velocity(1:2));

% Actual yaw
actYaw = truth.Yaw;

% Actual dimensions. Only 2-D for radar
actDim = [truth.Length;truth.Width];

% Actual yaw rate
actYawRate = truth.AngularVelocity(3);

% Calculate error in each estimate weighted by the "requirements" of the
% system. The distance specified using Mahalanobis distance in each aspect
% of the estimate, where covariance is defined by the "requirements". This
% helps to avoid skewed distances when tracks under/over report their
% uncertainty because of inaccuracies in state/measurement models.

% Positional error
estPos = track.State([1 2]);
reqPosCov = 0.1*eye(2);
e = estPos - actPos;
d1 = sqrt(e'/reqPosCov*e);

% Speed error
estVel = track.State(3);
reqVelCov = 5;
e = estVel - actVel;

6 Featured Examples

6-596

d2 = sqrt(e'/reqVelCov*e);

% Yaw error
estYaw = track.State(4);
reqYawCov = 5;
e = estYaw - actYaw;
d3 = sqrt(e'/reqYawCov*e);

% Yaw-rate error
estYawRate = track.State(5);
reqYawRateCov = 1;
e = estYawRate - actYawRate;
d4 = sqrt(e'/reqYawRateCov*e);

% Dimension error
estDim = track.State([6 7]);
reqDimCov = eye(2);
e = estDim - actDim;
d5 = sqrt(e'/reqDimCov*e);

% Total distance
dist = d1 + d2 + d3 + d4 + d5;

% A constant penalty for not measuring 3-D state
dist = dist + 3;
end

 Generate Code for a Track Fuser with Heterogeneous Source Tracks

6-597

Extended Object Tracking with Lidar for Airport Ground
Surveillance

An apron is a defined area at the airport intended to accommodate aircraft for purposes of loading or
unloading passengers, mail or cargo, fueling, parking or maintenance [1]. Airport aprons are usually
highly dynamic and heterogeneous environments where apron personnel and vehicles operate in
close proximity to each other. Due to such nature of the aprons, it presents a higher risk for ground
handling accidents involving aircraft as well as ground personnel. Lidar-based surveillance systems at
aprons have been proposed as an effective method to improve the situation picture and to serve as a
measure to mitigate high risk at the aprons [2].

This example shows you how to simulate Lidar data for an apron traffic scene and track ground traffic
using a GGIW-PHD (Gamma Gaussian Inverse Wishart PHD) extended object tracker.

Setup Scenario

In this example, you simulate a scenario where an aircraft is entering into the gate area. The aircraft
is guided into its parking spot by three marshallers, one on each side of the aircraft and one in front
of it. You simulate ground traffic near the parking spot of the aircraft. After the aircraft is parked, the
ground traffic as well as the marshallers start moving towards the aircraft. In addition to the aircraft
entering into the gate area, you also simulate two aircraft already parked at the gate. The scenario
used in this example was created by using the Tracking Scenario Designer and exported to a
MATLAB® function to connect it with downstream functionalities. The exported function was
modified in MATLAB to specify the Mesh property for each platform and to complete trajectories to
the scenario end time. The Mesh property of the Platform allows you to define a geometry of a
platform for lidar simulation. In this example, you specify the geometry for aircraft as
tracking.scenario.airplaneMesh. The other objects in the scene are represented using
cuboids. For more details on the how to create the scenario, refer to the createScenario function
at the end of this example.

scenario = createScenario;

To perceive the scene, you use a 360-degree field of view lidar sensor using the
monostaticLidarSensor System object™. The sensor has 64 elevation channels and is mounted at
the terminal at a height of 8 meters from the ground. The azimuth resolution of the sensor is defined
as 0.32 degrees. Under this configuration, the sensor produces a total of 72,000 points per scan. This
high resolution set of data points is commonly termed as the point cloud. The data from the sensor is
simulated at 5 Hz by specifying the UpdateRate of the sensor.

% Create a lidar sensor
lidar = monostaticLidarSensor(...
 'SensorIndex',1,...
 'UpdateRate',5,...
 'HasINS',true,...
 'AzimuthLimits',[-180 180],...
 'ElevationLimits',[-10 27],...
 'AzimuthResolution',0.32,...
 'ElevationResolution',0.5781,...
 'DetectionCoordinates','scenario',...
 'MountingLocation',[50 -15 -8],...
 'MountingAngles',[-90 0 0],...
 'MaxRange',150,...
 'RangeAccuracy',0.002);

6 Featured Examples

6-598

% Get access to terminal platform
terminal = scenario.Platforms{1};

% Mount the lidar on the platform
terminal.Sensors = lidar;

You can observe the scene and simulated lidar data from birds-eye view as well as from the roof of the
terminal in the animation below. The point cloud is denoted by colored points, where color changes
from blue to yellow with height. Notice that the lidar returns contain reflections from environment
such as the ground.

You can also observe in the animation that the lidar sensor returns multiple measurements per object.
Conventional multi-object trackers such as trackerGNN (GNN) tracker, trackerJPDA (JPDA) tracker
assumes that the each sensor reports one measurement per object. To use conventional trackers for
tracking objects using lidar, point cloud from potential objects is typically preprocessed and clustered
into new type of measurements. These new measurements typically define positional as well as
dimensional aspects of the object, for example, a bounding box measurement. For a complete
workflow on using conventional trackers with lidar data, refer to the “Track Vehicles Using Lidar:
From Point Cloud to Track List” on page 6-351 example. This workflow of segmenting lidar data and
clustering into bounding boxes is prone to clustering imperfections, when objects get too close. This
is especially true in the case of apron environments. An alternative way to track objects using lidar
data is to use extended object trackers. In contrast to conventional trackers, extended object trackers
are designed to track objects which produce more than one measurement per sensor.

 Extended Object Tracking with Lidar for Airport Ground Surveillance

6-599

Setup Extended Object Tracker and Performance Metrics

Extended Object Tracker

In this example, you use a GGIW (Gamma Gaussian Inverse Wishart) implementation of a probability
hypothesis density (PHD) tracker. This GGIW model uses three distributions to specify the target
model: A Gaussian distribution to describe the kinematics of the target's motion center such as its
position and velocity; An Inverse Wishart (IW) distribution to describe an ellipsoidal extent of the
target; A Gamma distribution to describe the expected number of measurements from the target. For
more details on the GGIW-PHD filter, refer to [3].

An extended object PHD tracker uses a partitioning algorithm to process the input measurement set.
A partitioning algorithm is responsible for specifying multiple possible segmentation hypothesis for
sensor measurements. As the number of total hypothesis for segmentation is typically very large,
approximation techniques like Distance Partitioning (see partitionDetections), Prediction
Partitioning and Expectation Maximization (EM) are used [3]. The distance-partitioning algorithm
works similar to distance-based clustering techniques with the difference that it produces multiple
possible partitions. The prediction-partitioning and EM algorithm uses predictions from the tracker
about the objects to assist the partitioning of the measurements into multiple possible clusters. This
technique to use predictions from the tracker is essential when objects are spatially close to each
other such as in an apron environment. In this example, you use a helper class
helperPartitioningAlgorithm to partition the measurements set using predictions from the
tracker. You obtain these predictions by utilizing the predictTracksToTime function of
trackerPHD.

% A handle object to pass predicted tracks into partitioning algorithm
partitioner = helperPartitioningAlgorithm;

% A function which takes detections as inputs and return partitions
partitioningFcn = @(detections)partitionDetections(partitioner,detections);

To setup a PHD tracker, you first define the configuration of the sensor using a
trackingSensorConfiguration object. You use the properties of the simulated lidar sensor to
specify properties of the configuration. You also define a function initFilter on page 6-0 , which
initializes a constant-velocity ggiwphd filter. This function wraps around initcvggiwphd and
increases the certainty in Gamma distribution and Inverse Wishart distribution of the target. It also
configures the filter to work a large number of detections by specifying the MaxNumDetections
property of ggiwphd filter.

% Sensor's field of view defined in same order as returned
% by sensor's transform function
sensorLimits = [lidar.AzimuthLimits;lidar.ElevationLimits;0 lidar.MaxRange];

% Sensor's resolution defined in same order as limits
sensorResolution = [lidar.AzimuthResolution;lidar.ElevationResolution;lidar.MaxRange];

% Parameters to transform state of the track by transform function.
trackToSensorTransform = struct('Frame','spherical',...
 'OriginPosition',lidar.MountingLocation(:),...
 'Orientation',rotmat(quaternion(lidar.MountingAngles,'eulerd','ZYX','frame'),'frame'),...
 'IsParentToChild',true,...
 'HasVelocity',false);

% A function to initiate a PHD filter by this sensor
filterInitFcn = @initFilter;

6 Featured Examples

6-600

config = trackingSensorConfiguration(1,...
 'IsValidTime',true,...% update with sensor on each step call
 'FilterInitializationFcn',filterInitFcn,...% Function to initialize a PHD filter
 'SensorTransformFcn',@cvmeas,...% Transformation function from state to az,el,r
 'SensorTransformParameters',trackToSensorTransform,...% Parameters for transform function
 'SensorLimits',sensorLimits,...
 'SensorResolution',sensorResolution,...
 'DetectionProbability',0.95... % Probability of detecting the target
);

Next, you assemble this information and create an extended object PHD tracker using the
trackerPHD System object™.

tracker = trackerPHD('SensorConfigurations',config,...
 'PartitioningFcn',partitioningFcn,...
 'AssignmentThreshold',30,...% -log-likelihood beyond which a measurment cell initializes new components
 'ConfirmationThreshold',0.9,...% Threshold to call a component as confirmed track
 'ExtractionThreshold',0.75,...% Threshold to call a component as track
 'MergingThreshold',25,...% Threshold to merge components with same Label
 'LabelingThresholds',[1.1 0.1 0.05]); % Prevents track-splitting

Metrics

Next, you set up a GOSPA metric calculator using the trackGOSPAMetric class to evaluate the
performance of the tracker. GOSPA metric aims to analyze the performance of a tracker by providing
a single cost value. A lower value of the cost represents better tracking performance. To use GOSPA
metric, a distance function is defined between a track and a truth. This distance function calculates
the cost to assign a track and truth to each other. It is also used to represent the localization or track-
level accuracy of the estimate. The distance between a track and truth in this example is defined
using a 'Custom' distance function trackTruthDistance on page 6-0 , included in the Supporting
Functions on page 6-0 below. As the GGIW-PHD tracker estimates the geometric center, the
custom distance function uses the position of the platform's geometric center to define the positional
error.

gospaObj = trackGOSPAMetric('Distance','custom','DistanceFcn',@trackTruthDistance);

You use a helper class helperAirportTrackingDisplay to visualize the ground truth, simulated
data and estimated tracks.

display = helperAirportTrackingDisplay;

Run Scenario and Tracker

Next, you run the scenario, simulate returns from the lidar sensor and process them using the
tracker. You also calculate the GOSPA metric for the tracks using the available ground truth. This
example assumes that preprocessing of lidar data to remove lidar returns from environment such as
ground and terminal is already performed. Therefore, returns from the environment are removed
using the available ground truth information from simulation about lidar returns.

% Initialize tracks
confTracks = struct.empty(0,1);

% Ground truth for metric
platforms = scenario.Platforms;
trackablePlatforms = platforms(cellfun(@(x)x.ClassID,platforms) > 0);

% Initialize metric values

 Extended Object Tracking with Lidar for Airport Ground Surveillance

6-601

gospaMetrics = zeros(0,4);

% Number of tracks recording for MATLAB vs MEX
numTrackML = zeros(0,1);

% Advance scenario
while advance(scenario)
 time = scenario.SimulationTime;

 % Call lidarDetect on terminal to simulate point cloud returns.
 [ptCloud, ~, groundTruthIdx] = lidarDetect(terminal,time);

 % Pack returns as objectDetection. Included in Supporting Functions
 detections = packAsObjectDetection(ptCloud, groundTruthIdx, time);

 % Provide predicted tracks for prediction partitioning
 if isLocked(tracker)
 predictedTracks = predictTracksToTime(tracker,'all',time);
 partitioner.PredictedTrackList = predictedTracks;
 end

 % Call tracker step using detections and time
 confTracks = tracker(detections, time);

 % Calculate OSPA metric
 truthStruct = cellfun(@(x)x.pose,trackablePlatforms);
 [~,gospa,~,loc,missT,falseT] = gospaObj(confTracks, trackablePlatforms);
 gospaMetrics(end+1,:) = [gospa loc missT falseT]; %#ok<SAGROW>

 % Update the display
 display(scenario, ptCloud, confTracks);
end

Results

Next, you evaluate the performance of each tracker using visualization as well as quantitative
metrics. In the animation below, the tracks are represented by blue squares annotated by their
identities (TrackID). The ellipsoid around the object describes the extent estimated by the GGIW-
PHD filter.

6 Featured Examples

6-602

Track Maintenance

Till the aircraft is parked, the tracker is able to track all objects, except the marshaller on the right of
the aircraft. This is because the marshaller remained undetected by the sensor at its initial position.
After the aircraft is parked, the tracker is able to react to the motion of the objects to estimate their
position as well as velocity. The tracker is able to maintain a track on all objects up to about 34
seconds. After that, the marshaller on the left gets occluded behind the aircraft jet engines and its
track is dropped by the tracker due to multiple misses. As the ground traffic approaches the aircraft,
the tracker is able to track them as separate objects and did not confuse their measurements with
one other. This was possible because the predictions of the tracker about objects assisted in
partitioning the measurement set properly.

You can also quantitatively analyze this performance of the tracker using the GOSPA metric and its
components. Notice that the false track component of the metric remains zero, which indicates that
no false tracks were confirmed. The non-zero missed target component represents the undetected
marshaller. Notice that as soon as the tracker establishes a track on that object, the component drops
down to zero. The missed target component rises to a non-zero value again, which represents the
track drop due to object occlusion.

figure;
order = ["Total GOSPA","Localization","Missed Target","False Tracks"];
for i = 1:4
 ax = subplot(2,2,i);
 plot(gospaMetrics(:,i),'LineWidth',2);
 title(order(i));

 Extended Object Tracking with Lidar for Airport Ground Surveillance

6-603

 xlabel('Time'); ylabel('Metric');
 grid on;
end

Track-level accuracy

Track-level accuracy refers to the accuracy in estimating the state of each object such as its position,
velocity and dimensions. You can observe that the that tracks lie on the ground truth of the objects.
When the object starts moving, a velocity vector is plotted, representing the direction and magnitude
the velocity. Notice that the estimated velocity is in the same direction as the object motion. The
GGIW-PHD filter assumes that the measurements from the target are distributed in the target's
estimated ellipsoidal extent. This results in the filter estimating the size of the object using
observable or non-occluded regions of the objects. Notice that the tracks on the parked ground
vehicles have an offset in their position towards the observable sides.

The track-level inaccuracies can also be quantitatively estimated using the localization component of
the GOSPA metric. The total GOSPA metric is a combined metric of all its components and hence
captures the effect of localization accuracies, missed targets, and false tracks.

Summary

In this example, you learned how to simulate lidar data for an apron scenario and process it with an
extended object GGIW-PHD tracker. You also learned how to evaluate the performance of the tracker
using the GOSPA metric and its associated components.

6 Featured Examples

6-604

Supporting Functions

packAsObjectDetection

function detections = packAsObjectDetection(ptCloud, groundTruthIdx, time)
% Get x,y,z locations from the cell array
loc = ptCloud{1}';
% Points which are nan reflect those rays which did not intersect with any
% object
nanPoints = any(isnan(loc),1);

% groundTruthIdx{1} represents the ground truth of the points. The first
% column represents PlatformID and second column represents ClassID.
% ClassID for environment is specified as 0.
envPoints = groundTruthIdx{1}(:,2) == 0;

% nanPoints or envPoints are remove
toRemove = nanPoints | envPoints';

% Keep valid return
loc = loc(:,~toRemove);

% Pack each return as objectDetection.
n = sum(~toRemove);

% Allocate memory
detections = repmat({objectDetection(time,[0;0;0],'MeasurementNoise',1e-2*eye(3))},n,1);

% Fill measurements
for i = 1:n
 detections{i}.Measurement = loc(:,i);
end

end

createScenario

function scenario = createScenario

% Create Scenario
scenario = trackingScenario;
scenario.UpdateRate = 0;

planeMesh = tracking.scenario.airplaneMesh;

% Create platforms
Terminal = platform(scenario,'ClassID',0);
Terminal.Dimensions = struct(...
 'Length', 100, ...
 'Width', 29, ...
 'Height', 20, ...
 'OriginOffset', [0 0 10]);

Aircraft = platform(scenario,'ClassID',1,'Mesh',planeMesh);
Aircraft.Dimensions = struct(...
 'Length', 39, ...
 'Width', 34, ...
 'Height', 13.4, ...

 Extended Object Tracking with Lidar for Airport Ground Surveillance

6-605

 'OriginOffset', [39/2 0 13.4/2]);
Aircraft.Signatures{1} = ...
 rcsSignature(...
 'Pattern', [20 20;20 20], ...
 'Azimuth', [-180 180], ...
 'Elevation', [-90;90], ...
 'Frequency', [0 1e+20]);

Aircraft.Trajectory = waypointTrajectory(...
 [73.2829 -80.5669 0;60.7973 -37.3337 0],...
 [0;11.25],...
 'GroundSpeed',[8;0],...
 'Course',[106.1085;106.1085],...
 'Orientation',quaternion([106.1085 0 0;106.1085 0 0],'eulerd','ZYX','frame'));

delayTrajectory(Aircraft,0.1,70);

Ground = platform(scenario,'ClassID',0);
Ground.Trajectory.Position = [0 0 0];
Ground.Dimensions = struct('Length',500,...
 'Width',500,...
 'Height',1,...
 'OriginOffset',[0 0 -0.5]);

Plane = platform(scenario,'ClassID',1,'Mesh',planeMesh);
Plane.Dimensions = struct(...
 'Length', 40, ...
 'Width', 30, ...
 'Height', 10, ...
 'OriginOffset', [0 0 5]);
Plane.Signatures{1} = ...
 rcsSignature(...
 'Pattern', [20 20;20 20], ...
 'Azimuth', [-180 180], ...
 'Elevation', [-90;90], ...
 'Frequency', [0 1e+20]);
Plane.Trajectory.Position = [-11 -50.3 0];
Plane.Trajectory.Orientation = quaternion([90 0 0], 'eulerd','zyx','frame');

Marshall = platform(scenario,'ClassID',6);
Marshall.Dimensions = struct(...
 'Length', 0.24, ...
 'Width', 0.45, ...
 'Height', 1.7, ...
 'OriginOffset', [0 0 0.85]);

s = [57.3868 -25.5244 0;59.41 -32.53 0];
s2 = [57.3868 -25.5244 0;60.5429 -36.4531 0];

Marshall.Trajectory = waypointTrajectory(...
 s2, ...
 [0;8], ...
 'Course', [-75;-75], ...
 'GroundSpeed', [0;0], ...
 'ClimbRate', [0;0], ...
 'Orientation', quaternion([0.793353340291235 0 0 -0.608761429008721;0.793353340291235 0 0 -0.608761429008721]));

delayTrajectory(Marshall, 12, 70);

6 Featured Examples

6-606

Marshall1 = platform(scenario,'ClassID',6);
Marshall1.Dimensions = struct(...
 'Length', 0.24, ...
 'Width', 0.45, ...
 'Height', 1.7, ...
 'OriginOffset', [0 0 0.85]);
Marshall1.Trajectory = waypointTrajectory(...
 [50 -100 0;56.5 -89.3 0;56.8 -73.6 0;60.9 -59.5 0], ...
 [0;6.28880678506828;14.2336975651715;38.5523666710762], ...
 'Course', [52.5692412453125;71.0447132029417;101.247131543705;107.567935050594], ...
 'GroundSpeed', [2;2;2;0], ...
 'ClimbRate', [0;0;0;0], ...
 'Orientation', quaternion([0.896605327597113 0 0 0.442830539286162;0.813888868238491 0 0 0.581020576363237;0.634412633965184 0 0 0.772994572985708;0.590831447702589 0 0 0.806795017588522]));
delayTrajectory(Marshall1, 12, 70);

Marshall2 = platform(scenario,'ClassID',6);
Marshall2.Dimensions = struct(...
 'Length', 0.24, ...
 'Width', 0.45, ...
 'Height', 1.7, ...
 'OriginOffset', [0 0 0.85]);
Marshall2.Trajectory = waypointTrajectory(...
 [135.1 -87.7 0;118.3 -87.7 0;112.2 -73.3 0;80.8 -47.6 0], ...
 [0;10.3490919743252;18.1872070129823;42], ...
 'Course', [155.957629971433;124.12848387907;114.734795167842;153.606988602699], ...
 'GroundSpeed', [2;2;2;0], ...
 'ClimbRate', [0;0;0;0], ...
 'Orientation', quaternion([0.896605327597113 0 0 0.442830539286162;0.813888868238491 0 0 0.581020576363237;0.634412633965184 0 0 0.772994572985708;0.590831447702589 0 0 0.806795017588522]));
delayTrajectory(Marshall2, 12, 70);

Loader = platform(scenario,'ClassID',2);
Loader.Dimensions = struct(...
 'Length', 10, ...
 'Width', 4, ...
 'Height', 4, ...
 'OriginOffset', [0 0 2]);
Loader.Trajectory = waypointTrajectory(...
 [25.2 -42.2 0;39.4500 -42.3000 0;53.7 -42.4 0], ...
 [0;5;10], ...
 'Course',[-0.4021;-0.4021;-0.4021],...
 'Orientation',[quaternion([-0.4021 0 0],'eulerd','ZYX','frame');quaternion([-0.4021 0 0],'eulerd','ZYX','frame');quaternion([-0.4021 0 0],'eulerd','ZYX','frame')],...
 'GroundSpeed',[0;5.8;0],...
 'ClimbRate',[0;0;0],...
 'AutoPitch', false, ...
 'AutoBank', false);
delayTrajectory(Loader, 12, 70);

Loader2 = platform(scenario,'ClassID',2);
Loader2.Dimensions = struct(...
 'Length', 10, ...
 'Width', 4, ...
 'Height', 4, ...
 'OriginOffset', [0 0 2]);
Loader2.Trajectory = waypointTrajectory(...
 [27.142823040363762 -75 0;42.5614 -71.9000 0;57.98 -68.8 0], ...
 [0;5;10], ...
 'Course', [11.368107148451321;11.368107148451321;11.368107148451321], ...

 Extended Object Tracking with Lidar for Airport Ground Surveillance

6-607

 'Orientation',quaternion([11.368107148451321 0 0;11.368107148451321 0 0;11.368107148451321 0 0],'eulerd','ZYX','frame'),...
 'GroundSpeed', [0;5.824096001626275;0], ...
 'ClimbRate', [0;0;0], ...
 'AutoPitch', false, ...
 'AutoBank', false);
delayTrajectory(Loader2, 50, 70);

Power = platform(scenario,'ClassID',2);
Power.Dimensions = struct(...
 'Length', 5, ...
 'Width', 2, ...
 'Height', 1, ...
 'OriginOffset', [0 0 0.5]);
Power.Trajectory = waypointTrajectory(...
 [27.2312963703295 -20.7687036296705 0;40.1656 -27.6344 0;53.1 -34.5 0], ...
 [0;5;10], ...
 'Course', [-27.9596882700088;-27.9596882700088;-27.9596882700088], ...
 'Orientation',[quaternion([-27.9596882700088 0 0],'eulerd','ZYX','frame');quaternion([-27.9596882700088 0 0],'eulerd','ZYX','frame');quaternion([-27.9596882700088 0 0],'eulerd','ZYX','frame')],...
 'GroundSpeed', [0;5.8574;0], ...
 'ClimbRate', [0;0;0], ...
 'AutoPitch', false, ...
 'AutoBank', false);
delayTrajectory(Power, 20, 70);

Refueller = platform(scenario,'ClassID',2);
Refueller.Dimensions = struct(...
 'Length', 7, ...
 'Width', 3, ...
 'Height', 2, ...
 'OriginOffset', [0 0 1]);
Refueller.Trajectory = waypointTrajectory(...
 [92.3 -31.6 0;83.3 -36.7 0;74.3 -41.8 0], ...
 [0;5;10], ...
 'Course', [-150.4612;-150.4612;-150.4612], ...
 'Orientation',[quaternion([-150.4612 0 0],'eulerd','ZYX','frame');quaternion([-150.4612 0 0],'eulerd','ZYX','frame');quaternion([-150.4612 0 0],'eulerd','ZYX','frame')],...
 'GroundSpeed', [0;4.137825515896000;0], ...
 'ClimbRate', [0;0;0], ...
 'AutoPitch', false, ...
 'AutoBank', false);
delayTrajectory(Refueller, 20, 70);

Car = platform(scenario,'ClassID',2);
Car.Dimensions = struct(...
 'Length', 4.7, ...
 'Width', 1.8, ...
 'Height', 1.4, ...
 'OriginOffset', [0 0 0.7]);
Car.Trajectory = waypointTrajectory(...
 [111.1 -44.8 0;93.8100 -48.1725 0;76.5200 -51.5450 0], ...
 [0;7.046336423986581;14.092672847973162], ...
 'Course', [-169.250904745059;-169.250904745059;-169.250904745059], ...
 'Orientation',[quaternion([-169.250904745059 0 0],'eulerd','ZYX','frame');quaternion([-169.250904745059 0 0],'eulerd','ZYX','frame');quaternion([-169.250904745059 0 0],'eulerd','ZYX','frame')],...
 'GroundSpeed', [0;5;0], ...
 'ClimbRate', [0;0;0], ...
 'AutoPitch', false, ...
 'AutoBank', false);
delayTrajectory(Car, 20, 70);

6 Featured Examples

6-608

Plane1 = platform(scenario,'ClassID',1,'Mesh',planeMesh);
Plane1.Dimensions = struct(...
 'Length', 40, ...
 'Width', 30, ...
 'Height', 10, ...
 'OriginOffset', [0 0 5]);
Plane1.Signatures{1} = ...
 rcsSignature(...
 'Pattern', [20 20;20 20], ...
 'Azimuth', [-180 180], ...
 'Elevation', [-90;90], ...
 'Frequency', [0 1e+20]);
Plane1.Trajectory.Position = [110 0 0];
Plane1.Trajectory.Orientation = quaternion([180 0 0], 'eulerd','zyx','frame');

 function delayTrajectory(plat, tOffset, tEnd)
 traj = plat.Trajectory;
 wp = traj.Waypoints;
 toa = traj.TimeOfArrival;
 g = traj.GroundSpeed;
 c = traj.Course;
 cr = traj.ClimbRate;
 o = traj.Orientation;

 tEnd = max(toa(end),tEnd);

 wp = [repmat(wp(1,:),1,1);wp;repmat(wp(end,:),1,1)];
 toa = [0;toa + tOffset;tEnd];
 g = [0;g;0];
 c = [c(1);c;c(end)];
 cr = [0;cr;0];

 o = [repmat(o(1),1,1);o;repmat(o(end),1,1)];

 newTraj = waypointTrajectory(wp,toa,...;
 'Course',c,...
 'GroundSpeed',g,...
 'ClimbRate',cr,...
 'Orientation',o);
 plat.Trajectory = newTraj;
 end
end

initFilter

function filter = initFilter (varargin)
% This function interacts with the tracker in two signatures
% filter = initFilter() is called during prediction stages to add
% components to PHD.
%
% filter = initFilter(detections) is called during correction stages to add
% components to the PHD from detection sets which have a low-likelihood
% against existing tracks. All detections in the input have the assumption
% to belong to the same target.

% Adds zero components during prediction stages
filter = initcvggiwphd(varargin{:});

 Extended Object Tracking with Lidar for Airport Ground Surveillance

6-609

% If called with a detection
if nargin == 1
 % Get expected size
 expSize = filter.ScaleMatrices/(filter.DegreesOfFreedom - 4);

 % Higher the dof, higher the certainty in dimensions
 dof = 50;
 filter.DegreesOfFreedom = dof;
 filter.ScaleMatrices = (dof-4)*expSize;

 % Get expected number of detections
 expNumDets = filter.Shapes/filter.Rates;

 % shape/rate^2 = uncertainty;
 uncertainty = (expNumDets/4)^2;
 filter.Shapes = expNumDets^2/uncertainty;
 filter.Rates = expNumDets/uncertainty;
end

% GammaForgettingFactors acts like process noise
% for measurement rate
filter.GammaForgettingFactors(:) = 1.03;

% Temporal Decay acts like process noise for
% dimensions. Lower the decay, higher the variance increase
filter.TemporalDecay = 500;

% Specify MaxNumDetections
filter.MaxNumDetections = 10000;

end

trackTruthDistance

function dist = trackTruthDistance(track, truth)
% The tracks estimate the center of the object. Compute the origin position
rOriginToCenter = -truth{1}.Dimensions.OriginOffset(:);
rot = quaternion([truth{1}.Orientation],'eulerd','ZYX','frame');
actPos = truth{1}.Position(:) + rotatepoint(rot,rOriginToCenter')';

% Estimated track position
estPos = track.State(1:2:end);

% Error distance is between position.
dist = norm(actPos(:) - estPos);
end

References

[1] Weber, Ludwig. International Civil Aviation Organization. Kluwer Law International BV, 2017.

[2] Mund, Johannes, Lothar Meyer, and Hartmut Fricke. "LiDAR Performance Requirements and
Optimized Sensor Positioning for Point Cloud-based Risk Mitigation at Airport Aprons." Proceedings
of the 6th International Conference on Research in Air Transportation. 2014.

[3] Granström, Karl, et al. "On extended target tracking using PHD filters." (2012).

6 Featured Examples

6-610

Track Multiple Lane Boundaries with a Global Nearest Neighbor
Tracker

This example shows how to design and test a multiple lane tracking algorithm. The algorithm is
tested in a driving scenario with probabilistic lane detections.

Introduction

An automated lane change maneuver (LCM) system enables the ego vehicle to automatically move
from one lane to another lane. To successfully change lanes, the system requires localization of the
ego vehicle with respect to stationary features, such as lane markings. A lane detection algorithm
typically provides offset and curvature information about the current and adjacent lane boundaries.
During the lane change, a discontinuity in the lateral offset is introduced into the lane detections,
because the lateral offset is always with respect to the current lane in which the vehicle is traveling.
The discontinuity and the jump in offset values may cause the LCM system to become unstable. One
technique to compensate for this discontinuity issue is to use a multi-lane tracker.

Detect Lanes in a Lane Change Scenario

You load a drivingScenario (Automated Driving Toolbox) object, scenario, that contains an ego
vehicle and its sensors from the LaneTrackingScenario.mat file. You use a
visionDetectionGenerator (Automated Driving Toolbox) object to detect lanes in the scenario.

load('LaneTrackingScenario.mat','scenario','egoVehicle','sensors');
laneDetector = sensors{1};

To visualize the scenario in a Driving Scenario Designer, use:

drivingScenarioDesigner(scenario)

In this scenario, the ego vehicle is driving along a curved road with multiple lanes. The ego vehicle is
equipped with a lane detector that detects lane boundaries and reports two lane boundaries on each
side of the ego vehicle. To pass a slower moving vehicle traveling in the ego lane, the ego vehicle
changes lanes from its original lane to the one on its left. The measurement reported by the lane
detector contains the offset, the heading, and the curvature of the lane.

The following block of code runs the scenario and display the results of the lane detections.

% Setup plotting area
egoCarBEP = createDisplay(scenario,egoVehicle);

% Setup data logs
timeHistory = 0:scenario.SampleTime:(scenario.StopTime-scenario.SampleTime);
laneDetectionOffsetHistory = NaN(5,length(timeHistory));
timeStep = 1;
restart(scenario)
running = true;
while running
 % Simulation time
 simTime = scenario.SimulationTime;

 % Get the ground truth lane boundaries in the ego vehicle frame
 groundTruthLanes = laneBoundaries(egoVehicle,'XDistance',0:5:70,'AllBoundaries',true);
 [egoBoundaries,egoBoundaryExist] = findEgoBoundaries(groundTruthLanes); %% ego lane and adjacent lanes ground truth
 laneBoundaryDetections = laneDetector(egoBoundaries(egoBoundaryExist),simTime); %% ego lane and adjacent lanes detections

 Track Multiple Lane Boundaries with a Global Nearest Neighbor Tracker

6-611

 laneObjectDetections = packLanesAsObjectDetections(laneBoundaryDetections); %% convert lane boundary to object detections

 % Log lane detections
 for laneIDX = 1:length(laneObjectDetections)
 laneDetectionOffsetHistory(laneIDX,timeStep) = laneObjectDetections{laneIDX}.Measurement(1);
 end

 % Visualization road and lane ground truth in ego frame
 updateDisplay(egoCarBEP,egoVehicle,egoBoundaries);

 % Advance to the next step
 timeStep = timeStep + 1;
 running = advance(scenario);
end

Since the lane detector always reports the two lane markings on each side of the ego vehicle, the lane
change causes it to report discontinuous lane markings. You can observe it in the graph below.

f=figure;
plot(timeHistory,laneDetectionOffsetHistory(1:4,:),'LineWidth',2)
xlabel('Time (s)')
ylabel('Lane detections lateral offset (m)')
legend('Adjacent left', 'Left', 'Right', 'Adjacent Right','Orientation','horizontal','Location','northoutside')
grid
p = snapnow;

close(f)

Define a Multi-Lane Tracker and Track Lanes

Define a multi-lane tracker using the trackerGNN object. To delete undetected lane boundaries
quickly, set the tracker to delete tracked lanes after three misses in three updates. Also set the
maximum number of tracks to 10.

Use the singer acceleration model to model the way lane boundaries change over time. The Singer
acceleration model enables you to model accelerations that decay with time, and you can set the
decay rate using the decay constant tau. You use the initSingerLane on page 6-0 function
modified from the initsingerekf function by setting the decay constant tau to 1, because the lane
change maneuver time is relatively short. The function is attached at the end of the script. Note that
the three dimensions defined for the Singer acceleration state are the offset, the heading, and the
curvature of the lane boundary, which are the same as those reported in the lane detection.

laneTracker = trackerGNN('FilterInitializationFcn', @initSingerLane, 'DeletionThreshold', [3 3], 'MaxNumTracks',10);

Rerun the scenario to track the lane boundaries.

laneTrackOffsetHistory = NaN(5,length(timeHistory));
timeStep = 1;
restart(scenario)
restart(egoVehicle);
reset(laneDetector);
running = true;
while running
 % Simulation time
 simTime = scenario.SimulationTime;

 % Get the ground truth lane boundaries in the ego vehicle frame
 groundTruthLanes = laneBoundaries(egoVehicle,'XDistance',0:5:70,'AllBoundaries',true);

6 Featured Examples

6-612

 [egoBoundaries,egoBoundaryExist] = findEgoBoundaries(groundTruthLanes); %% ego lane and adjacent lanes ground truth
 laneBoundaryDetections = laneDetector(egoBoundaries(egoBoundaryExist),simTime); %% ego lane and adjacent lanes detections
 laneObjectDetections = packLanesAsObjectDetections(laneBoundaryDetections); %% convert lane boundary to object detections

 % Track the lanes
 laneTracks = laneTracker(laneObjectDetections,simTime);

 % Log data
 timeHistory(timeStep) = simTime;
 for laneIDX = 1:length(laneTracks)
 laneTrackOffsetHistory(laneTracks(laneIDX).TrackID,timeStep) = laneTracks(laneIDX).State(1);
 end

 % Visualization road and lane ground truth in ego frame
 updateDisplay(egoCarBEP,egoVehicle,egoBoundaries);

 % Advance to the next step
 timeStep = timeStep + 1;
 running = advance(scenario);
end

Plot the lateral offset of the tracked lane boundaries. Observe that the tracked lane boundaries are
continuous and do not break when the ego vehicle performs the lane change maneuver.

figure
plot(timeHistory,laneTrackOffsetHistory(:,:),'LineWidth',2)
xlabel('Time (s)')

 Track Multiple Lane Boundaries with a Global Nearest Neighbor Tracker

6-613

6 Featured Examples

6-614

 Track Multiple Lane Boundaries with a Global Nearest Neighbor Tracker

6-615

ylabel('Lane tracks lateral offset (m)')
legend('Lane1', 'Lane2', 'Lane3', 'Lane4', 'Lane5', 'Orientation','horizontal','Location','northoutside')
grid

Summary

In this example, you learned how to track multiple lanes. Without tracking the lanes, the lane
detector reports discontinuous lane offsets relative to the ego vehicle when the ego vehicle changes
lanes. The discontinuity in lane offsets can cause significant performance degradation of a closed-loop
automated lane change system. You used a tracker to track the lanes and observed that the lane
boundary offsets are continuous and can provide a stable input to the lane change system.

Supporting functions

createDisplay Create the display for this example

function egoCarBEP = createDisplay(scenario,egoVehicle)
hFigure = figure;
hPanel1 = uipanel(hFigure,'Units','Normalized','Position',[0 1/4 1/2 3/4],'Title','Scenario Plot');
hPanel2 = uipanel(hFigure,'Units','Normalized','Position',[0 0 1/2 1/4],'Title','Chase Plot');
hPanel3 = uipanel(hFigure,'Units','Normalized','Position',[1/2 0 1/2 1],'Title','Bird''s-Eye Plot');
hAxes1 = axes('Parent',hPanel1);
hAxes2 = axes('Parent',hPanel2);
hAxes3 = axes('Parent',hPanel3);
legend(hAxes3,'AutoUpdate','off')
scenario.plot('Parent',hAxes1) % plot is a method of drivingScenario Class
chasePlot(egoVehicle,'Parent',hAxes2); % chase plot following the egoVehicle

6 Featured Examples

6-616

egoCarBEP = birdsEyePlot('Parent',hAxes3,'XLimits',[-10 70],'YLimits',[-40 40]);
% Set up plotting type
outlinePlotter(egoCarBEP,'Tag','Platforms');
laneBoundaryPlotter(egoCarBEP,'Tag','Roads');
laneBoundaryPlotter(egoCarBEP,'Color','r','LineStyle','-','Tag','Left1');
laneBoundaryPlotter(egoCarBEP,'Color','g','LineStyle','-','Tag','Right1');
laneBoundaryPlotter(egoCarBEP,'Color','r','LineStyle','-','Tag','Left2');
laneBoundaryPlotter(egoCarBEP,'Color','g','LineStyle','-','Tag','Right2');
laneMarkingPlotter(egoCarBEP,'DisplayName','Lane markings','Tag','LaneMarkings');
coverageAreaPlotter(egoCarBEP,'DisplayName','Vision coverage','FaceAlpha',0.1,'FaceColor','b','EdgeColor','b','Tag','Vision');
end

updateDisplay Update the display for this example

function updateDisplay(egoCarBEP,egoVehicle,LaneBdryIn)
[position,yaw,leng,width,originOffset,color] = targetOutlines(egoVehicle);
outlineplotter = findPlotter(egoCarBEP,'Tag','Platforms');
plotOutline(outlineplotter, position, yaw, leng, width, ...
 'OriginOffset',originOffset,'Color',color)
rbdry = egoVehicle.roadBoundaries;
roadPlotter = findPlotter(egoCarBEP,'Tag','Roads');
roadPlotter.plotLaneBoundary(rbdry)
lbllPlotter = findPlotter(egoCarBEP,'Tag','Left2');
plotLaneBoundary(lbllPlotter,{LaneBdryIn(1).Coordinates})
lblPlotter = findPlotter(egoCarBEP,'Tag','Left1');
plotLaneBoundary(lblPlotter,{LaneBdryIn(2).Coordinates})
lbrPlotter = findPlotter(egoCarBEP,'Tag','Right1');
plotLaneBoundary(lbrPlotter,{LaneBdryIn(3).Coordinates})
lbrrPlotter = findPlotter(egoCarBEP,'Tag','Right2');
plotLaneBoundary(lbrrPlotter,{LaneBdryIn(4).Coordinates})
end

findEgoBoundaries Return the two nearest lane boundaries on each side of the ego vehicle

function [egoBoundaries,egoBoundaryExist] = findEgoBoundaries(groundTruthLanes)
%findEgoBoundaries Find the two adjacent lane boundaries on each side of the ego
% [egoBoundaries,egoBoundaryExist] = findEgoBoundaries(groundTruthLanes)
% egoBoundaries - A 4x1 struct of lane boundaries ordered as: adjacent
% left, left, right, and adjacent right
egoBoundaries = groundTruthLanes(1:4);
lateralOffsets = [groundTruthLanes.LateralOffset];
[sortedOffsets, inds] = sort(lateralOffsets);
egoBoundaryExist = [true;true;true;true];

% Left lane and left adjacent lane
idxLeft = find(sortedOffsets>0,2,'first');
numLeft = length(idxLeft);
egoBoundaries(2) = groundTruthLanes(inds(idxLeft(1)));
if numLeft>1
 egoBoundaries(1) = groundTruthLanes(inds(idxLeft(2)));
else % if left adjacent lane does not exist
 egoBoundaries(1) = egoBoundaries(2);
 egoBoundaryExist(1) = false;
end

% Right lane and right adjacent lane
idxRight = find(sortedOffsets<0,2,'last');
numRight = length(idxRight);

 Track Multiple Lane Boundaries with a Global Nearest Neighbor Tracker

6-617

egoBoundaries(3) = groundTruthLanes(inds(idxRight(end)));
if numRight>1
 egoBoundaries(4) = groundTruthLanes(inds(idxRight(1)));
else % if right adjacent lane does not exist
 egoBoundaries(4) = egoBoundaries(3);
 egoBoundaryExist(4) = false;
end
end

packLanesAsObjectDetections Return lane boundary detections as a cell array of
objectDetection objects

function laneObjectDetections = packLanesAsObjectDetections(laneBoundaryDetections)
%packLanesAsObjectDetections Packs lane detections as a cell array of objectDetection
laneStrengths = [laneBoundaryDetections.LaneBoundaries.Strength];
IdxValid = find(laneStrengths>0);
numLaneDetections = length(IdxValid);
meas = zeros(3,1);
measurementParameters = struct(...
 'Frame', 'rectangular', ...
 'OriginPosition', [0 0 0]', ...
 'Orientation', eye(3,3), ...
 'HasVelocity', false, ...
 'HasElevation', false);

detection = objectDetection(laneBoundaryDetections.Time,meas, ...
 'MeasurementNoise', eye(3,3)/10, ...
 'SensorIndex', laneBoundaryDetections.SensorIndex, ...
 'MeasurementParameters' ,measurementParameters);
laneObjectDetections = repmat({detection},numLaneDetections,1);
for i = 1:numLaneDetections
 meas = [laneBoundaryDetections.LaneBoundaries(IdxValid(i)).LateralOffset ...
 laneBoundaryDetections.LaneBoundaries(IdxValid(i)).HeadingAngle/180*pi ...
 laneBoundaryDetections.LaneBoundaries(IdxValid(i)).Curvature/180*pi];
 laneObjectDetections{i}.Measurement = meas;
end
end

initSingerLane Define the Singer motion model for the lane boundary filter

function filter = initSingerLane(detection)
filter = initsingerekf(detection);
tau = 1;
filter.StateTransitionFcn = @(state,dt)singer(state,dt,tau);
filter.StateTransitionJacobianFcn = @(state,dt)singerjac(state,dt,tau);
filter.ProcessNoise = singerProcessNoise(zeros(9,1),1,tau,1);
end

6 Featured Examples

6-618

Grid-Based Tracking in Urban Environments Using Multiple
Lidars

This example shows how to track moving objects with multiple lidars using a grid-based tracker. A
grid-based tracker enables early fusion of data from high-resolution sensors such as radars and lidars
to create a global object list.

Introduction

Most multi-object tracking approaches represent the environment as a set of discrete and unknown
number of objects. The job of the tracker is to estimate the number of objects and their
corresponding states, such as position, velocity, and dimensions, using the sensor measurements.
With high-resolution sensors such as radar or lidar, the tracking algorithm can be configured using
point-object trackers or extended object trackers.

Point-Object Trackers

Point-object trackers assume that each object may give rise to at most one detection per sensor.
Therefore, when using point-target trackers for tracking extended objects, features like bounding box
detections are first extracted from the sensor measurements at the object-level. These object-level
features then get fused with object-level hypothesis from the tracker. A poor object-level extraction
algorithm at the sensor level (such as imperfect clustering) thus greatly impacts the performance of
the tracker. For an example of this workflow, refer to “Track Vehicles Using Lidar: From Point Cloud
to Track List” (Automated Driving Toolbox).

Extended Object Trackers

On the other hand, extended object trackers process the detections without extracting object-level
hypothesis at the sensor level. Extended object trackers associate sensor measurements directly with
the object-level hypothesis maintained by tracker. To do this, a class of algorithms typically requires
complex measurement models of the object extents specific to each sensor modality. For example,
refer to “Extended Object Tracking with Lidar for Airport Ground Surveillance” on page 6-598 and
“Extended Object Tracking of Highway Vehicles with Radar and Camera” (Automated Driving
Toolbox) to learn how to configure a multi-object PHD tracker for lidar and radar respectively.

A grid-based tracker can be considered as a type of extended object tracking algorithm which uses a
dynamic occupancy grid map as an intermediate representation of the environment. In a dynamic
occupancy grid map, the environment is discretized using a set of 2-D grid cells. The dynamic map
represents the occupancy as well as kinematics of the space represented by a grid cell. Using the
dynamic map estimate and further classification of cells as static and dynamic serves as a
preprocessing step to filter out measurements from static objects and to reduce the computational
complexity.

In this example, you use the trackerGridRFS System object™ to configure the grid-based tracker.
This tracker uses the Random Finite Set (RFS) formulation with Dempster-Shafer approximation [1]
to estimate the dynamic map. Further, it uses a nearest neighbor cell-to-track association [2] scheme
to track dynamic objects in the scene. To initialize new tracks, the tracker uses the DBSCAN
algorithm to cluster unassigned dynamic grid cells.

Set Up Scenario and Lidar Sensor Models

The scenario used in this example was created using the Driving Scenario Designer (Automated
Driving Toolbox) app and was exported to a MATLAB® function. This MATLAB function was wrapped

 Grid-Based Tracking in Urban Environments Using Multiple Lidars

6-619

as a helper function helperCreateMultiLidarDrivingScenario. The scenario represents an
urban intersection scene and contains a variety of objects that include pedestrians, bicyclists, cars,
and trucks.

The ego vehicle is equipped with 6 homogeneous lidars, each with a horizontal field of view of 90
degrees and a vertical field of view of 40 degrees. The lidars are simulated using the
lidarPointCloudGenerator (Automated Driving Toolbox) System object. Each lidar has 32
elevation channels and has a resolution of 0.16 degrees in azimuth. Under this configuration, each
lidar sensor outputs approximately 18,000 points per scan. The configuration of each sensor is shown
here.

% For reproducible results
rng(2020);

% Create scenario
[scenario, egoVehicle, lidars] = helperCreateMultiLidarDrivingScenario;

6 Featured Examples

6-620

The scenario and the data from the different lidars can be visualized in the animation below. For
brevity and to make the example easier to visualize, the lidar is configured to not return point cloud
from the ground by specifying the HasRoadsInputPort property as false. When using real data or
if using simulated data from roads, the returns from ground and other environment must be removed
using point cloud preprocessing. For more information, refer to the “Ground Plane and Obstacle
Detection Using Lidar” (Automated Driving Toolbox) example.

Set Up Grid-Based Tracker

You define a grid-based tracker using trackerGridRFS to track dynamic objects in the scene. The
first step of defining the tracker is setting up sensor configurations as
trackingSensorConfiguration objects. The sensor configurations allow you to specify the
mounting of each sensor with respect to the tracking coordinate frame. The sensor configurations
also allow you to specify the detection limits - field of view and maximum range - of each sensor. In
this example, you use the properties of the simulated lidar sensors to define these properties.

The utility function helperGetLidarConfig on page 6-0 uses the simulated lidar sensor model and
returns its respective configuration. In this example, the targets are tracked in the global or world
coordinate system by using the simulated pose of the vehicle. This information is typically obtained
via an inertial navigation system. As the sensors move in the scenario system, their configuration
must be updated each time by specifying the configurations as an input to the tracker.

% Store configurations of all sensor
sensorConfigs = cell(numel(lidars),1);

 Grid-Based Tracking in Urban Environments Using Multiple Lidars

6-621

% Fill in sensor configurations
for i = 1:numel(sensorConfigs)
 sensorConfigs{i} = helperGetLidarConfig(lidars{i},egoVehicle);
end

% Create tracker. You can define the properties before using the tracker.
tracker = trackerGridRFS('SensorConfigurations',sensorConfigs,...
 'HasSensorConfigurationsInput',true);

The tracker uses a two-dimensional grid for the intermediate representation of the environment. The
grid is defined by 3 attributes: its length, its width, and the resolution. The length and width describe
the span of the grid in local X and local Y direction of the ego vehicle respectively. The resolution
defines the number of cells per meter of the grid. In this example, you use a 120 m by 120 m grid
with 2 cells per meter.

tracker.GridLength = 120; % meters
tracker.GridWidth = 120; % meters
tracker.GridResolution = 2; % 1/meters

In addition to defining the grid, you also define the relative position of the ego vehicle by specifying
the origin of the grid (left corner) with respect to the origin of the ego vehicle. In this example, the
ego vehicle is located at the center of the grid.

tracker.GridOriginInLocal = [-tracker.GridLength/2 -tracker.GridWidth/2];

The tracker uses particle-based methods to estimate the state of each grid cell and further classify
them as dynamic or static. It uses a fixed number of persistent particles on the grid which defines the
distribution of existing targets. It also uses a fixed number of particles to sample the distribution for
newborn targets. These birth particles get sampled in different grid cells based on the probability of
birth. Further, the velocity and other unknown states like turn-rate and acceleration (applicable when
MotionModel of the tracker is not constant-velocity) of the particles is sampled uniformly using
prior information supplied using prior limits. A resampling step assures that the number of particles
on the grid remain constant.

tracker.NumParticles = 1e5; % Number of persistent particles
tracker.NumBirthParticles = 2e4; % Number of birth particles
tracker.VelocityLimits = [-15 15;-15 15]; % To sample velocity of birth particles (m/s)
tracker.BirthProbability = 0.025; % Probability of birth in each grid cell
tracker.ProcessNoise = 5*eye(2); % Process noise of particles for prediction as variance of [ax;ay] (m/s^2)

The tracker uses the Dempster-Shafer approach to define the occupancy of each cell. The dynamic
grid estimates the belief mass for occupancy and free state of the grid. During prediction, the
occupancy belief mass of the grid cell updates due to prediction of the particle distribution. The
DeathRate controls the probability of survival (Ps) of particles and results in a decay of occupancy
belief mass during prediction. As the free belief mass is not linked to the particles, the free belief
mass decays using a pre-specified, constant discount factor. This discount factor specifies the
probability that free regions remain free during prediction.

tracker.DeathRate = 1e-3; % Per unit time. Translates to Ps = 0.9999 for 10 Hz
tracker.FreeSpaceDiscountFactor = 1e-2; % Per unit time. Translates to a discount factor of 0.63 (1e-2^dT) for 10 Hz

After estimation of state of each grid cell, the tracker classifies each grid cell as static or dynamic by
using its estimated velocity and associated uncertainty. Further, the tracker uses dynamic cells to
extract object-level hypothesis using the following technique:

Each dynamic grid cell is considered for assignment with existing tracks. A dynamic grid cell is
assigned to its nearest track if the negative log-likelihood between a grid cell and a track falls below

6 Featured Examples

6-622

an assignment threshold. A dynamic grid cell outside the assignment threshold is considered
unassigned. The tracker uses unassigned grid cells at each step to initiate new tracks. Because
multiple unassigned grid cells can belong to the same object track, a DBSCAN clustering algorithm is
used to assist in this step. Because there are false positives while classifying the cells as static or
dynamic, the tracker filters those false alarms in two ways. First, only unassigned cells which form
clusters with more than a specified number of points (MinNumPointsPerCluster) can create new
tracks. Second, each track is initialized as a tentative track first and is only confirmed if it is detected
M out of N times.

tracker.AssignmentThreshold = 8; % Maximum distance or negative log-likelihood between cell and track
tracker.MinNumCellsPerCluster = 6; % Minimum number of grid cells per cluster for creating new tracks
tracker.ClusteringThreshold = 1; % Minimum Euclidean distance between two cells for clustering
tracker.ConfirmationThreshold = [3 4]; % Threshold to confirm tracks
tracker.DeletionThreshold = [4 4]; % Threshold to delete confirmed tracks

You can also accelerate simulation by performing the dynamic map estimation on GPU by specifying
the UseGPU property of the tracker.

tracker.UseGPU = false;

Visualization

The visualization used for this example is defined using a helper class,
helperGridTrackingDisplay, attached with this example. The visualization contains three parts.

• Ground truth - Front View: This panel shows the front-view of the ground truth using a chase plot
from the ego vehicle. To emphasize dynamic actors in the scene, the static objects are shown in
gray.

• Lidar Views: These panels show the point cloud returns from each sensor.
• Grid-based tracker: This panel shows the grid-based tracker outputs. The tracks are shown as

boxes, each annotated by their identity. The tracks are overlaid on the dynamic grid map. The
colors of the dynamic grid cells are defined according to the color wheel, which represents the
direction of motion in the scenario frame. The static grid cells are represented using a grayscale
according to their occupancy. The degree of grayness denotes the probability of the space
occupied by the grid cell as free. The positions of the tracks are shown in the ego vehicle
coordinate system, while the velocity vector corresponds to the velocity of the track in the
scenario frame.

display = helperGridTrackingDisplay;

Run Scenario and Track Dynamic Objects

Next, run the scenario, simulate lidar sensor data from each lidar sensor, and process the data using
the grid-based tracker.

% Initialize pointCloud ouputs from each sensor
ptClouds = cell(numel(lidars),1);
sensorConfigs = cell(numel(lidars),1);

while advance(scenario)
 % Current simulation time
 time = scenario.SimulationTime;

 % Poses of objects with respect to ego vehicle
 tgtPoses = targetPoses(egoVehicle);

 Grid-Based Tracking in Urban Environments Using Multiple Lidars

6-623

 % Simulate point cloud from each sensor
 for i = 1:numel(lidars)
 [ptClouds{i}, isValidTime] = step(lidars{i},tgtPoses,time);
 sensorConfigs{i} = helperGetLidarConfig(lidars{i},egoVehicle);
 end

 % Pack point clouds as sensor data format required by the tracker
 sensorData = packAsSensorData(ptClouds,sensorConfigs,time);

 % Call the tracker
 tracks = tracker(sensorData,sensorConfigs,time);

 % Update the display
 display(scenario, egoVehicle, lidars, ptClouds, tracker, tracks);
 drawnow;
end

Results

Next, analyze the performance of the tracker using the visualization used in this example.

The grid-based tracker uses the dynamic cells from the estimated grid map to extract object tracks.
The animation below shows the results of the tracker in this scenario. The "Grid-based tracker" panel
shows the estimated dynamic map as well as the estimated tracks of the objects. It also shows the
configuration of the sensors mounted on the ego vehicle as blue circular sectors. Notice that the area
encapsulated by these sensors is estimated as "gray" in the dynamic map, representing that this area
is not observed by any of the sensors. This patch also serves as an indication of ego-vehicle's position
on the dynamic grid.

Notice that the tracks are extracted only from the dynamic grid cells and hence the tracker is able to
filter out static objects. Also notice that after a vehicle enters the grid region, its track establishment
takes few time steps. This is due to two main reasons. First, there is an establishment delay in
classification of the cell as dynamic. Second, the confirmation threshold for the object takes some
steps to establish a track as a confirmed object.

6 Featured Examples

6-624

Next, you look at the history of a few tracks to understand how the state of a track gets affected by
the estimation of the dynamic grid.

Longitudinally Moving Tracks

The following snapshots show the history for the track denoted by T1. The T1 track represents the
yellow car that passes the ego vehicle on the left during the first few seconds of the simulation.
Notice that the grid cells occupied by this track are colored in red, indicating their motion in the
positive X direction. The track obtains the track's velocity and heading information using the velocity
distribution of the assigned grid cells. It also obtains its length, width, and orientation using the
spatial distribution of the assigned grid cells. The default TrackUpdateFcn of the trackerGridRFS
extracts new length, width, and orientation information from the spatial distribution of associated
grid cells at every step. This effect can be seen in the snapshots below, where the length and width of
the track adjusts according to the bounding box of the associated grid cells. An additional filtering
scheme can be added using the predicted length, width, and orientation of the track by using a
custom TrackUpdateFcn.

% Show snapshots for TrackID = 1. Also shows close tracks like T3 and T4
% representing car and truck moving in the opposite direction.
showSnapshots(display.GridView,1);

 Grid-Based Tracking in Urban Environments Using Multiple Lidars

6-625

showSnapshots(display.GridView,4);

6 Featured Examples

6-626

Next, take a closer look at the history of T4. The T4 track represents the truck moving in the opposite
direction of the ego vehicle. Notice that the grid cells representing this track are colored in blue,
representing the estimated motion direction of the grid cell. Also, notice that there are grid cells in
the track that are misclassified by the tracker as static (white color). These misclassified grid cells
often occur when sensors report previously occluded regions of an object, because the tracker has an
establishment delay to classify these cells property.

Notice that at time = 4, when the truck and the vehicle came close to each other, the grid cells
maintained their respective color, representing a stark difference between their estimated velocity
directions. This also results in the correct data association between grid cells and predicted tracks of
T1 and T4, which helps the tracker to resolve them as separate objects.

Laterally Moving Tracks

The following snapshots represent the track denoted by T7. This track represents the vehicle moving
in the lateral direction, when the ego vehicle stops at the intersection. Notice that the grid cells of
this track are colored in purple, representing the direction of motion in negative Y direction. Similar

 Grid-Based Tracking in Urban Environments Using Multiple Lidars

6-627

to other tracks, the track maintains its length and width using the spatial distribution of the assigned
grid cells.

showSnapshots(display.GridView,7);

Tracks Changing Direction

In this example, you used a "constant-velocity" model with the tracker. This motion model assumes
that the targets move at a constant velocity, meaning constant speed and direction. However, in urban
scenes, this assumption is usually not accurate. To compensate for the unknown acceleration of the
objects, a process noise is specified on the tracker. The following snapshots show the history of track
T2. This track represents the vehicle directly in front of the ego vehicle. Notice in the ground truth
that this vehicle turns right at the intersection.

showSnapshots(display.GridView, 2);

6 Featured Examples

6-628

Notice that the color of the grid cells associated with this track changes from red to purple. Also, the
transition of colors results in a few misclassified cells, which can result in a poor estimate of length
and width of the vehicle. The ability of the tracker to maintain the track on this vehicle is due to a
coupled effect of three main reasons. First, the tracker allows to specify an assignment threshold.
Even if the predicted track does not align with the dynamic grid cells, it can associate with them up
to a certain threshold. Second, to create a new track from grid cells that remain outside the threshold
requires meeting the minimum number of cells criteria. Third, the tracker has a deletion threshold,
which allows a track to be coasted for a few steps before deleting it. If the classification of grid cells
is very poor during the turn, the track can survive a few steps and can get re-associated with the grid
cells. Note that misclassified grid cells are far more observable with Track T8, as shown below in its
history. The T8 track represents the light blue car traveling in the positive Y direction before taking at
right turn at the intersection. This vehicle was partially occluded before the turn and had another
closely traveling vehicle while making the turn.

showSnapshots(display.GridView,8);

 Grid-Based Tracking in Urban Environments Using Multiple Lidars

6-629

Summary

In this example, you learned the basics of a grid-based tracker and how it can be used to track
dynamic objects in a complex urban driving environment. You also learned how to configure the
tracker to track an object using point clouds from multiple lidar sensors.

Supporting Functions

function sensorData = packAsSensorData(ptCloud, configs, time)
%The lidar simulation returns output as pointCloud object. The Location
%property of the point cloud is used to extract x,y and z locations of
%returns and pack them as structure with information required by a tracker.

sensorData = struct('SensorIndex',{},...
 'Time', {},...
 'Measurement', {},...
 'MeasurementParameters', {});

6 Featured Examples

6-630

for i = 1:numel(ptCloud)
 % This sensor's cloud
 thisPtCloud = ptCloud{i};

 % Allows mapping between data and configurations without forcing an
 % ordered input and requiring configuration input for static sensors.
 sensorData(i).SensorIndex = configs{i}.SensorIndex;

 % Current time
 sensorData(i).Time = time;

 % Measurement as 3-by-N defininng locations of points
 sensorData(i).Measurement = reshape(thisPtCloud.Location,[],3)';

 % Data is reported in sensor coordinate frame and hence measurement
 % parameters are same as sensor transform parameters.
 sensorData(i).MeasurementParameters = configs{i}.SensorTransformParameters;
end

end

function config = helperGetLidarConfig(lidar, ego)
% Define transformation from sensor to ego
senToEgo = struct('Frame',fusionCoordinateFrameType(1),...
 'OriginPosition',[lidar.SensorLocation(:);lidar.Height],...
 'Orientation',rotmat(quaternion([lidar.Yaw lidar.Pitch lidar.Roll],'eulerd','ZYX','frame'),'frame'),...
 'IsParentToChild',true);

% Define transformation from ego to tracking coordinates
egoToScenario = struct('Frame',fusionCoordinateFrameType(1),...
 'OriginPosition',ego.Position(:),...
 'Orientation',rotmat(quaternion([ego.Yaw ego.Pitch ego.Roll],'eulerd','ZYX','frame'),'frame'),...
 'IsParentToChild',true);

% Assemble using trackingSensorConfiguration.
config = trackingSensorConfiguration(...
 'SensorIndex',lidar.SensorIndex,...
 'IsValidTime', true,...
 'SensorLimits',[lidar.AzimuthLimits;0 lidar.MaxRange],...
 'SensorTransformParameters',[senToEgo;egoToScenario],...
 'DetectionProbability',0.95);
end

References

[1] Nuss, Dominik, et al. "A random finite set approach for dynamic occupancy grid maps with real-
time application." The International Journal of Robotics Research 37.8 (2018): 841-866.

[2] Steyer, Sascha, Georg Tanzmeister, and Dirk Wollherr. "Object tracking based on evidential
dynamic occupancy grids in urban environments." 2017 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2017.

 Grid-Based Tracking in Urban Environments Using Multiple Lidars

6-631

Automatic Tuning of the insfilterAsync Filter
The insfilterAsync (Navigation Toolbox) object is a complex extended Kalman filter that estimates
the device pose. However, manually tuning the filter or finding the optimal values for the noise
parameters can be a challenging task. This example illustrates how to use the tune (Navigation
Toolbox) function to optimize the filter noise parameters.

Trajectory and Sensor Setup

To illustrate the tuning process of the insfilterAsync filter, use a simple random waypoint
trajectory. The imuSensor and gpsSensor objects create inputs for the filter.

% The IMU runs at 100 Hz and the GPS runs at 1 Hz.
imurate = 100;
gpsrate = 1;
decim = imurate/gpsrate;

% Create a random waypoint trajectory.
rng(1)
Npts = 4; % number of waypoints
wpPer = 5; % time between waypoints
tstart = 0;
tend = wpPer*(Npts -1);
wp = waypointTrajectory('Waypoints',5*rand(Npts,3), ...
 'TimeOfArrival',tstart:wpPer:tend, ...
 'Orientation',[quaternion.ones; randrot(Npts-1,1)], ...
 'SampleRate', imurate);

[Position,Orientation,Velocity,Acceleration,AngularVelocity] = lookupPose(...
 wp, tstart:(1/imurate):tend);

% Set up an IMU and process the trajectory.
imu = imuSensor('SampleRate',imurate);
loadparams(imu,fullfile(matlabroot, ...
 "toolbox","shared","positioning","positioningdata","generic.json"), ...
 "GenericLowCost9Axis");
[Accelerometer, Gyroscope, Magnetometer] = imu(Acceleration, ...
 AngularVelocity, Orientation);
imuData = timetable(Accelerometer,Gyroscope,Magnetometer,'SampleRate',imurate);

% Set up a GPS sensor and process the trajectory.
gps = gpsSensor('SampleRate', gpsrate,'DecayFactor',0.5, ...
 'HorizontalPositionAccuracy',1.6,'VerticalPositionAccuracy',1.6, ...
 'VelocityAccuracy',0.1);
[GPSPosition,GPSVelocity] = gps(Position(1:decim:end,:), Velocity(1:decim:end,:));
gpsData = timetable(GPSPosition,GPSVelocity,'SampleRate',gpsrate);

% Create a timetable for the tune function.
sensorData = synchronize(imuData,gpsData);

% Create a timetable capturing the ground truth pose.
groundTruth = timetable(Position,Orientation,'SampleRate',imurate);

Construct the Filter

The insfilterAsync filter fuses data from multiple sensors operating asynchronously

filtUntuned = insfilterAsync;

6 Featured Examples

6-632

Determine Filter Initial Conditions

Set the initial values for the State and StateCovariance properties based on the ground truth.
Normally to obtain the initial values, you would use the first several samples of sensorData along
with calibration routines. However, in this example the groundTruth is used to set the initial state
for fast convergence of the filter.

idx = stateinfo(filtUntuned);
filtUntuned.State(idx.Orientation) = compact(Orientation(1));
filtUntuned.State(idx.AngularVelocity) = AngularVelocity(1,:);
filtUntuned.State(idx.Position) = Position(1,:);
filtUntuned.State(idx.Velocity) = Velocity(1,:);
filtUntuned.State(idx.Acceleration) = Acceleration(1,:);
filtUntuned.State(idx.AccelerometerBias) = imu.Accelerometer.ConstantBias;
filtUntuned.State(idx.GyroscopeBias) = imu.Gyroscope.ConstantBias;
filtUntuned.State(idx.GeomagneticFieldVector) = imu.MagneticField;
filtUntuned.State(idx.MagnetometerBias) = imu.Magnetometer.ConstantBias;
filtUntuned.StateCovariance = 1e-5*eye(numel(filtUntuned.State));

% Create a copy of the filtUntuned object for tuning later.
filtTuned = copy(filtUntuned);

Process sensorData with an Untuned Filter

Use the tunernoise function to create measurement noises which also need to be tuned. To
illustrate the necessity for tuning, first use the filter with its default parameters.

mn = tunernoise('insfilterAsync');
[posUntunedEst, orientUntunedEst] = fuse(filtUntuned, sensorData, mn);

Tune the Filter and Process sensorData

Use the tune function to minimize the root mean squared (RMS) error between the groundTruth
and state estimates.

cfg = tunerconfig(class(filtTuned),'MaxIterations',15,'StepForward',1.1);
tunedmn = tune(filtTuned,mn,sensorData,groundTruth,cfg);

 Iteration Parameter Metric
 _________ _________ ______
 1 AccelerometerNoise 4.5898
 1 GyroscopeNoise 4.5694
 1 MagnetometerNoise 4.5481
 1 GPSPositionNoise 4.4737
 1 GPSVelocityNoise 4.2984
 1 QuaternionNoise 4.2984
 1 AngularVelocityNoise 3.9668
 1 PositionNoise 3.9668
 1 VelocityNoise 3.9668
 1 AccelerationNoise 3.9556
 1 GyroscopeBiasNoise 3.9556
 1 AccelerometerBiasNoise 3.9511
 1 GeomagneticVectorNoise 3.9511
 1 MagnetometerBiasNoise 3.9360
 2 AccelerometerNoise 3.9360
 2 GyroscopeNoise 3.9360
 2 MagnetometerNoise 3.9064
 2 GPSPositionNoise 3.9064

 Automatic Tuning of the insfilterAsync Filter

6-633

 2 GPSVelocityNoise 3.7129
 2 QuaternionNoise 3.7122
 2 AngularVelocityNoise 3.0116
 2 PositionNoise 3.0116
 2 VelocityNoise 3.0116
 2 AccelerationNoise 2.9850
 2 GyroscopeBiasNoise 2.9850
 2 AccelerometerBiasNoise 2.9824
 2 GeomagneticVectorNoise 2.9824
 2 MagnetometerBiasNoise 2.9821
 3 AccelerometerNoise 2.9821
 3 GyroscopeNoise 2.9613
 3 MagnetometerNoise 2.9432
 3 GPSPositionNoise 2.9432
 3 GPSVelocityNoise 2.8373
 3 QuaternionNoise 2.8369
 3 AngularVelocityNoise 2.6993
 3 PositionNoise 2.6993
 3 VelocityNoise 2.6993
 3 AccelerationNoise 2.6993
 3 GyroscopeBiasNoise 2.6993
 3 AccelerometerBiasNoise 2.6971
 3 GeomagneticVectorNoise 2.6971
 3 MagnetometerBiasNoise 2.6955
 4 AccelerometerNoise 2.6941
 4 GyroscopeNoise 2.6797
 4 MagnetometerNoise 2.6676
 4 GPSPositionNoise 2.6626
 4 GPSVelocityNoise 2.5530
 4 QuaternionNoise 2.5530
 4 AngularVelocityNoise 2.4285
 4 PositionNoise 2.4285
 4 VelocityNoise 2.4285
 4 AccelerationNoise 2.4232
 4 GyroscopeBiasNoise 2.4232
 4 AccelerometerBiasNoise 2.4217
 4 GeomagneticVectorNoise 2.4217
 4 MagnetometerBiasNoise 2.4023
 5 AccelerometerNoise 2.4019
 5 GyroscopeNoise 2.3900
 5 MagnetometerNoise 2.3900
 5 GPSPositionNoise 2.3887
 5 GPSVelocityNoise 2.2986
 5 QuaternionNoise 2.2986
 5 AngularVelocityNoise 2.1945
 5 PositionNoise 2.1945
 5 VelocityNoise 2.1945
 5 AccelerationNoise 2.1863
 5 GyroscopeBiasNoise 2.1863
 5 AccelerometerBiasNoise 2.1856
 5 GeomagneticVectorNoise 2.1856
 5 MagnetometerBiasNoise 2.1615
 6 AccelerometerNoise 2.1613
 6 GyroscopeNoise 2.1393
 6 MagnetometerNoise 2.1199
 6 GPSPositionNoise 2.1112
 6 GPSVelocityNoise 2.0140
 6 QuaternionNoise 2.0140

6 Featured Examples

6-634

 6 AngularVelocityNoise 1.9288
 6 PositionNoise 1.9288
 6 VelocityNoise 1.9288
 6 AccelerationNoise 1.9242
 6 GyroscopeBiasNoise 1.9242
 6 AccelerometerBiasNoise 1.9216
 6 GeomagneticVectorNoise 1.9216
 6 MagnetometerBiasNoise 1.9054
 7 AccelerometerNoise 1.9047
 7 GyroscopeNoise 1.8887
 7 MagnetometerNoise 1.8820
 7 GPSPositionNoise 1.8803
 7 GPSVelocityNoise 1.7713
 7 QuaternionNoise 1.7712
 7 AngularVelocityNoise 1.7145
 7 PositionNoise 1.7145
 7 VelocityNoise 1.7145
 7 AccelerationNoise 1.7122
 7 GyroscopeBiasNoise 1.7122
 7 AccelerometerBiasNoise 1.7112
 7 GeomagneticVectorNoise 1.7112
 7 MagnetometerBiasNoise 1.6873
 8 AccelerometerNoise 1.6853
 8 GyroscopeNoise 1.6790
 8 MagnetometerNoise 1.6694
 8 GPSPositionNoise 1.6565
 8 GPSVelocityNoise 1.5700
 8 QuaternionNoise 1.5676
 8 AngularVelocityNoise 1.5366
 8 PositionNoise 1.5366
 8 VelocityNoise 1.5366
 8 AccelerationNoise 1.5366
 8 GyroscopeBiasNoise 1.5366
 8 AccelerometerBiasNoise 1.5353
 8 GeomagneticVectorNoise 1.5337
 8 MagnetometerBiasNoise 1.5166
 9 AccelerometerNoise 1.5129
 9 GyroscopeNoise 1.5117
 9 MagnetometerNoise 1.5114
 9 GPSPositionNoise 1.4953
 9 GPSVelocityNoise 1.4106
 9 QuaternionNoise 1.4106
 9 AngularVelocityNoise 1.3742
 9 PositionNoise 1.3742
 9 VelocityNoise 1.3742
 9 AccelerationNoise 1.3731
 9 GyroscopeBiasNoise 1.3731
 9 AccelerometerBiasNoise 1.3715
 9 GeomagneticVectorNoise 1.3715
 9 MagnetometerBiasNoise 1.3576
 10 AccelerometerNoise 1.3528
 10 GyroscopeNoise 1.3528
 10 MagnetometerNoise 1.3510
 10 GPSPositionNoise 1.3322
 10 GPSVelocityNoise 1.2512
 10 QuaternionNoise 1.2512
 10 AngularVelocityNoise 1.2507
 10 PositionNoise 1.2507

 Automatic Tuning of the insfilterAsync Filter

6-635

 10 VelocityNoise 1.2507
 10 AccelerationNoise 1.2497
 10 GyroscopeBiasNoise 1.2497
 10 AccelerometerBiasNoise 1.2480
 10 GeomagneticVectorNoise 1.2480
 10 MagnetometerBiasNoise 1.2301
 11 AccelerometerNoise 1.2233
 11 GyroscopeNoise 1.2222
 11 MagnetometerNoise 1.2220
 11 GPSPositionNoise 1.2008
 11 GPSVelocityNoise 1.1043
 11 QuaternionNoise 1.1043
 11 AngularVelocityNoise 1.1038
 11 PositionNoise 1.1038
 11 VelocityNoise 1.1038
 11 AccelerationNoise 1.1028
 11 GyroscopeBiasNoise 1.1028
 11 AccelerometerBiasNoise 1.1013
 11 GeomagneticVectorNoise 1.1013
 11 MagnetometerBiasNoise 1.0867
 12 AccelerometerNoise 1.0782
 12 GyroscopeNoise 1.0767
 12 MagnetometerNoise 1.0733
 12 GPSPositionNoise 1.0505
 12 GPSVelocityNoise 0.9564
 12 QuaternionNoise 0.9563
 12 AngularVelocityNoise 0.9563
 12 PositionNoise 0.9563
 12 VelocityNoise 0.9563
 12 AccelerationNoise 0.9550
 12 GyroscopeBiasNoise 0.9550
 12 AccelerometerBiasNoise 0.9534
 12 GeomagneticVectorNoise 0.9534
 12 MagnetometerBiasNoise 0.9402
 13 AccelerometerNoise 0.9303
 13 GyroscopeNoise 0.9291
 13 MagnetometerNoise 0.9269
 13 GPSPositionNoise 0.9036
 13 GPSVelocityNoise 0.8072
 13 QuaternionNoise 0.8071
 13 AngularVelocityNoise 0.8071
 13 PositionNoise 0.8071
 13 VelocityNoise 0.8071
 13 AccelerationNoise 0.8065
 13 GyroscopeBiasNoise 0.8065
 13 AccelerometerBiasNoise 0.8052
 13 GeomagneticVectorNoise 0.8052
 13 MagnetometerBiasNoise 0.7901
 14 AccelerometerNoise 0.7806
 14 GyroscopeNoise 0.7806
 14 MagnetometerNoise 0.7768
 14 GPSPositionNoise 0.7547
 14 GPSVelocityNoise 0.6932
 14 QuaternionNoise 0.6930
 14 AngularVelocityNoise 0.6923
 14 PositionNoise 0.6923
 14 VelocityNoise 0.6923
 14 AccelerationNoise 0.6906

6 Featured Examples

6-636

 14 GyroscopeBiasNoise 0.6906
 14 AccelerometerBiasNoise 0.6896
 14 GeomagneticVectorNoise 0.6896
 14 MagnetometerBiasNoise 0.6801
 15 AccelerometerNoise 0.6704
 15 GyroscopeNoise 0.6676
 15 MagnetometerNoise 0.6653
 15 GPSPositionNoise 0.6469
 15 GPSVelocityNoise 0.6047
 15 QuaternionNoise 0.6047
 15 AngularVelocityNoise 0.6037
 15 PositionNoise 0.6037
 15 VelocityNoise 0.6037
 15 AccelerationNoise 0.6019
 15 GyroscopeBiasNoise 0.6019
 15 AccelerometerBiasNoise 0.6015
 15 GeomagneticVectorNoise 0.6015
 15 MagnetometerBiasNoise 0.5913

[posTunedEst, orientTunedEst] = fuse(filtTuned,sensorData,tunedmn);

Compare Tuned vs Untuned Filter

Plot the position estimates from the tuned and untuned filters along with the ground truth positions.
Then, plot the orientation error (quaternion distance) in degrees for both tuned and untuned filters.
The tuned filter estimates the position and orientation better than the untuned filter.

% Position error
figure;
t = sensorData.Time;
subplot(3,1,1);
plot(t, [posTunedEst(:,1) posUntunedEst(:,1) Position(:,1)]);
title('Position');
ylabel('X-axis');
legend('Tuned', 'Untuned', 'Truth');
subplot(3,1,2);
plot(t, [posTunedEst(:,2) posUntunedEst(:,2) Position(:,2)]);
ylabel('Y-axis');
subplot(3,1,3);
plot(t, [posTunedEst(:,3) posUntunedEst(:,3) Position(:,3)]);
ylabel('Z-axis');

 Automatic Tuning of the insfilterAsync Filter

6-637

% Orientation Error
figure;
plot(t, rad2deg(dist(Orientation, orientTunedEst)), ...
 t, rad2deg(dist(Orientation, orientUntunedEst)));
title('Orientation Error');
ylabel('Degrees');
legend('Tuned', 'Untuned');

6 Featured Examples

6-638

 Automatic Tuning of the insfilterAsync Filter

6-639

Detect, Classify, and Track Vehicles Using Lidar
This example shows how to detect, classify, and track vehicles by using lidar point cloud data
captured by a lidar sensor mounted on an ego vehicle. The lidar data used in this example is recorded
from a highway-driving scenario. In this example, the point cloud data is segmented to determine the
class of objects using the PointSeg network. A joint probabilistic data association (JPDA) tracker
with an interactive multiple model filter is used to track the detected vehicles.

Overview

The perception module plays an important role in achieving full autonomy for vehicles with an ADAS
system. Lidar and camera are essential sensors in the perception workflow. Lidar is good at
extracting accurate depth information of objects, while camera produces rich and detailed
information of the environment which is useful for object classification.

This example mainly includes these parts:

• Ground plane segmentation
• Semantic segmentation
• Oriented bounding box fitting
• Tracking oriented bounding boxes

The flowchart gives an overview of the whole system.

6 Featured Examples

6-640

Load Data

The lidar sensor generates point cloud data either in an organized format or an unorganized format.
The data used in this example is collected using an Ouster OS1 lidar sensor. This lidar produces an
organized point cloud with 64 horizontal scan lines. The point cloud data is comprised of three
channels, representing the x-, y-, and z-coordinates of the points. Each channel is of the size 64-
by-1024. Use the helper function helperDownloadData to download the data and load them into the
MATLAB® workspace.

 Detect, Classify, and Track Vehicles Using Lidar

6-641

Note: This download can take a few minutes.

[ptClouds,pretrainedModel] = helperDownloadData;

Ground Plane Segmentation

This example employs a hybrid approach that uses the segmentGroundFromLidarData (Computer
Vision Toolbox) and pcfitplane (Computer Vision Toolbox) functions. First, estimate the ground
plane parameters using the segmentGroundFromLidarData function. The estimated ground plane
is divided into strips along the direction of the vehicle in order to fit the plane, using the pcfitplane
function on each strip. This hybrid approach robustly fits the ground plane in a piecewise manner and
handles variations in the point cloud.

% Load point cloud
ptCloud = ptClouds{1};
% Define ROI for cropping point cloud
xLimit = [-30,30];
yLimit = [-12,12];
zLimit = [-3,15];

roi = [xLimit,yLimit,zLimit];
% Extract ground plane
[nonGround,ground] = helperExtractGround(ptCloud,roi);
figure;
pcshowpair(nonGround,ground);
legend({'\color{white} Nonground','\color{white} Ground'},'Location','northeastoutside');

6 Featured Examples

6-642

Semantic Segmentation

This example uses a pretrained PointSeg network model. PointSeg is an end-to-end real-time
semantic segmentation network trained for object classes like cars, trucks, and background. The
output from the network is a masked image with each pixel labeled per its class. This mask is used to
filter different types of objects in the point cloud. The input to the network is five-channel image, that
is x, y, z, intensity, and range. For more information on the network or how to train the network, refer
to the “Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network” (Lidar
Toolbox) example.

Prepare Input Data

The helperPrepareData function generates five-channel data from the loaded point cloud data.

% Load and visualize a sample frame
frame = helperPrepareData(ptCloud);
figure;
subplot(5,1,1);
imagesc(frame(:,:,1));
title('X channel');

subplot(5,1,2);
imagesc(frame(:,:,2));
title('Y channel');

subplot(5,1,3);
imagesc(frame(:,:,3));
title('Z channel');

subplot(5,1,4);
imagesc(frame(:,:,4));
title('Intensity channel');

subplot(5,1,5);
imagesc(frame(:,:,5));
title('Range channel');

 Detect, Classify, and Track Vehicles Using Lidar

6-643

Run forward inference on one frame from the loaded pre-trained network.

if ~exist('net','var')
 net = pretrainedModel.net;
end

% Define classes
classes = ["background","car","truck"];

% Define color map
lidarColorMap = [
 0.98 0.98 0.00 % unknown
 0.01 0.98 0.01 % green color for car
 0.01 0.01 0.98 % blue color for motorcycle
];

% Run forward pass
pxdsResults = semanticseg(frame,net);

% Overlay intensity image with segmented output
segmentedImage = labeloverlay(uint8(frame(:,:,4)),pxdsResults,'Colormap',lidarColorMap,'Transparency',0.5);

% Display results
figure;
imshow(segmentedImage);
helperPixelLabelColorbar(lidarColorMap,classes);

6 Featured Examples

6-644

Use the generated semantic mask to filter point clouds containing trucks. Similarly, filter point clouds
for other classes.

truckIndices = pxdsResults == 'truck';
truckPointCloud = select(nonGround,truckIndices,'OutputSize','full');

% Crop point cloud for better display
croppedPtCloud = select(ptCloud,findPointsInROI(ptCloud,roi));
croppedTruckPtCloud = select(truckPointCloud,findPointsInROI(truckPointCloud,roi));

% Display ground and nonground points
figure;
pcshowpair(croppedPtCloud,croppedTruckPtCloud);
legend({'\color{white} Nonvehicle','\color{white} Vehicle'},'Location','northeastoutside');

Clustering and Bounding Box Fitting

After extracting point clouds of different object classes, the objects are clustered by applying
Euclidean clustering using the pcsegdist (Computer Vision Toolbox) function. To group all the
points belonging to one single cluster, the point cloud obtained as a cluster is used as seed points for

 Detect, Classify, and Track Vehicles Using Lidar

6-645

growing region in nonground points. Use the findNearestNeighbors (Computer Vision Toolbox)
function to loop over all the points to grow the region. The extracted cluster is fitted in an L-shape
bounding box using the pcfitcuboid (Lidar Toolbox) function. These clusters of vehicles resemble
the shape of the letter L when seen from a top-down view. This feature helps in estimating the
orientation of the vehicle. The oriented bounding box fitting helps in estimating the heading angle of
the objects, which is useful in applications such as path planning and traffic maneuvering.

The cuboid boundaries of the clusters can also be calculated by finding the minimum and maximum
spatial extents in each direction. However, this method fails in estimating the orientation of the
detected vehicles. The difference between the two methods is shown in the figure.

[labels,numClusters] = pcsegdist(croppedTruckPtCloud,1);

% Define cuboid parameters
params = zeros(0,9);

for clusterIndex = 1:numClusters
 ptsInCluster = labels == clusterIndex;

 pc = select(croppedTruckPtCloud,ptsInCluster);
 location = pc.Location;

 xl = (max(location(:,1)) - min(location(:,1)));
 yl = (max(location(:,2)) - min(location(:,2)));
 zl = (max(location(:,3)) - min(location(:,3)));

 % Filter small bounding boxes
 if size(location,1)*size(location,2) > 20 && any(any(pc.Location)) && xl > 1 && yl > 1
 indices = zeros(0,1);

6 Featured Examples

6-646

 objectPtCloud = pointCloud(location);
 for i = 1:size(location,1)
 seedPoint = location(i,:);
 indices(end+1) = findNearestNeighbors(nonGround,seedPoint,1);
 end

 % Remove overlapping indices
 indices = unique(indices);

 % Fit oriented bounding box
 model = pcfitcuboid(select(nonGround,indices));
 params(end+1,:) = model.Parameters;
 end
end

% Display point cloud and detected bounding box
figure;
pcshow(croppedPtCloud.Location,croppedPtCloud.Location(:,3));
showShape('cuboid',params,"Color","red","Label","Truck");

Visualization Setup

Use the helperLidarObjectDetectionDisplay class to visualize the complete workflow in one
window. The layout of the visualization window is divided into the following sections:

1 Lidar Range Image: point cloud image in 2-D as a range image

 Detect, Classify, and Track Vehicles Using Lidar

6-647

2 Segmented Image: Detected labels generated from the semantic segmentation network overlaid
with the intensity image or the fourth channel of the data

3 Oriented Bounding Box Detection: 3-D point cloud with oriented bounding boxes
4 Top View: Top view of the point cloud with oriented bounding boxes

display = helperLidarObjectDetectionDisplay;

Loop Through Data

The helperLidarObjectDetection class is a wrapper encapsulating all the segmentation,
clustering, and bounding box fitting steps mentioned in the above sections. Use the
findDetections function to extract the detected objects.

% Initialize lidar object detector
lidarDetector = helperLidarObjecDetector('Model',net,'XLimits',xLimit,...
 'YLimit',yLimit,'ZLimit',zLimit);

% Prepare 5-D lidar data
inputData = helperPrepareData(ptClouds);

% Set random number generator for reproducible results
S = rng(2018);

% Initialize the display
initializeDisplay(display);

numFrames = numel(inputData);
for count = 1:numFrames

 % Get current data
 input = inputData{count};

 rangeImage = input(:,:,5);

 % Extact bounding boxes from lidar data
 [boundingBox,coloredPtCloud,pointLabels] = detectBbox(lidarDetector,input);

 % Update display with colored point cloud
 updatePointCloud(display,coloredPtCloud);

 % Update bounding boxes
 updateBoundingBox(display,boundingBox);

 % Update segmented image
 updateSegmentedImage(display,pointLabels,rangeImage);

 drawnow('limitrate');
end

6 Featured Examples

6-648

Tracking Oriented Bounding Boxes

In this example, you use a joint probabilistic data association (JPDA) tracker. The time step dt is set
to 0.1 seconds since the dataset is captured at 10 Hz. The state-space model used in the tracker is
based on a cuboid model with parameters, x, y, z, ϕ, l, w, h . For more details on how to track
bounding boxes in lidar data, see the “Track Vehicles Using Lidar: From Point Cloud to Track List” on
page 6-351 example. In this example, the class information is provided using the ObjectAttributes
property of the objectDetection object. When creating new tracks, the filter initialization
function, defined using the helper function helperMultiClassInitIMMFilter uses the class of
the detection to set up initial dimensions of the object. This helps the tracker to adjust bounding box
measurement model with the appropriate dimensions of the track.

Set up a JPDA tracker object with these parameters.

assignmentGate = [10 100]; % Assignment threshold;
confThreshold = [7 10]; % Confirmation threshold for history logi
delThreshold = [2 3]; % Deletion threshold for history logic
Kc = 1e-5; % False-alarm rate per unit volume

% IMM filter initialization function
filterInitFcn = @helperMultiClassInitIMMFilter;

% A joint probabilistic data association tracker with IMM filter
tracker = trackerJPDA('FilterInitializationFcn',filterInitFcn,...
 'TrackLogic','History',...
 'AssignmentThreshold',assignmentGate,...
 'ClutterDensity',Kc,...
 'ConfirmationThreshold',confThreshold,...
 'DeletionThreshold',delThreshold,'InitializationThreshold',0);

 Detect, Classify, and Track Vehicles Using Lidar

6-649

allTracks = struct([]);
time = 0;
dt = 0.1;

% Define Measurement Noise
measNoise = blkdiag(0.25*eye(3),25,eye(3));

numTracks = zeros(numFrames,2);

The detected objects are assembled as a cell array of objectDetection (Automated Driving
Toolbox) objects using the helperAssembleDetections function.

display = helperLidarObjectDetectionDisplay;
initializeDisplay(display);

for count = 1:numFrames
 time = time + dt;
 % Get current data
 input = inputData{count};

 rangeImage = input(:,:,5);

 % Extact bounding boxes from lidar data
 [boundingBox,coloredPtCloud,pointLabels] = detectBbox(lidarDetector,input);

 % Assemble bounding boxes into objectDetections
 detections = helperAssembleDetections(boundingBox,measNoise,time);

 % Pass detections to tracker
 if ~isempty(detections)
 % Update the tracker
 [confirmedTracks,tentativeTracks,allTracks,info] = tracker(detections,time);
 numTracks(count,1) = numel(confirmedTracks);
 end

 % Update display with colored point cloud
 updatePointCloud(display,coloredPtCloud);

 % Update segmented image
 updateSegmentedImage(display,pointLabels,rangeImage);

 % Update the display if the tracks are not empty
 if ~isempty(confirmedTracks)
 updateTracks(display,confirmedTracks);
 end

 drawnow('limitrate');
end

6 Featured Examples

6-650

Summary

This example showed how to detect and classify vehicles fitted with oriented bounding box on lidar
data. You also learned how to use IMM filter to track objects with multiple class information. The
semantic segmentation results can be improved further by adding more training data.

Supporting Functions

helperPrepareData

function multiChannelData = helperPrepareData(input)
% Create 5-channel data as x, y, z, intensity and range
% of size 64-by-1024-by-5 from pointCloud.

if isa(input, 'cell')
 numFrames = numel(input);
 multiChannelData = cell(1, numFrames);
 for i = 1:numFrames
 inputData = input{i};

 x = inputData.Location(:,:,1);
 y = inputData.Location(:,:,2);
 z = inputData.Location(:,:,3);

 intensity = inputData.Intensity;
 range = sqrt(x.^2 + y.^2 + z.^2);

 multiChannelData{i} = cat(3, x, y, z, intensity, range);
 end
else
 x = input.Location(:,:,1);

 Detect, Classify, and Track Vehicles Using Lidar

6-651

 y = input.Location(:,:,2);
 z = input.Location(:,:,3);

 intensity = input.Intensity;
 range = sqrt(x.^2 + y.^2 + z.^2);

 multiChannelData = cat(3, x, y, z, intensity, range);
end
end

pixelLabelColorbar

function helperPixelLabelColorbar(cmap, classNames)
% Add a colorbar to the current axis. The colorbar is formatted
% to display the class names with the color.

colormap(gca,cmap)

% Add colorbar to current figure.
c = colorbar('peer', gca);

% Use class names for tick marks.
c.TickLabels = classNames;
numClasses = size(cmap,1);

% Center tick labels.
c.Ticks = 1/(numClasses*2):1/numClasses:1;

% Remove tick mark.
c.TickLength = 0;
end

helperExtractGround

function [ptCloudNonGround,ptCloudGround] = helperExtractGround(ptCloudIn,roi)
% Crop the point cloud

idx = findPointsInROI(ptCloudIn,roi);
pc = select(ptCloudIn,idx,'OutputSize','full');

% Get the ground plane the indices using piecewise plane fitting
[ptCloudGround,idx] = piecewisePlaneFitting(pc,roi);

nonGroundIdx = true(size(pc.Location,[1,2]));
nonGroundIdx(idx) = false;
ptCloudNonGround = select(pc,nonGroundIdx,'OutputSize','full');
end

function [groundPlane,idx] = piecewisePlaneFitting(ptCloudIn,roi)
groundPtsIdx = ...
 segmentGroundFromLidarData(ptCloudIn, ...
 'ElevationAngleDelta',5,'InitialElevationAngle',15);
groundPC = select(ptCloudIn,groundPtsIdx,'OutputSize','full');

% Divide x-axis in 3 regions
segmentLength = (roi(2) - roi(1))/3;

6 Featured Examples

6-652

x1 = [roi(1),roi(1) + segmentLength];
x2 = [x1(2),x1(2) + segmentLength];
x3 = [x2(2),x2(2) + segmentLength];

roi1 = [x1,roi(3:end)];
roi2 = [x2,roi(3:end)];
roi3 = [x3,roi(3:end)];

idxBack = findPointsInROI(groundPC,roi1);
idxCenter = findPointsInROI(groundPC,roi2);
idxForward = findPointsInROI(groundPC,roi3);

% Break the point clouds in front and back
ptBack = select(groundPC,idxBack,'OutputSize','full');

ptForward = select(groundPC,idxForward,'OutputSize','full');

[~,inliersForward] = planeFit(ptForward);
[~,inliersBack] = planeFit(ptBack);
idx = [inliersForward; idxCenter; inliersBack];
groundPlane = select(ptCloudIn, idx,'OutputSize','full');
end

function [plane,inlinersIdx] = planeFit(ptCloudIn)
[~,inlinersIdx, ~] = pcfitplane(ptCloudIn,1,[0, 0, 1]);
plane = select(ptCloudIn,inlinersIdx,'OutputSize','full');
end

helperAssembleDetections

function mydetections = helperAssembleDetections(bboxes,measNoise,timestamp)
% Assemble bounding boxes as cell array of objectDetection

mydetections = cell(size(bboxes,1),1);
for i = 1:size(bboxes,1)
 classid = bboxes(i,end);
 lidarModel = [bboxes(i,1:3), bboxes(i,end-1), bboxes(i,4:6)];
 % To avoid direct confirmation by the tracker, the ClassID is passed as
 % ObjectAttributes.
 mydetections{i} = objectDetection(timestamp, ...
 lidarModel','MeasurementNoise',...
 measNoise,'ObjectAttributes',struct('ClassID',classid));
end
end

helperDownloadData

function [lidarData, pretrainedModel] = helperDownloadData
outputFolder = fullfile(tempdir,'WPI');
url = 'https://ssd.mathworks.com/supportfiles/lidar/data/lidarSegmentationAndTrackingData.tar.gz';
lidarDataTarFile = fullfile(outputFolder,'lidarSegmentationAndTrackingData.tar.gz');
if ~exist(lidarDataTarFile,'file')
 mkdir(outputFolder);
 websave(lidarDataTarFile,url);
 untar(lidarDataTarFile,outputFolder);
end
% Check if tar.gz file is downloaded, but not uncompressed
if ~exist(fullfile(outputFolder,'WPI_LidarData.mat'),'file')

 Detect, Classify, and Track Vehicles Using Lidar

6-653

 untar(lidarDataTarFile,outputFolder);
end
% Load lidar data
data = load(fullfile(outputFolder,'highwayData.mat'));
lidarData = data.ptCloudData;

% Download pretrained model
url = 'https://ssd.mathworks.com/supportfiles/lidar/data/pretrainedPointSegModel.mat';
modelFile = fullfile(outputFolder,'pretrainedPointSegModel.mat');
if ~exist(modelFile,'file')
 websave(modelFile,url);
end
pretrainedModel = load(fullfile(outputFolder,'pretrainedPointSegModel.mat'));
end

References

[1] Xiao Zhang, Wenda Xu, Chiyu Dong and John M. Dolan, "Efficient L-Shape Fitting for Vehicle
Detection Using Laser Scanners", IEEE Intelligent Vehicles Symposium, June 2017

[2] Y. Wang, T. Shi, P. Yun, L. Tai, and M. Liu, “Pointseg: Real-time semantic segmentation based on 3d
lidar point cloud,” arXiv preprint arXiv:1807.06288, 2018.

6 Featured Examples

6-654

Use theaterPlot to Visualize Tracking Scenario
This example shows how to use theaterPlot to visualize various aspects of a tracking scenario.

Introduction

theaterPlot is an efficient tool for visualizing various aspects of a tracking scenario. It is composed
of a primary object, which hosts the plotting environment based on a parent axes, and plotters to plot
the desired aspects of features from the tracking scenario.

This figure shows a structural representation of a theaterPlot object.

The Parent property specifies the axes on which the theater plot is enabled. You can specify the
parent axes of a theater plot during object creation. If you do not specify a parent axes,
theaterPlot creates a new figure and uses the current axes of the created figure as its Parent
property. You can also set the axes limits of the parent axes using the XLimits, YLimits, and
Zlimits properties by using name-value pair arguments during object creation. Set the units of
measurement for each axes using the AxesUnits property.

The Plotters property holds plotters that you added to the theaterPlot object.

• platformPlotter — Plot platforms in a tracking scenario
• trajectoryPlotter — Plot trajectories in a tracking scenario
• orientationPlotter — Plot orientation of platforms in a tracking scenario
• coveragePlotter — Plot sensor coverage and sensor beams in a tracking scenario
• detectionPlotter — Plot sensor detections in a tracking scenario
• trackPlotter — Plot tracks in a tracking scenario

You can specify visual elements and effects for each plotter during the creation of the plotter. Each
plotter is also paired with a theaterPlot object function, which you need to call to plot the results.

 Use theaterPlot to Visualize Tracking Scenario

6-655

For example, a coveragePlotter is paired with a plotCoverage object function that shows the
sensor coverage.

This example showcases a few plotters for visualizing a tracking scenario. theaterPlot can work
efficiently with a trackingScenario even though you do not necessarily need a
trackingScenario to use the theaterPlot object.

Create theaterPlot and trackingScenario Objects

Create a trackingScenario object and a theaterPlot object.

simulationDuration = 100;
scene = trackingScenario('StopTime',simulationDuration);
tp = theaterPlot('XLimits',[-250 250],'YLimits',[-250 250],'ZLimits',[0 120]);
view(3);grid on;

Create a Trajectory Plotter and a Platform Plotter for a Target

Create a waypoint trajectory for a target platform.

timeOfArrival = [0 simulationDuration];
waypoints = [100 -100 10; 100 100 80];
trajectory = waypointTrajectory(waypoints,timeOfArrival);

Add a cuboid target platform that follows the specified trajectory. First add a target platform to the
tracking scenario.

target = platform(scene,'Trajectory',trajectory,'Dimensions', ...
 struct('Length',35,'Width',15,'Height',5.5,'OriginOffset',[0 0 0]));

Then add a trajectoryPlotter object to the theaterPlot object, and use the plotTrajectory
function to plot the waypoint trajectory.

trajPlotter = trajectoryPlotter(tp,'DisplayName','Trajectory','Color','k','LineWidth',1.2);
plotTrajectory(trajPlotter,{trajectory.Waypoints})

Tip You can plot multiple same-type features (platforms, trajectories, orientations, coverages,
detections, or tracks) together using one plotter. For example, you can plot multiple trajectories
together by specifying a cell array of waypoints as the second argument of the plotTrajectory
function. See the syntax description of plotTrajectory for more details.

Define a plotter for the target platform.

targetPlotter = platformPlotter(tp,'DisplayName','Target', ...
 'Marker','s','MarkerEdgeColor','g','MarkerSize',2);
plotPlatform(targetPlotter,target.Position, ...
 target.Dimensions,quaternion(target.Orientation,'rotvecd'))

You can add graphical objects other than the plotter objects on the theaterPlot by directly plotting
on the parent axes of the theaterPlot object. Put a circle marker at the origin.

hold on
plot3(tp.Parent,0,0,0,'Color','k','Marker','o','MarkerSize',4)

Create a Platform with a Mounted Radar Sensor

Add a tower platform to the scenario.

6 Featured Examples

6-656

tower = platform(scene,'Position',[-100,0,0],'Dimensions', ...
 struct('Length',5,'Width',5,'Height',30,'OriginOffset',[0 0 -15]));

Display the tower using a platform plotter.

towerPlotter = platformPlotter(tp,'DisplayName','Tower','Marker','s','MarkerSize',2);
plotPlatform(towerPlotter,tower.Position,tower.Dimensions,quaternion(tower.Orientation,'rotvecd'))

Mount a monostatic radar to the top of the tower.

radar = fusionRadarSensor(1,'DetectionMode','Monostatic', ...
 'UpdateRate',5, ...
 'MountingLocation',[0, 0, 30], ...
 'FieldOfView',[4, 30],...
 'MechanicalAzimuthLimits',[-60 60], ...
 'MechanicalElevationLimits',[0 0], ...
 'HasElevation',true, ...
 'RangeResolution',200, ...
 'AzimuthResolution',20, ...
 'ElevationResolution',20);
tower.Sensors = radar;

Add a coveragePlotter and plot the coverage and initial beam for the monostatic radar. When
plotting the coverage, the plotCoverage object function requires a second argument that specifies
the configuration of the sensor coverage. Obtain the configuration by using the coverageConfig
function on the tracking scenario scene.

radarPlotter = coveragePlotter(tp,'Color','b','DisplayName','Radar beam');
plotCoverage(radarPlotter,coverageConfig(scene))

Create a detection plotter to plot the detections that the radar generates.

detPlotter = detectionPlotter(tp,'DisplayName','Detection','MarkerFaceColor','r','MarkerSize',4);

Run the scenario and update the theater plot

Iterate through the tracking scenario and generate radar detections. Plot the platform, radar
coverage, and detections.

rng(2019) % for repeatable results
while advance(scene)
 % Plot target.
 plotPlatform(targetPlotter,target.Position, ...
 target.Dimensions,quaternion(target.Orientation,'rotvecd'))

 % Plot sensor coverage.
 plotCoverage(radarPlotter,coverageConfig(scene))

 % Extract target pose from the view of the tower and use the extracted
 % pose to generate detections.
 poseInTower = targetPoses(tower);
 [detections, numDets] = radar(poseInTower,scene.SimulationTime);
 detPos = zeros(numDets,3);
 detNoise = zeros(3,3,numDets);

 % Obtain detection pose relative to the scenario frame. Also, obtain
 % the covariance of the detection.
 for i=1:numDets

 Use theaterPlot to Visualize Tracking Scenario

6-657

 a = detections;
 detPos(i,:) = tower.Trajectory.Position + detections{i}.Measurement';
 detNoise(:,:,i) = detections{i}.MeasurementNoise;
 end

 % Plot any generated detections with the covariance ellipses.
 if ~isempty(detPos)
 plotDetection(detPlotter,detPos,detNoise)
 end
end

You can zoom in on the detection in the figure to visualize the plotted covariance ellipses of the
generated detections.

Summary

In this example, you learned about the organization of a theaterPlot object. You also learned how
to visualize a simple tracking scenario using the theaterPlot object.

6 Featured Examples

6-658

Custom Tuning of Fusion Filters
Use the tune function to optimize the noise parameters of several fusion filters, including the
ahrsfilter object. This example shows how to custom a cost function for various optimization
goals.

Load Sensor Data and Ground Truth

The sensor data contains sensor recordings of a UAV executing some small maneuvers. Create an
ahrsfilter object to fuse the sensor data and estimate those maneuvers.

load AHRSCustomTune.mat

% Create a filter to process the data, decimating by 10.
filt = ahrsfilter('SampleRate',Fs,'DecimationFactor',10);
% Filter the sensor data and show the estimation error.
oEstInit = filt(sensorData.Accelerometer, sensorData.Gyroscope,sensorData.Magnetometer);
plotPerformance(oEstInit,groundTruth.Orientation, "Initial, Untuned Error");

Tune the Filter to Improve Estimation

The performance of the ahrsfilter without tuning noise parameters is not ideal. Use the tune
function to improve the filter performance.

reset(filt);
cfg1 = tunerconfig("ahrsfilter","MaxIterations",20,"ObjectiveLimit",0.0001);
tune(filt,sensorData,groundTruth(1:10:end,:),cfg1);

 Custom Tuning of Fusion Filters

6-659

 Iteration Parameter Metric
 _________ _________ ______
 1 AccelerometerNoise 0.4382
 1 GyroscopeNoise 0.4371
 1 MagnetometerNoise 0.4370
 1 GyroscopeDriftNoise 0.4370
 1 LinearAccelerationNoise 0.4202
 1 MagneticDisturbanceNoise 0.4188
 1 LinearAccelerationDecayFactor 0.4087
 1 MagneticDisturbanceDecayFactor 0.4087
 2 AccelerometerNoise 0.4086
 2 GyroscopeNoise 0.4066
 2 MagnetometerNoise 0.4066
 2 GyroscopeDriftNoise 0.4066
 2 LinearAccelerationNoise 0.3937
 2 MagneticDisturbanceNoise 0.3932
 2 LinearAccelerationDecayFactor 0.3856
 2 MagneticDisturbanceDecayFactor 0.3854
 3 AccelerometerNoise 0.3853
 3 GyroscopeNoise 0.3826
 3 MagnetometerNoise 0.3825
 3 GyroscopeDriftNoise 0.3825
 3 LinearAccelerationNoise 0.3690
 3 MagneticDisturbanceNoise 0.3676
 3 LinearAccelerationDecayFactor 0.3613
 3 MagneticDisturbanceDecayFactor 0.3611
 4 AccelerometerNoise 0.3610
 4 GyroscopeNoise 0.3577
 4 MagnetometerNoise 0.3576
 4 GyroscopeDriftNoise 0.3576
 4 LinearAccelerationNoise 0.3431
 4 MagneticDisturbanceNoise 0.3414
 4 LinearAccelerationDecayFactor 0.3364
 4 MagneticDisturbanceDecayFactor 0.3363
 5 AccelerometerNoise 0.3362
 5 GyroscopeNoise 0.3328
 5 MagnetometerNoise 0.3326
 5 GyroscopeDriftNoise 0.3326
 5 LinearAccelerationNoise 0.3190
 5 MagneticDisturbanceNoise 0.3183
 5 LinearAccelerationDecayFactor 0.3152
 5 MagneticDisturbanceDecayFactor 0.3150
 6 AccelerometerNoise 0.3149
 6 GyroscopeNoise 0.3121
 6 MagnetometerNoise 0.3119
 6 GyroscopeDriftNoise 0.3119
 6 LinearAccelerationNoise 0.3040
 6 MagneticDisturbanceNoise 0.3035
 6 LinearAccelerationDecayFactor 0.3024
 6 MagneticDisturbanceDecayFactor 0.3022
 7 AccelerometerNoise 0.3022
 7 GyroscopeNoise 0.2990
 7 MagnetometerNoise 0.2989
 7 GyroscopeDriftNoise 0.2989
 7 LinearAccelerationNoise 0.2970
 7 MagneticDisturbanceNoise 0.2955
 7 LinearAccelerationDecayFactor 0.2952
 7 MagneticDisturbanceDecayFactor 0.2948

6 Featured Examples

6-660

 8 AccelerometerNoise 0.2948
 8 GyroscopeNoise 0.2903
 8 MagnetometerNoise 0.2902
 8 GyroscopeDriftNoise 0.2902
 8 LinearAccelerationNoise 0.2883
 8 MagneticDisturbanceNoise 0.2860
 8 LinearAccelerationDecayFactor 0.2856
 8 MagneticDisturbanceDecayFactor 0.2851
 9 AccelerometerNoise 0.2851
 9 GyroscopeNoise 0.2778
 9 MagnetometerNoise 0.2777
 9 GyroscopeDriftNoise 0.2777
 9 LinearAccelerationNoise 0.2709
 9 MagneticDisturbanceNoise 0.2698
 9 LinearAccelerationDecayFactor 0.2690
 9 MagneticDisturbanceDecayFactor 0.2689
 10 AccelerometerNoise 0.2689
 10 GyroscopeNoise 0.2593
 10 MagnetometerNoise 0.2593
 10 GyroscopeDriftNoise 0.2593
 10 LinearAccelerationNoise 0.2492
 10 MagneticDisturbanceNoise 0.2490
 10 LinearAccelerationDecayFactor 0.2482
 10 MagneticDisturbanceDecayFactor 0.2482
 11 AccelerometerNoise 0.2481
 11 GyroscopeNoise 0.2370
 11 MagnetometerNoise 0.2369
 11 GyroscopeDriftNoise 0.2369
 11 LinearAccelerationNoise 0.2240
 11 MagneticDisturbanceNoise 0.2237
 11 LinearAccelerationDecayFactor 0.2230
 11 MagneticDisturbanceDecayFactor 0.2228
 12 AccelerometerNoise 0.2227
 12 GyroscopeNoise 0.2117
 12 MagnetometerNoise 0.2117
 12 GyroscopeDriftNoise 0.2117
 12 LinearAccelerationNoise 0.1984
 12 MagneticDisturbanceNoise 0.1979
 12 LinearAccelerationDecayFactor 0.1974
 12 MagneticDisturbanceDecayFactor 0.1974
 13 AccelerometerNoise 0.1973
 13 GyroscopeNoise 0.1878
 13 MagnetometerNoise 0.1878
 13 GyroscopeDriftNoise 0.1878
 13 LinearAccelerationNoise 0.1766
 13 MagneticDisturbanceNoise 0.1763
 13 LinearAccelerationDecayFactor 0.1761
 13 MagneticDisturbanceDecayFactor 0.1761
 14 AccelerometerNoise 0.1760
 14 GyroscopeNoise 0.1686
 14 MagnetometerNoise 0.1685
 14 GyroscopeDriftNoise 0.1685
 14 LinearAccelerationNoise 0.1601
 14 MagneticDisturbanceNoise 0.1599
 14 LinearAccelerationDecayFactor 0.1597
 14 MagneticDisturbanceDecayFactor 0.1597
 15 AccelerometerNoise 0.1596
 15 GyroscopeNoise 0.1536

 Custom Tuning of Fusion Filters

6-661

 15 MagnetometerNoise 0.1536
 15 GyroscopeDriftNoise 0.1536
 15 LinearAccelerationNoise 0.1472
 15 MagneticDisturbanceNoise 0.1469
 15 LinearAccelerationDecayFactor 0.1469
 15 MagneticDisturbanceDecayFactor 0.1469
 16 AccelerometerNoise 0.1468
 16 GyroscopeNoise 0.1422
 16 MagnetometerNoise 0.1422
 16 GyroscopeDriftNoise 0.1422
 16 LinearAccelerationNoise 0.1380
 16 MagneticDisturbanceNoise 0.1378
 16 LinearAccelerationDecayFactor 0.1377
 16 MagneticDisturbanceDecayFactor 0.1377
 17 AccelerometerNoise 0.1377
 17 GyroscopeNoise 0.1352
 17 MagnetometerNoise 0.1351
 17 GyroscopeDriftNoise 0.1351
 17 LinearAccelerationNoise 0.1351
 17 MagneticDisturbanceNoise 0.1351
 17 LinearAccelerationDecayFactor 0.1351
 17 MagneticDisturbanceDecayFactor 0.1351
 18 AccelerometerNoise 0.1351
 18 GyroscopeNoise 0.1351
 18 MagnetometerNoise 0.1351
 18 GyroscopeDriftNoise 0.1351
 18 LinearAccelerationNoise 0.1351
 18 MagneticDisturbanceNoise 0.1351
 18 LinearAccelerationDecayFactor 0.1350
 18 MagneticDisturbanceDecayFactor 0.1350
 19 AccelerometerNoise 0.1350
 19 GyroscopeNoise 0.1348
 19 MagnetometerNoise 0.1344
 19 GyroscopeDriftNoise 0.1344
 19 LinearAccelerationNoise 0.1344
 19 MagneticDisturbanceNoise 0.1344
 19 LinearAccelerationDecayFactor 0.1344
 19 MagneticDisturbanceDecayFactor 0.1344
 20 AccelerometerNoise 0.1344
 20 GyroscopeNoise 0.1344
 20 MagnetometerNoise 0.1344
 20 GyroscopeDriftNoise 0.1344
 20 LinearAccelerationNoise 0.1344
 20 MagneticDisturbanceNoise 0.1344
 20 LinearAccelerationDecayFactor 0.1344
 20 MagneticDisturbanceDecayFactor 0.1344

Filter the sensor data using the tuned filter and show the orientation error.

oEstTuned = filt(sensorData.Accelerometer,sensorData.Gyroscope,sensorData.Magnetometer);
plotPerformance(oEstTuned,groundTruth.Orientation,"Tuned Filter Error - Default Configuration");

6 Featured Examples

6-662

Use the CustomCostFcn and MATLAB Coder (R) to Accelerate and Optimize Tuning

The performance of the filter is improved after tuning but the tuning process can often take a long
time. The tunerconfig object allows for a custom cost function to optimize this process. You can
also use MATLAB Coder to create a mex function to accelerate the tuning speed. The custom cost
function must have a signature cost = fcn(params,sensorData,groundTruth), where cost is
a scalar real number, params is a struct of noise parameters to be optimized, sensorData is a table
of sensor data, and groundTruth is a table ground truth data.

From the last section, the ahrsfilter did not estimate the orientation very well during some of the
maneuvers. Instead of using the default root-mean-squared error, the custom cost function uses
higher order terms to more severely penalize outliers.

Display the details of the custom cost function. The function is attached as an m-file.

type customFcn.m

function c = customFcn(params, sensorData, groundTruth)
% Custom Cost function for optimizing the ahrsfilter

% Set any nontunable parameters in the constructor
decim = 10;
h = ahrsfilter('SampleRate', 200, 'DecimationFactor', decim);

% Parameterize the filter instance with the current-best parameters from
% the params struct.
h.AccelerometerNoise = params.AccelerometerNoise;

 Custom Tuning of Fusion Filters

6-663

h.GyroscopeNoise = params.GyroscopeNoise;
h.MagnetometerNoise = params.MagnetometerNoise;
h.GyroscopeDriftNoise = params.GyroscopeDriftNoise;
h.LinearAccelerationNoise = params.LinearAccelerationNoise;
h.MagneticDisturbanceNoise = params.MagneticDisturbanceNoise;
h.LinearAccelerationDecayFactor = params.LinearAccelerationDecayFactor;
h.MagneticDisturbanceDecayFactor = params.MagneticDisturbanceDecayFactor;
h.ExpectedMagneticFieldStrength = params.ExpectedMagneticFieldStrength;

% Fuse sensor data
qest = h(sensorData.Accelerometer, sensorData.Gyroscope, ...
 sensorData.Magnetometer);

% Compute the orientation error
d = dist(qest, groundTruth.Orientation(1:decim:end));

% Penalize outliers heavily by using the 6th power.
c = sqrt(sqrt(mean(d(10:end,:).^6)));

To create a mex file, you need exemplar input arguments. Create a parameters exemplar and copy the
properties from filt.

p = {'AccelerometerNoise', 'DecimationFactor', 'ExpectedMagneticFieldStrength', ...
 'GyroscopeDriftNoise', 'GyroscopeNoise', 'InitialProcessNoise', 'LinearAccelerationDecayFactor', ...
 'LinearAccelerationNoise', 'MagneticDisturbanceDecayFactor', 'MagneticDisturbanceNoise', ...
 'MagnetometerNoise', 'OrientationFormat', 'SampleRate'}

p = 1×13 cell
 {'AccelerometerNoise'} {'DecimationFactor'} {'ExpectedMagneticFieldStrength'} {'GyroscopeDriftNoise'} {'GyroscopeNoise'} {'InitialProcessNoise'} {'LinearAccelerationDecayFactor'} {'LinearAccelerationNoise'} {'MagneticDisturbanceDecayFactor'} {'MagneticDisturbanceNoise'} {'MagnetometerNoise'} {'OrientationFormat'} {'SampleRate'}

for idx=1:numel(p)
 paramEx.(p{idx}) = filt.(p{idx});
end
disp(paramEx);

 AccelerometerNoise: 5.4972e-07
 DecimationFactor: 10
 ExpectedMagneticFieldStrength: 50
 GyroscopeDriftNoise: 4.0927e-11
 GyroscopeNoise: 0.0041
 InitialProcessNoise: [12×12 double]
 LinearAccelerationDecayFactor: 0.0050
 LinearAccelerationNoise: 1.4370e-04
 MagneticDisturbanceDecayFactor: 0.9872
 MagneticDisturbanceNoise: 0.0360
 MagnetometerNoise: 0.1278
 OrientationFormat: 'quaternion'
 SampleRate: 200

Generate code.

codegen customFcn.m -args {paramEx sensorData, groundTruth}

Code generation successful.

Use the mex function to tune quickly.

cfg = tunerconfig("ahrsfilter", "Cost", "Custom", ...
 "CustomCostFcn", @customFcn_mex, "MaxIterations", 20, "ObjectiveLimit", 0.0001);

6 Featured Examples

6-664

reset(filt);
tune(filt, sensorData, groundTruth, cfg);

 Iteration Parameter Metric
 _________ _________ ______
 1 AccelerometerNoise 0.1581
 1 GyroscopeNoise 0.1544
 1 MagnetometerNoise 0.1544
 1 GyroscopeDriftNoise 0.1544
 1 LinearAccelerationNoise 0.1504
 1 MagneticDisturbanceNoise 0.1498
 1 LinearAccelerationDecayFactor 0.1497
 1 MagneticDisturbanceDecayFactor 0.1474
 2 AccelerometerNoise 0.1474
 2 GyroscopeNoise 0.1437
 2 MagnetometerNoise 0.1436
 2 GyroscopeDriftNoise 0.1436
 2 LinearAccelerationNoise 0.1395
 2 MagneticDisturbanceNoise 0.1387
 2 LinearAccelerationDecayFactor 0.1387
 2 MagneticDisturbanceDecayFactor 0.1367
 3 AccelerometerNoise 0.1367
 3 GyroscopeNoise 0.1332
 3 MagnetometerNoise 0.1332
 3 GyroscopeDriftNoise 0.1332
 3 LinearAccelerationNoise 0.1293
 3 MagneticDisturbanceNoise 0.1284
 3 LinearAccelerationDecayFactor 0.1284
 3 MagneticDisturbanceDecayFactor 0.1271
 4 AccelerometerNoise 0.1270
 4 GyroscopeNoise 0.1243
 4 MagnetometerNoise 0.1242
 4 GyroscopeDriftNoise 0.1242
 4 LinearAccelerationNoise 0.1209
 4 MagneticDisturbanceNoise 0.1201
 4 LinearAccelerationDecayFactor 0.1201
 4 MagneticDisturbanceDecayFactor 0.1193
 5 AccelerometerNoise 0.1193
 5 GyroscopeNoise 0.1180
 5 MagnetometerNoise 0.1178
 5 GyroscopeDriftNoise 0.1178
 5 LinearAccelerationNoise 0.1158
 5 MagneticDisturbanceNoise 0.1152
 5 LinearAccelerationDecayFactor 0.1152
 5 MagneticDisturbanceDecayFactor 0.1147
 6 AccelerometerNoise 0.1147
 6 GyroscopeNoise 0.1147
 6 MagnetometerNoise 0.1143
 6 GyroscopeDriftNoise 0.1143
 6 LinearAccelerationNoise 0.1132
 6 MagneticDisturbanceNoise 0.1123
 6 LinearAccelerationDecayFactor 0.1123
 6 MagneticDisturbanceDecayFactor 0.1118
 7 AccelerometerNoise 0.1118
 7 GyroscopeNoise 0.1113
 7 MagnetometerNoise 0.1108
 7 GyroscopeDriftNoise 0.1108
 7 LinearAccelerationNoise 0.1100

 Custom Tuning of Fusion Filters

6-665

 7 MagneticDisturbanceNoise 0.1093
 7 LinearAccelerationDecayFactor 0.1093
 7 MagneticDisturbanceDecayFactor 0.1093
 8 AccelerometerNoise 0.1093
 8 GyroscopeNoise 0.1088
 8 MagnetometerNoise 0.1084
 8 GyroscopeDriftNoise 0.1084
 8 LinearAccelerationNoise 0.1084
 8 MagneticDisturbanceNoise 0.1084
 8 LinearAccelerationDecayFactor 0.1084
 8 MagneticDisturbanceDecayFactor 0.1084
 9 AccelerometerNoise 0.1084
 9 GyroscopeNoise 0.1076
 9 MagnetometerNoise 0.1072
 9 GyroscopeDriftNoise 0.1072
 9 LinearAccelerationNoise 0.1072
 9 MagneticDisturbanceNoise 0.1072
 9 LinearAccelerationDecayFactor 0.1072
 9 MagneticDisturbanceDecayFactor 0.1071
 10 AccelerometerNoise 0.1071
 10 GyroscopeNoise 0.1068
 10 MagnetometerNoise 0.1065
 10 GyroscopeDriftNoise 0.1065
 10 LinearAccelerationNoise 0.1062
 10 MagneticDisturbanceNoise 0.1060
 10 LinearAccelerationDecayFactor 0.1060
 10 MagneticDisturbanceDecayFactor 0.1059
 11 AccelerometerNoise 0.1059
 11 GyroscopeNoise 0.1057
 11 MagnetometerNoise 0.1055
 11 GyroscopeDriftNoise 0.1055
 11 LinearAccelerationNoise 0.1049
 11 MagneticDisturbanceNoise 0.1048
 11 LinearAccelerationDecayFactor 0.1048
 11 MagneticDisturbanceDecayFactor 0.1048
 12 AccelerometerNoise 0.1048
 12 GyroscopeNoise 0.1047
 12 MagnetometerNoise 0.1045
 12 GyroscopeDriftNoise 0.1045
 12 LinearAccelerationNoise 0.1038
 12 MagneticDisturbanceNoise 0.1036
 12 LinearAccelerationDecayFactor 0.1036
 12 MagneticDisturbanceDecayFactor 0.1035
 13 AccelerometerNoise 0.1035
 13 GyroscopeNoise 0.1035
 13 MagnetometerNoise 0.1033
 13 GyroscopeDriftNoise 0.1033
 13 LinearAccelerationNoise 0.1029
 13 MagneticDisturbanceNoise 0.1027
 13 LinearAccelerationDecayFactor 0.1027
 13 MagneticDisturbanceDecayFactor 0.1027
 14 AccelerometerNoise 0.1027
 14 GyroscopeNoise 0.1024
 14 MagnetometerNoise 0.1021
 14 GyroscopeDriftNoise 0.1021
 14 LinearAccelerationNoise 0.1019
 14 MagneticDisturbanceNoise 0.1018
 14 LinearAccelerationDecayFactor 0.1018

6 Featured Examples

6-666

 14 MagneticDisturbanceDecayFactor 0.1018
 15 AccelerometerNoise 0.1018
 15 GyroscopeNoise 0.1014
 15 MagnetometerNoise 0.1012
 15 GyroscopeDriftNoise 0.1012
 15 LinearAccelerationNoise 0.1012
 15 MagneticDisturbanceNoise 0.1012
 15 LinearAccelerationDecayFactor 0.1011
 15 MagneticDisturbanceDecayFactor 0.1011
 16 AccelerometerNoise 0.1011
 16 GyroscopeNoise 0.1008
 16 MagnetometerNoise 0.1008
 16 GyroscopeDriftNoise 0.1008
 16 LinearAccelerationNoise 0.1006
 16 MagneticDisturbanceNoise 0.1005
 16 LinearAccelerationDecayFactor 0.1004
 16 MagneticDisturbanceDecayFactor 0.1004
 17 AccelerometerNoise 0.1004
 17 GyroscopeNoise 0.1001
 17 MagnetometerNoise 0.1001
 17 GyroscopeDriftNoise 0.1001
 17 LinearAccelerationNoise 0.0998
 17 MagneticDisturbanceNoise 0.0998
 17 LinearAccelerationDecayFactor 0.0996
 17 MagneticDisturbanceDecayFactor 0.0995
 18 AccelerometerNoise 0.0995
 18 GyroscopeNoise 0.0992
 18 MagnetometerNoise 0.0992
 18 GyroscopeDriftNoise 0.0992
 18 LinearAccelerationNoise 0.0990
 18 MagneticDisturbanceNoise 0.0989
 18 LinearAccelerationDecayFactor 0.0987
 18 MagneticDisturbanceDecayFactor 0.0986
 19 AccelerometerNoise 0.0986
 19 GyroscopeNoise 0.0980
 19 MagnetometerNoise 0.0980
 19 GyroscopeDriftNoise 0.0980
 19 LinearAccelerationNoise 0.0980
 19 MagneticDisturbanceNoise 0.0980
 19 LinearAccelerationDecayFactor 0.0978
 19 MagneticDisturbanceDecayFactor 0.0975
 20 AccelerometerNoise 0.0975
 20 GyroscopeNoise 0.0965
 20 MagnetometerNoise 0.0965
 20 GyroscopeDriftNoise 0.0965
 20 LinearAccelerationNoise 0.0964
 20 MagneticDisturbanceNoise 0.0964
 20 LinearAccelerationDecayFactor 0.0964
 20 MagneticDisturbanceDecayFactor 0.0964

Filter the data and show the orientation error.

oEst = filt(sensorData.Accelerometer, sensorData.Gyroscope, sensorData.Magnetometer);
plotPerformance(oEst, groundTruth.Orientation, "Tuned Filter Error - Custom Cost Function");

 Custom Tuning of Fusion Filters

6-667

Supporting Functions

plotPerformance Plot the orientation error

function plotPerformance(est, act, txt)
% Plot the orientation error in degrees in a new figure window.
figure;
plot(rad2deg(dist(est, act(1:10:end))));
ylabel("Degrees")
title(txt);
end

6 Featured Examples

6-668

Wireless Data Streaming and Sensor Fusion Using BNO055
This example shows how to get data from a Bosch BNO055 IMU sensor through an HC-05
Bluetooth® module, and to use the 9-axis AHRS fusion algorithm on the sensor data to compute
orientation of the device. The example creates a figure which gets updated as you move the device.

BNO055 is a 9-axis sensor with accelerometer, gyroscope, and magnetometer. Accelerometer
measures acceleration, gyroscope measures angular velocity, and magnetometer measures magnetic
field in x-, y- and z- axes.

Required MathWorks® Products

• MATLAB®
• MATLAB Support Package for Arduino® Hardware
• Instrument Control Toolbox™
• Sensor Fusion and Tracking Toolbox™ or Navigation Toolbox™

Required Hardware

• Arduino® Uno
• Bosch BNO055 Sensor
• HC-05 Bluetooth® Module

 Wireless Data Streaming and Sensor Fusion Using BNO055

6-669

Hardware Connection

6 Featured Examples

6-670

Connect the SDA, SCL, GND, and the VCC pins of the BNO055 sensor to the corresponding pins on
the Arduino® Uno board with the connections:

• SDA - A4
• SCL - A5
• VCC - +3.3V
• GND - GND

Connect the TX, RX, GND and VCC pins of the HC-05 module to the corresponding pins on the
Arduino® Uno board. This example uses the connections:

• TX – Digital Pin 0 (RX)
• RX – Digital Pin 1 (TX)
• VCC – 5V
• GND – GND

Ensure that the connections to the sensors and Bluetooth® module are intact. It is recommended to
use a BNO055 shield for Arduino Uno (Arduino 9 Axis Motion Shield). See “Troubleshooting Sensors”
(MATLAB Support Package for Arduino Hardware) to debug the sensor related issues.

Setup and Configure Arduino for Bluetooth® Communication

Configure the Arduino Uno board to communicate through Bluetooth® using the arduinosetup
command from MATLAB command prompt. See Setup and Configure Arduino Hardware for steps on
how to configure the Arduino board for communication through Bluetooth®. Make sure to check the
box for I2C Libraries to be included during the Setup.

Create Sensor Object

Create an arduino object.

a = arduino('btspp://98D33230EB9F', 'Uno');

Create the bno055 sensor object in the OperatingMode 'amg'.

 fs = 100; % Sample Rate in Hz
imu = bno055(a,'SampleRate',fs,'OutputFormat','matrix','OperatingMode','amg');

Compensating for Hard Iron and Soft Iron Distortions

Fusion algorithms use magnetometer readings which need to be compensated for magnetic
distortions such as hard iron distortion. Hard iron distortions are produced by materials which create
a magnetic field, resulting in shifting the origin on the response surface. These distortions can be
corrected by subtracting the correction values from the magnetometer readings for each axis. In
order to find the correction values,

1 Rotate the sensor from 0 to 360 degree along each axis.
2 Use the magcal function to obtain the correction coefficients.

These correction values change with the surroundings.

To obtain correction coefficients for both hard iron and soft iron distortions:

ts = tic;
stopTimer = 50;

 Wireless Data Streaming and Sensor Fusion Using BNO055

6-671

https://store.arduino.cc/usa/9-axis-motion-shield
https://www.mathworks.com/help/supportpkg/arduinoio/ug/configure-setup-for-arduino-hardware.html#bvn8yxz-1
https://www.mathworks.com/help/fusion/ref/magcal.html

magReadings=[];
while(toc(ts) < stopTimer)
 % Rotate the sensor along x axis from 0 to 360 degree.
 % Take 2-3 rotations to improve accuracy.
 % For other axes, rotate along that axes.
 [accel,gyro,mag] = read(imu);
 magReadings = [magReadings;mag];
end

[A, b] = magcal(magReadings); % A = 3x3 matrix for soft iron correction
 % b = 3x1 vector for hard iron correction

Aligning the axis of BNO055 sensor with NED Coordinates

Sensor Fusion algorithms used in this example use North-East-Down (NED) as a fixed, parent
coordinate system. In the NED reference frame, the x-axis points north, the y-axis points east, and the
z-axis points down. Depending on the algorithm, north may either be the magnetic north or true
north. The algorithms in this example use the magnetic north. The algorithms used here expect all
the sensors in the object to have their axes aligned with NED convention. The sensor values have to
be inverted so that they are in accordance with the NED coordinates.

Tuning Filter Parameters

The algorithms used in this example, when properly tuned, enable estimation of orientation and are
robust against environmental noise sources. You must consider the situations in which the sensors
are used and tune the filters accordingly. See “Custom Tuning of Fusion Filters” on page 6-659 for
more details related to tuning filter parameters.

The example uses ahrsfilter to demonstrate orientation estimation. See “Determine Orientation Using
Inertial Sensors” for more details related to inertial fusion algorithms.

Accelerometer-Gyroscope-Magnetometer Fusion

An attitude and heading reference system (AHRS) consists of a 9-axis system that uses an
accelerometer, gyroscope, and magnetometer to compute the orientation of the device. The
ahrsfilter produces a smoothly changing estimate of orientation of the device, while correctly
estimating the north direction. The ahrsfilter has the ability to remove gyroscope bias and can
also detect and reject mild magnetic jamming.

The following code snippets use ahrsfilter system object to determine the orientation of the
sensor and create a figure that gets updated as you move the sensor. The initial position of the sensor
should be such that the device x-axis is pointing towards magnetic north, the device y-axis is pointing
to east and the device z-axis is pointing downwards. You could use a cellphone or compass to
determine magnetic north.

% GyroscopeNoise, AccelerometerNoise and MagnetometerNoise are determined from the BNO055 datasheet using the following formula
% NoisePower = OutputNoisePowerDensityrms^2 * Bandwidth

GyroscopeNoiseBNO055 = 3.05e-06; % GyroscopeNoise (variance value) in units of (rad/s)^2
AccelerometerNoiseBNO055 = 67.53e-06; % AccelerometerNoise (variance value)in units of (m/s^2)^2
MagnetometerNoiseBNO055 = 1; %MagnetometerNoise (variance value) in units of uT^2

viewer = HelperOrientationViewer('Title',{'AHRS Filter'});

FUSE = ahrsfilter('SampleRate',imu.SampleRate,'GyroscopeNoise',GyroscopeNoiseBNO055,'AccelerometerNoise',AccelerometerNoiseBNO055,'MagnetometerNoise',MagnetometerNoiseBNO055);

stopTimer=10;

6 Featured Examples

6-672

https://www.mathworks.com/help/fusion/ref/ahrsfilter-system-object.html

After executing the below code snippet, slowly move the sensor and check if the motion in the figure
matches the motion of the sensor. Increase the stopTimer value, if you need to track the orientation
for longer time.

magx_correction = b(1);
magy_correction = b(2);
magz_correction = b(3);

ts = tic;
while(toc(ts) < stopTimer)
 [accel,gyro,mag] = read(imu);
 % Align coordinates in accordance with NED convention
 accel = [-accel(:,1), accel(:,2), accel(:,3)];
 gyro = [gyro(:,1), -gyro(:,2), -gyro(:,3)];
 mag = [(mag(:,1)-magx_correction), -(mag(:,2)- magy_correction), -(mag(:,3)-magz_correction)] * A;
 rotators = FUSE(accel,gyro,mag);
 for j = numel(rotators)
 viewer(rotators(j));
 end
end

If the sensor is stationary at the initial position where the device x-axis points to the magnetic north,
the device y-axis points to the east, and the device z-axis points downwards, the x-axis in the figure
will be parallel to and aligned with the positive x-axis, the y-axis in the figure will be parallel to and
aligned with the positive y-axis, and the z-axis in the figure will be parallel to and aligned with the
positive z-axis.

 Wireless Data Streaming and Sensor Fusion Using BNO055

6-673

Clean Up

When the connection is no longer needed, release and clear the objects.

release(imu);
delete(imu);
clear;

Things to try

You can try this example with other sensors such as InvenSense MPU-6050, MPU-9250, and
STMicroelectronics LSM9DS1.

6 Featured Examples

6-674

Binaural Audio Rendering Using Head Tracking
Track head orientation by fusing data received from an IMU, and then control the direction of arrival
of a sound source by applying head-related transfer functions (HRTF).

In a typical virtual reality setup, the IMU sensor is attached to the user's headphones or VR headset
so that the perceived position of a sound source is relative to a visual cue independent of head
movements. For example, if the sound is perceived as coming from the monitor, it remains that way
even if the user turns his head to the side.

Required Hardware

• Arduino Uno
• Invensense MPU-9250

Hardware Connection

First, connect the Invensense MPU-9250 to the Arduino board. For more details, see Estimating
Orientation Using Inertial Sensor Fusion and MPU-9250.

Create Sensor Object and IMU Filter

Create an arduino object.

a = arduino;

Create the Invensense MPU-9250 sensor object.

imu = mpu9250(a);

Create and set the sample rate of the Kalman filter.

Fs = imu.SampleRate;
imufilt = imufilter('SampleRate',Fs);

Load the ARI HRTF Dataset

When sound travels from a point in space to your ears, you can localize it based on interaural time
and level differences (ITD and ILD). These frequency-dependent ITD and ILD's can be measured and
represented as a pair of impulse responses for any given source elevation and azimuth. The ARI
HRTF Dataset contains 1550 pairs of impulse responses which span azimuths over 360 degrees and
elevations from -30 to 80 degrees. You use these impulse responses to filter a sound source so that it
is perceived as coming from a position determined by the sensor's orientation. If the sensor is
attached to a device on a user's head, the sound is perceived as coming from one fixed place despite
head movements.

First, load the HRTF dataset.

ARIDataset = load('ReferenceHRTF.mat');

Then, get the relevant HRTF data from the dataset and put it in a useful format for our processing.

hrtfData = double(ARIDataset.hrtfData);
hrtfData = permute(hrtfData,[2,3,1]);

Get the associated source positions. Angles should be in the same range as the sensor. Convert the
azimuths from [0,360] to [-180,180].

 Binaural Audio Rendering Using Head Tracking

6-675

https://www.mathworks.com/help/supportpkg/arduinoio/ug/estimating-orientation-using-inertial-sensor-fusion-and-mpu9250.html
https://www.mathworks.com/help/supportpkg/arduinoio/ug/estimating-orientation-using-inertial-sensor-fusion-and-mpu9250.html

sourcePosition = ARIDataset.sourcePosition(:,[1,2]);
sourcePosition(:,1) = sourcePosition(:,1) - 180;

Load Monaural Recording

Load an ambisonic recording of a helicopter. Keep only the first channel, which corresponds to an
omnidirectional recording. Resample it to 48 kHz for compatibility with the HRTF data set.

[heli,originalSampleRate] = audioread('Heli_16ch_ACN_SN3D.wav');
heli = 12*heli(:,1); % keep only one channel

sampleRate = 48e3;
heli = resample(heli,sampleRate,originalSampleRate);

Load the audio data into a SignalSource object. Set the SamplesPerFrame to 0.1 seconds.

sigsrc = dsp.SignalSource(heli, ...
 'SamplesPerFrame',sampleRate/10, ...
 'SignalEndAction','Cyclic repetition');

Set Up the Audio Device

Create an audioDeviceWriter with the same sample rate as the audio signal.

deviceWriter = audioDeviceWriter('SampleRate',sampleRate);

Create FIR Filters for the HRTF coefficients

Create a pair of FIR filters to perform binaural HRTF filtering.

FIR = cell(1,2);
FIR{1} = dsp.FIRFilter('NumeratorSource','Input port');
FIR{2} = dsp.FIRFilter('NumeratorSource','Input port');

Initialize the Orientation Viewer

Create an object to perform real-time visualization for the orientation of the IMU sensor. Call the IMU
filter once and display the initial orientation.

orientationScope = HelperOrientationViewer;
data = read(imu);

qimu = imufilt(data.Acceleration,data.AngularVelocity);
orientationScope(qimu);

6 Featured Examples

6-676

Audio Processing Loop

Execute the processing loop for 30 seconds. This loop performs the following steps:

1 Read data from the IMU sensor.
2 Fuse IMU sensor data to estimate the orientation of the sensor. Visualize the current orientation.
3 Convert the orientation from a quaternion representation to pitch and yaw in Euler angles.
4 Use interpolateHRTF to obtain a pair of HRTFs at the desired position.
5 Read a frame of audio from the signal source.
6 Apply the HRTFs to the mono recording and play the stereo signal. This is best experienced using

headphones.

imuOverruns = 0;
audioUnderruns = 0;
audioFiltered = zeros(sigsrc.SamplesPerFrame,2);

 Binaural Audio Rendering Using Head Tracking

6-677

tic
while toc < 30

 % Read from the IMU sensor.
 [data,overrun] = read(imu);
 if overrun > 0
 imuOverruns = imuOverruns + overrun;
 end

 % Fuse IMU sensor data to estimate the orientation of the sensor.
 qimu = imufilt(data.Acceleration,data.AngularVelocity);
 orientationScope(qimu);

 % Convert the orientation from a quaternion representation to pitch and yaw in Euler angles.
 ypr = eulerd(qimu,'zyx','frame');
 yaw = ypr(end,1);
 pitch = ypr(end,2);
 desiredPosition = [yaw,pitch];

 % Obtain a pair of HRTFs at the desired position.
 interpolatedIR = squeeze(interpolateHRTF(hrtfData,sourcePosition,desiredPosition));

 % Read audio from file
 audioIn = sigsrc();

 % Apply HRTFs
 audioFiltered(:,1) = FIR{1}(audioIn, interpolatedIR(1,:)); % Left
 audioFiltered(:,2) = FIR{2}(audioIn, interpolatedIR(2,:)); % Right
 audioUnderruns = audioUnderruns + deviceWriter(squeeze(audioFiltered));
end

6 Featured Examples

6-678

Cleanup

Release resources, including the sound device.

release(sigsrc)
release(deviceWriter)
clear imu a

 Binaural Audio Rendering Using Head Tracking

6-679

Motion Planning in Urban Environments Using Dynamic
Occupancy Grid Map

This example shows you how to perform dynamic replanning in an urban driving scene using a Frenet
reference path. In this example, you use a dynamic occupancy grid map estimate of the local
environment to find optimal local trajectories.

Introduction

Dynamic replanning for autonomous vehicles is typically done with a local motion planner. The local
motion planner is responsible for generating an optimal trajectory based on the global plan and
information about the surrounding environment. Information about the surrounding environment can
be described mainly in two ways:

1 Discrete set of objects in the surrounding environment with defined geometries.
2 Discretized grid with estimate about free and occupied regions in the surrounding environment.

In the presence of dynamic obstacles in the environment, a local motion planner requires short-term
predictions of the information about the surroundings to assess the validity of the planned
trajectories. The choice of environment representation is typically governed by the upstream
perception algorithm. For planning algorithms, the object-based representation offers a memory-
efficient description of the environment. It also allows for an easier way to define inter-object
relations for behavior prediction. On the other hand, a grid-based approach allows for an object-
model-free representation, which assists in efficient collision-checking in complex scenarios with
large number of objects. The grid-based representation is also less sensitive to imperfections of
object extraction such as false and missed targets. A hybrid of these two approaches is also possible
by extracting object hypothesis from the grid-based representation.

In this example, you represent the surrounding environment as a dynamic occupancy grid map. For
an example using the discrete set of objects, refer to the “Highway Trajectory Planning Using Frenet
Reference Path” (Navigation Toolbox) example. A dynamic occupancy grid map is a grid-based
estimate of the local environment around the ego vehicle. In addition to estimating the probability of
occupancy, the dynamic occupancy grid also estimates the kinematic attributes of each cell, such as
velocity, turn-rate, and acceleration. Further, the estimates from the dynamic grid can be predicted
for a short-time in the future to assess the occupancy of the local environment in the near future. In
this example, you obtain the grid-based estimate of the environment by fusing point clouds from six
lidars mounted on the ego vehicle.

Set Up Scenario and Grid-Based Tracker

The scenario used in this example represents an urban intersection scene and contains a variety of
objects, including pedestrians, bicyclists, cars, and trucks. The ego vehicle is equipped with six
homogenous lidar sensors, each with a field of view of 90 degrees, providing 360-degree coverage
around the ego vehicle. For more details on the scenario and sensor models, refer to the “Grid-Based
Tracking in Urban Environments Using Multiple Lidars” on page 6-619 example. The definition of
scenario and sensors is wrapped in the helper function helperGridBasedPlanningScenario.

% For reproducible results
rng(2020);

% Create scenario, ego vehicle and simulated lidar sensors
[scenario, egoVehicle, lidars] = helperGridBasedPlanningScenario;

6 Featured Examples

6-680

Now, define a grid-based tracker using the trackerGridRFS System object™. The tracker outputs
both object-level and grid-level estimate of the environment. The grid-level estimate describes the
occupancy and state of the local environment and can be obtained as the fourth output from the
tracker. For more details on how to set up a grid-based tracker, refer to the “Grid-Based Tracking in
Urban Environments Using Multiple Lidars” on page 6-619 example.

% Set up sensor configurations for each lidar
sensorConfigs = cell(numel(lidars),1);

% Fill in sensor configurations
for i = 1:numel(sensorConfigs)
 sensorConfigs{i} = helperGetLidarConfig(lidars{i},egoVehicle);
end

% Set up tracker
tracker = trackerGridRFS('SensorConfigurations',sensorConfigs,...
 'HasSensorConfigurationsInput',true,...
 'GridLength',120,...
 'GridWidth',120,...
 'GridResolution',2,...
 'GridOriginInLocal',[-60 -60],...
 'NumParticles',1e5,...
 'NumBirthParticles',2e4,...
 'VelocityLimits',[-15 15;-15 15],...
 'BirthProbability',0.025,...
 'ProcessNoise',5*eye(2),...
 'DeathRate',1e-3,...
 'FreeSpaceDiscountFactor',1e-2,...
 'AssignmentThreshold',8,...
 'MinNumCellsPerCluster',4,...
 'ClusteringThreshold',4,...
 'ConfirmationThreshold',[3 4],...
 'DeletionThreshold',[4 4]);

Set Up Motion Planner

Set up a local motion planning algorithm to plan optimal trajectories in Frenet coordinates along a
global reference path.

Define the global reference path using the referencePathFrenet (Navigation Toolbox) object by
providing the waypoints in the Cartesian coordinate frame of the driving scenario. The reference path
used in this example defines a path that turns right at the intersection.

waypoints = [-110.6 -4.5 0;
 49 -4.5 0;
 55.5 -17.7 -pi/2;
 55.5 -130.6 -pi/2]; % [x y theta]

% Create a reference path using waypoints
refPath = referencePathFrenet(waypoints);

% Visualize the reference path
fig = figure('Units','normalized','Position',[0.1 0.1 0.8 0.8]);
ax = axes(fig);
hold(ax,'on');
plot(scenario,'Parent',ax);
show(refPath,'Parent',ax);

 Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map

6-681

xlim(ax,[-120 80]);
ylim(ax,[-160 40]);

snapnow;

The local motion planning algorithm in this example consists of three main steps:

1 Sample local trajectories
2 Find feasible and collision-free trajectories
3 Choose optimality criterion and select optimal trajectory

The following sections discuss each step of the local planning algorithm and the helper functions used
to execute each step.

Sample Local Trajectories

At each step of the simulation, the planning algorithm generates a list of sample trajectories that the
ego vehicle can choose. The local trajectories are sampled by connecting the current state of the ego
vehicle to desired terminal states. Use the trajectoryGeneratorFrenet (Navigation Toolbox)
object to connect current and terminal states for generating local trajectories. Define the object by
providing the reference path and the desired resolution in time for the trajectory. The object connects
initial and final states in Frenet coordinates using fifth-order polynomials.

connector = trajectoryGeneratorFrenet(refPath,'TimeResolution',0.1);

6 Featured Examples

6-682

The strategy for sampling terminal states in Frenet coordinates often depends on the road network
and the desired behavior of the ego vehicle during different phases of the global path. For more
detailed examples of using different ego behavior, such as cruise-control and car-following, refer to
the "Planning Adaptive Routes Through Traffic" section of the “Highway Trajectory Planning Using
Frenet Reference Path” (Navigation Toolbox) example. In this example, you sample the terminal
states using two different strategies, depending on the location of vehicle on the reference path,
shown as blue and green regions in the following figure.

% Visualize path regions for sampling strategy visualization
pathPoints = closestPoint(refPath, refPath.Waypoints(:,1:2));
roadS = pathPoints(:,end);
intersectionS = roadS(2,end);
intersectionBuffer = 20;
pathGreen = [interpolate(refPath,linspace(0,intersectionS-intersectionBuffer,20));...
 nan(1,6);...
 interpolate(refPath,linspace(intersectionS,roadS(end),100))];
pathBlue = interpolate(refPath,linspace(intersectionS-intersectionBuffer,roadS(2,end),20));
hold(ax,'on');
plot(ax,pathGreen(:,1),pathGreen(:,2),'Color',[0 1 0],'LineWidth',5);
plot(ax,pathBlue(:,1),pathBlue(:,2),'Color',[0 0 1],'LineWidth',5);

snapnow;

When the ego vehicle is in the green region, the following strategy is used to sample local
trajectories. The terminal state of the ego vehicle after ΔT time is defined as:

 Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map

6-683

xEgo ΔT = NaN ṡ 0 d 0 0 ;

where discrete samples for variables are obtained using the following predefined sets:

ΔT ∈ linspace 2, 4, 6 , ṡ ∈ linspace 0, ṡmax, 10 , d ∈ 0 wlane

The use of NaN in the terminal state enables the trajectoryGeneratorFrenet object to
automatically compute the longitudinal distance traveled over a minimum-jerk trajectory. This
strategy produces a set of trajectories that enable the ego vehicle to accelerate up to the maximum
speed limit (ṡmax) rates or decelerate to a full stop at different rates. In addition, the sampled choices
of lateral offset (ddes) allow the ego vehicle to change lanes during these maneuvers.

% Define smax and wlane
speedLimit = 15;
laneWidth = 2.975;

When the ego vehicle is in the blue region of the trajectory, the following strategy is used to sample
local trajectories:

xEgo ΔT = sstop 0 0 0 0 0 ;

where ΔT is chosen to minimize jerk during the trajectory. This strategy enables the vehicle to stop at
the desired distance (sstop) in the right lane with a minimum-jerk trajectory. The trajectory sampling
algorithm is wrapped inside the helper function, helperGenerateTrajectory, attached with this
example.

Finding Feasible and Collision-Free Trajectories

The sampling process described in the previous section can produce trajectories that are
kinematically infeasible and exceed thresholds of kinematic attributes such as acceleration and
curvature. Therefore, you limit the maximum acceleration and speed of the ego vehicle using the
helper function helperKinematicFeasibility on page 6-0 , which checks the feasibility of each
trajectory against these kinematic constraints.

% Define kinematic constraints
accMax = 15;

Further, you set up a collision-validator to assess if the ego vehicle can maneuver on a kinematically
feasible trajectory without colliding with any other obstacles in the environment. To define the
validator, use the helper class HelperDynamicMapValidator. This class uses the
predictMapToTime function of the trackerGridRFS object to get short-term predictions of the
occupancy of the surrounding environment. Since the uncertainty in the estimate increases with time,
configure the validator with a maximum time horizon of 2 seconds.

The predicted occupancy of the environment is converted to an inflated costmap at each step to
account for the size of the ego vehicle. The path planner uses a timestep of 0.1 seconds with a
prediction time horizon of 2 seconds. To reduce computational complexity, the occupancy of the
surrounding environment is assumed to be valid for 5 time steps, or 0.5 seconds. As a result, only 4
predictions are required in the 2-second planning horizon. In addition to making binary decisions
about collision or no collision, the validator also provides a measure of collision probability of the ego
vehicle. This probability can be incorporated into the cost function for optimality criteria to account
for uncertainty in the system and to make better decisions without increasing the time horizon of the
planner.

6 Featured Examples

6-684

vehDims = vehicleDimensions(egoVehicle.Length,egoVehicle.Width);
collisionValidator = HelperDynamicMapValidator('MaxTimeHorizon',2, ... % Maximum horizon for validation
 'TimeResolution',connector.TimeResolution, ... % Time steps between trajectory samples
 'Tracker',tracker, ... % Provide tracker for prediction
 'ValidPredictionSpan',5, ... % Prediction valid for 5 steps
 'VehicleDimensions',vehDims); % Provide dimensions of ego

Choose Optimality Criterion

After validating the feasible trajectories against obstacles or occupied regions of the environment,
choose an optimality criterion for each valid trajectory by defining a cost function for the trajectories.
Different cost functions are expected to produce different behaviors from the ego vehicle. In this
example, you define the cost of each trajectory as

C = Js + Jd + 1000Pc + 100 ṡ ΔT − ṡLimit
2

where:

Js is the jerk in the longitudinal direction of the reference path

Jd is the jerk in the lateral direction of the reference path

Pc is the collision probability obtained by the validator

The cost calculation for each trajectory is defined using the helper function
helperCalculateTrajectoryCosts on page 6-0 . From the list of valid trajectories, the trajectory with
the minimum cost is considered as the optimal trajectory.

Run Scenario, Estimate Dynamic Map, and Plan Local Trajectories

Run the scenario, generate point clouds from all the lidar sensors, and estimate the dynamic
occupancy grid map. Use the dynamic map estimate and its predictions to plan a local trajectory for
the ego vehicle.

% Close original figure and initialize a new display
close(fig);
display = helperGridBasedPlanningDisplay;

% Initial ego state
currentEgoState = [-110.6 -1.5 0 0 15 0];
helperMoveEgoVehicleToState(egoVehicle, currentEgoState);

% Initialize pointCloud outputs from each sensor
ptClouds = cell(numel(lidars),1);
sensorConfigs = cell(numel(lidars),1);

% Simulation Loop
while advance(scenario)
 % Current simulation time
 time = scenario.SimulationTime;

 % Poses of objects with respect to ego vehicle
 tgtPoses = targetPoses(egoVehicle);

 % Simulate point cloud from each sensor
 for i = 1:numel(lidars)

 Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map

6-685

 [ptClouds{i}, isValidTime] = step(lidars{i},tgtPoses,time);
 sensorConfigs{i} = helperGetLidarConfig(lidars{i},egoVehicle);
 end

 % Pack point clouds as sensor data format required by the tracker
 sensorData = packAsSensorData(ptClouds,sensorConfigs,time);

 % Call the tracker
 [tracks, ~, ~, map] = tracker(sensorData,sensorConfigs,time);

 % Update validator's future predictions using current estimate
 step(collisionValidator, currentEgoState, map, time);

 % Sample trajectories using current ego state and some kinematic
 % parameters
 [frenetTrajectories, globalTrajectories] = helperGenerateTrajectory(connector, refPath, currentEgoState, speedLimit, laneWidth, intersectionS, intersectionBuffer);

 % Calculate kinematic feasibility of generated trajectories
 isKinematicsFeasible = helperKinematicFeasibility(frenetTrajectories,speedLimit,accMax);

 % Calculate collision validity of feasible trajectories
 feasibleGlobalTrajectories = globalTrajectories(isKinematicsFeasible);
 feasibleFrenetTrajectories = frenetTrajectories(isKinematicsFeasible);
 [isCollisionFree, collisionProb] = isTrajectoryValid(collisionValidator, feasibleGlobalTrajectories);

 % Calculate costs and final optimal trajectory
 nonCollidingGlobalTrajectories = feasibleGlobalTrajectories(isCollisionFree);
 nonCollidingFrenetTrajectories = feasibleFrenetTrajectories(isCollisionFree);
 nonCollodingCollisionProb = collisionProb(isCollisionFree);
 costs = helperCalculateTrajectoryCosts(nonCollidingFrenetTrajectories, nonCollodingCollisionProb, speedLimit);

 % Find optimal trajectory
 [~,idx] = min(costs);
 optimalTrajectory = nonCollidingGlobalTrajectories(idx);

 % Assemble for plotting
 trajectories = helperAssembleTrajectoryForPlotting(globalTrajectories, ...
 isKinematicsFeasible, isCollisionFree, idx);

 % Update display
 display(scenario, egoVehicle, lidars, ptClouds, tracker, tracks, trajectories, collisionValidator);

 % Move ego with optimal trajectory
 if ~isempty(optimalTrajectory)
 currentEgoState = optimalTrajectory.Trajectory(2,:);
 helperMoveEgoVehicleToState(egoVehicle, currentEgoState);
 else
 % All trajectories either violated kinematic feasibility
 % constraints or resulted in a collision. More behaviors on
 % trajectory sampling may be needed.
 error('Unable to compute optimal trajectory');
 end
end

Results

Analyze the results from the local path planning algorithm and how the predictions from the map
assisted the planner. This animation shows the result of the planning algorithm during the entire

6 Featured Examples

6-686

scenario. Notice that the ego vehicle successfully reached its desired destination and maneuvered
around different dynamic objects, whenever necessary. The ego vehicle also came to a stop at the
intersection due to the regional changes added to the sampling policy.

Next, analyze the local planning algorithm during the first lane change. The snapshots in this section
are captured at time = 4.3 seconds during the simulation.

In this snapshot, the ego vehicle has just started to perform a lane change maneuver into the right
lane.

showSnaps(display, 3, 1);

 Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map

6-687

The snapshot that follows shows the estimate of the dynamic grid at the same time step. The color of
the grid cell denotes the direction of motion of the object occupying that grid cell. Notice that the
cells representing the car in front of the ego vehicle are colored red, denoting that the cells are
occupied with a dynamic object. Also, the car is moving in the positive X direction of the scenario, so
based on the color wheel, the color of the corresponding grid cells is red.

f = showSnaps(display, 2, 1);
if ~isempty(f)
 ax = findall(f,'Type','Axes');
 ax.XLim = [0 40];
 ax.YLim = [-20 20];
 s = findall(ax,'Type','Surf');
 s.XData = 36 + 1/3*(s.XData - mean(s.XData(:)));
 s.YData = 16 + 1/3*(s.YData - mean(s.YData(:)));
end

6 Featured Examples

6-688

Based on the previous image, the planned trajectory of the ego vehicle passes through the occupied
regions of space, representing a collision if you performed a traditional static occupancy validation.
The dynamic occupancy map and the validator, however, account for the dynamic nature of the grid
by validating the state of the trajectory against the predicted occupancy at each time step. The next
snapshot shows the predicted costmap at different prediction steps (ΔT), along with the planned
position of the ego vehicle on the trajectory. The predicted costmap is inflated to account for size of
the ego vehicle. Therefore, if a point object representing the origin of the ego vehicle can be placed
on the occupancy map without any collision, it can be interpreted that the ego vehicle does not collide
with any obstacle. The yellow regions on the costmap denote areas with guaranteed collisions with an
obstacle. The collision probability decays outside the yellow regions exponentially until the end of
inflation region. The blue regions indicate areas with zero probability of collision according to the
current prediction.

Notice that the yellow region representing the car in front of the ego vehicle moves forward on the
costmap as the map is predicted in the future. This reflects that the prediction of occupancy
considers the velocity of objects in the surrounding environment. Also, notice that the cells classified
as static objects remained relatively static on the grid during the prediction. Lastly, notice that the
planned position of the ego vehicle origin does not collide with any occupied regions in the cost map.
This shows that the ego vehicle can successfully maneuver on this trajectory.

f = showSnaps(display, 1, 1);
if ~isempty(f)
ax = findall(f,'Type','Axes');
for i = 1:numel(ax)
 ax(i).XLim = [0 40];

 Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map

6-689

 ax(i).YLim = [-20 20];
end
end

Summary

In this example, you learned how to use the dynamic map predictions from the grid-based tracker,
trackerGridRFS, and how to integrate the dynamic map with a local path planning algorithm to
generate trajectories for the ego vehicle in dynamic complex environments. You also learned how the
dynamic nature of the occupancy can be used to plan trajectories more efficiently in the environment.

Supporting Functions
function sensorData = packAsSensorData(ptCloud, configs, time)
% Pack the sensor data as format required by the tracker
%
% ptCloud - cell array of pointCloud object
% configs - cell array of sensor configurations
% time - Current simulation time

%The lidar simulation returns outputs as pointCloud objects. The Location
%property of the point cloud is used to extract x,y, and z locations of
%returns and pack them as structures with information required by a tracker.
sensorData = struct('SensorIndex',{},...
 'Time', {},...
 'Measurement', {},...
 'MeasurementParameters', {});

6 Featured Examples

6-690

for i = 1:numel(ptCloud)
 % This sensor's point cloud
 thisPtCloud = ptCloud{i};

 % Allows mapping between data and configurations without forcing an
 % ordered input and requiring configuration input for static sensors.
 sensorData(i).SensorIndex = configs{i}.SensorIndex;

 % Current time
 sensorData(i).Time = time;

 % Exctract Measurement as a 3-by-N defining locations of points
 sensorData(i).Measurement = reshape(thisPtCloud.Location,[],3)';

 % Data is reported in the sensor coordinate frame and hence measurement
 % parameters are same as sensor transform parameters.
 sensorData(i).MeasurementParameters = configs{i}.SensorTransformParameters;
end

end

function config = helperGetLidarConfig(lidar, ego)
% Get configuration of the lidar sensor for tracker
%
% config - Configuration of the lidar sensor in the world frame
% lidar - lidarPointCloudGeneration object
% ego - driving.scenario.Actor in the scenario

% Define transformation from sensor to ego
senToEgo = struct('Frame',fusionCoordinateFrameType(1),...
 'OriginPosition',[lidar.SensorLocation(:);lidar.Height],...
 'Orientation',rotmat(quaternion([lidar.Yaw lidar.Pitch lidar.Roll],'eulerd','ZYX','frame'),'frame'),...
 'IsParentToChild',true);

% Define transformation from ego to tracking coordinates
egoToScenario = struct('Frame',fusionCoordinateFrameType(1),...
 'OriginPosition',ego.Position(:),...
 'Orientation',rotmat(quaternion([ego.Yaw ego.Pitch ego.Roll],'eulerd','ZYX','frame'),'frame'),...
 'IsParentToChild',true);

% Assemble using trackingSensorConfiguration.
config = trackingSensorConfiguration(...
 'SensorIndex',lidar.SensorIndex,...
 'IsValidTime', true,...
 'SensorLimits',[lidar.AzimuthLimits;0 lidar.MaxRange],...
 'SensorTransformParameters',[senToEgo;egoToScenario],...
 'DetectionProbability',0.95);

end

function helperMoveEgoVehicleToState(egoVehicle, currentEgoState)
% Move ego vehicle in scenario to a state calculated by the planner
%
% egoVehicle - driving.scenario.Actor in the scenario
% currentEgoState - [x y theta kappa speed acc]

% Set 2-D Position

 Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map

6-691

egoVehicle.Position(1:2) = currentEgoState(1:2);

% Set 2-D Velocity (s*cos(yaw) s*sin(yaw))
egoVehicle.Velocity(1:2) = [cos(currentEgoState(3)) sin(currentEgoState(3))]*currentEgoState(5);

% Set Yaw in degrees
egoVehicle.Yaw = currentEgoState(3)*180/pi;

% Set angular velocity in Z (yaw rate) as v/r
egoVehicle.AngularVelocity(3) = currentEgoState(4)*currentEgoState(5);

end

function isFeasible = helperKinematicFeasibility(frenetTrajectories, speedLimit, aMax)
% Check kinematic feasibility of trajectories
%
% frenetTrajectories - Array of trajectories in Frenet coordinates
% speedLimit - Speed limit (m/s)
% aMax - Maximum acceleration (m/s^2)

isFeasible = false(numel(frenetTrajectories),1);
for i = 1:numel(frenetTrajectories)
 % Speed of the trajectory
 speed = frenetTrajectories(i).Trajectory(:,2);

 % Acceleration of the trajectory
 acc = frenetTrajectories(i).Trajectory(:,3);

 % Is speed valid?
 isSpeedValid = ~any(speed < -0.1 | speed > speedLimit + 1);

 % Is acceleration valid?
 isAccelerationValid = ~any(abs(acc) > aMax);

 % Trajectory feasible if both speed and acc valid
 isFeasible(i) = isSpeedValid & isAccelerationValid;
end

end

function cost = helperCalculateTrajectoryCosts(frenetTrajectories, Pc, smax)
% Calculate cost for each trajectory.
%
% frenetTrajectories - Array of trajectories in Frenet coordinates
% Pc - Probability of collision for each trajectory calculated by validator

n = numel(frenetTrajectories);
Jd = zeros(n,1);
Js = zeros(n,1);
s = zeros(n,1);

for i = 1:n
 % Time
 time = frenetTrajectories(i).Times;

 % resolution
 dT = time(2) - time(1);

6 Featured Examples

6-692

 % Jerk along the path
 dds = frenetTrajectories(i).Trajectory(:,3);
 Js(i) = sum(gradient(dds,time).^2)*dT;

 % Jerk perpendicular to path
 % d2L/dt2 = d/dt(dL/ds*ds/dt)
 ds = frenetTrajectories(i).Trajectory(:,2);
 ddL = frenetTrajectories(i).Trajectory(:,6).*(ds.^2) + frenetTrajectories(i).Trajectory(:,5).*dds;
 Jd(i) = sum(gradient(ddL,time).^2)*dT;

 s(i) = frenetTrajectories(i).Trajectory(end,2);
end

cost = Js + Jd + 1000*Pc(:) + 100*(s - smax).^2;

end

 Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map

6-693

Track-to-Track Fusion for Automotive Safety Applications
This example shows how to fuse tracks from two vehicles to provide a more comprehensive estimate
of the environment than can be seen by each vehicle. The example demonstrates the use of a track-
level fuser and the object track data format. In this example, you use the driving scenario and vision
detection generator from Automated Driving Toolbox™, the radar data generator from the Radar
Toolbox™, and the tracking and track fusion models from Sensor Fusion and Tracking Toolbox™.

Motivation

Automotive safety applications rely on the fusion of data from different sensor systems mounted on
the vehicle. Individual vehicles fuse sensor detections either by using a centralized tracker or by
taking a more decentralized approach and fusing tracks produced by individual sensors. In addition
to intravehicle data fusion, the fusion of data from multiple vehicles provides added benefits, which
include better coverage, situational awareness, and safety [1] on page 6-0 . This intervehicle
sensor fusion approach takes advantage of the variety of sensors and provides better coverage to
each vehicle, because it uses data updated by sensors on other vehicles in the area. Governments and
vehicle manufacturers have long recognized the need to share information between vehicles in order
to increase automotive safety. For example, V2X protocols and cellular communication links are being
developed.

While sensor fusion across multiple vehicles is beneficial, most vehicles are required to meet certain
safety requirements even if only internal sensors are available. Therefore, the vehicle is likely to be
equipped with a tracker, a track fuser, or both. These tracking algorithms provide situational
awareness at the single vehicle level. As a result, the assumption made in this example is that
vehicles share situational awareness by broadcasting tracks and performing track-to-track fusion.

This example demonstrates the benefit of fusing tracks from two vehicles to enhance situational
awareness and safety. This example does not simulate the communications systems. Instead, the
example assumes that a communications system provides the bandwidth required to transmit tracks
between the two vehicles.

Track-to-Track Architecture

The following block diagram depicts the main functions in the two vehicles, where:

• Vehicle 1 has two sensors, each providing detections to a local vehicle tracker. The tracker uses
the detections from the local sensors to track objects and outputs these local tracks to the vehicle
track fuser.

• Vehicle 2 has a single sensor, which is a tracking radar. The tracking radar outputs tracks and
serves as the local tracker for vehicle 2. The tracks from the tracking radar are inputs to the
vehicle track fuser on vehicle 2.

• The track fuser on each vehicle fuses the local vehicle tracks with the tracks received from the
other vehicle's track fuser. After each update, the track fuser on each vehicle broadcasts its fused
tracks, which feed into the next update of the track fuser on the other vehicle.

6 Featured Examples

6-694

In this example, you use a trackerJPDA object to define the vehicle 1 tracker.

% Create the tracker for vehicle 1
v1Tracker = trackerJPDA('TrackerIndex',1, 'DeletionThreshold', [4 4], 'AssignmentThreshold', [100 inf]); % Vehicle 1 tracker
posSelector = [1 0 0 0 0 0; 0 0 1 0 0 0];

In this architecture, the fused tracks from one vehicle update the fused tracks on the other vehicle.
These fused tracks are then broadcast back to the first vehicle. To avoid rumor propagation, be
careful how tracks from another vehicle update the track fuser.

Consider the following rumor propagation example: at some update step, vehicle 1 tracks an object
using its internal sensors. Vehicle 1 then fuses the object track and transmits it to vehicle 2, which
now fuses the track with its own tracks and becomes aware of the object. Up to this point, this is
exactly the goal of track-to-track fusion: to enhance the situational awareness of vehicle 2 with
information from vehicle 1. Since vehicle 2 now knows about the object, it starts broadcasting the
track as well, perhaps for the benefit of another vehicle (not shown in the example).

However, vehicle 1 now receives track information from vehicle 2 about the object that only vehicle 1
actually tracks. So, the track fuser on vehicle 1 must be aware that the tracks of this object it gets
from vehicle 2 do not actually contain any new information updated by an independent source. To
make the distinction between tracks that contain new information and tracks that just repeat
information, you must define vehicle 2 as an external source to the track fuser on vehicle 1. Similarly,
vehicle 1 must be defined as an external source to the track fuser on vehicle 2. Furthermore, you
need to define only tracks that are updated by a track fuser based on information from an internal
source as self-reported. By doing so, the track fuser in each vehicle ignores updates from tracks that
bounce back and forth between the track fusers without any new information in them.

The local tracker of each vehicle tracks objects relative to the vehicle reference frame, called the ego
frame. The track-to-track fusion is done at the scenario frame, which is the global-level frame. The
helper egoToScenario function transforms tracks from the ego frame to the scenario frame.
Similarly, the function scenarioToEgo transforms tracks from the scenario frame to any of the ego

 Track-to-Track Fusion for Automotive Safety Applications

6-695

frames. Both transformations rely on the StateParameters property of the objectTrack objects.
When the trackFuser object calculates the distance of a central track in the scenario frame to a
local track in any frame, it uses the StateParameters of the local track to perform the coordinate
transformation.

To achieve the previously described trackFuser definitions, define the following sources as a
fuserSourceConfiguration object.

% Define sources for each vehicle
v1TrackerConfiguration = fuserSourceConfiguration('SourceIndex',1,'IsInternalSource',true, ... % v1Tracker is internal to v1Fuser
 "CentralToLocalTransformFcn", @scenarioToEgo, 'LocalToCentralTransformFcn', @egoToScenario); % Coordinate transformation
v2FuserConfiguration = fuserSourceConfiguration('SourceIndex',4,'IsInternalSource',false); % v2Fuser is external to v2Fuser
v1Sources = {v1TrackerConfiguration; v2FuserConfiguration};
v2TrackerConfiguration = fuserSourceConfiguration('SourceIndex',2,'IsInternalSource',true, ... % v2Tracker is internal to v2Fuser
 "CentralToLocalTransformFcn", @scenarioToEgo, 'LocalToCentralTransformFcn', @egoToScenario); % Coordinate transformation
v1FuserConfiguration = fuserSourceConfiguration('SourceIndex',3,'IsInternalSource',false); % v1Fuser is external to v2Fuser
v2Sources = {v2TrackerConfiguration; v1FuserConfiguration};

You can now define each vehicle track fuser as a trackFuser object.

stateParams = struct('Frame','Rectangular','Position',[0 0 0],'Velocity',[0 0 0]);
v1Fuser = trackFuser('FuserIndex',3,...
 'AssignmentThreshold', [100 inf], ...
 'MaxNumSources',2,'SourceConfigurations',v1Sources,...
 'StateFusion','Intersection','DeletionThreshold',[3 3],...
 'StateParameters',stateParams);
v2Fuser = trackFuser('FuserIndex',4,...
 'AssignmentThreshold', [100 inf], ...
 'MaxNumSources',2,'SourceConfigurations',v2Sources,'StateFusion',...
 'Intersection','DeletionThreshold',[3 3],...
 'StateParameters',stateParams);

% Initialize the following variables
fusedTracks1 = objectTrack.empty(0,1);
fusedTracks2 = objectTrack.empty(0,1);
wasFuser1Updated = false;
wasFuser2Updated = false;

Define Scenario

The following scenario shows two vehicles driving down a street. Vehicle 1 is the lead vehicle and is
equipped with two forward-looking sensors: a short-range radar sensor and a vision sensor. Vehicle 2,
driving 10 meters behind vehicle 1, is equipped with a long-range radar. The right side of the street
contains parked vehicles. A pedestrian stands between the vehicles. This pedestrian is shown as a dot
at about X = 60 meters.

Due to the short distance between vehicle 2 and vehicle 1, most of the vehicle 2 radar sensor
coverage is occluded by vehicle 1. As a result, most of the tracks that the track fuser on vehicle 2
maintains are first initialized by tracks broadcast from vehicle 1.

% Create the drivingScenario object and the two vehicles
[scenario, vehicle1, vehicle2] = createDrivingScenario;

% Create all the sensors
[sensors, numSensors, attachedVehicle] = createSensors(scenario);

% Create display
[f,plotters] = createV2VDisplay(scenario, sensors, attachedVehicle);

6 Featured Examples

6-696

The following chase plot is seen from the point of view of the second vehicle. An arrow indicates the
position of the pedestrian that is almost entirely occluded by the parked vehicles and the first vehicle.

% Define each vehicle as a combination of an actor, sensors, a tracker, and plotters
v1=struct('Actor',{vehicle1},'Sensors',{sensors(attachedVehicle==1)},'Tracker',{v1Tracker},'DetPlotter',{plotters.veh1DetPlotter},'TrkPlotter',{plotters.veh1TrkPlotter});
v2=struct('Actor',{vehicle2},'Sensors',{sensors(attachedVehicle==2)},'Tracker',{{}},'DetPlotter',{{}},'TrkPlotter',{plotters.veh2TrkPlotter}); % No detections or tracker on Vehicle 2

Run Simulation

The following code runs the simulation.

running = true;

% For repeatable results, set the random number seed
s = rng;
rng(2019)
snaptimes = [0.5, 2.8, 4.4, 6.3, inf];
snaps = cell(numel(snaptimes,1));
i = 1;
f.Visible = 'on';
while running && ishghandle(f)
 time = scenario.SimulationTime;

 % Detect and track at the vehicle level
 [tracks1,wasTracker1Updated] = detectAndTrack(v1,time,posSelector);
 [tracks2,wasTracker2Updated] = detectAndTrack(v2,time,posSelector);

 % Keep the tracks from the previous fuser update
 oldFusedTracks1 = fusedTracks1;
 oldFusedTracks2 = fusedTracks2;

 % Update the fusers
 if wasTracker1Updated || wasFuser2Updated
 tracksToFuse1 = [tracks1;oldFusedTracks2];

 Track-to-Track Fusion for Automotive Safety Applications

6-697

 if isLocked(v1Fuser) || ~isempty(tracksToFuse1)
 [fusedTracks1,~,~,info1] = v1Fuser(tracksToFuse1,time);
 wasFuser1Updated = true;
 pos = getTrackPositions(fusedTracks1,posSelector);
 ids = string([fusedTracks1.TrackID]');
 plotTrack(plotters.veh1FusePlotter,pos,ids);
 else
 wasFuser1Updated = false;
 fusedTracks1 = objectTrack.empty(0,1);
 end
 else
 wasFuser1Updated = false;
 fusedTracks1 = objectTrack.empty(0,1);
 end
 if wasTracker2Updated || wasFuser1Updated
 tracksToFuse2 = [tracks2;oldFusedTracks1];
 if isLocked(v2Fuser) || ~isempty(tracksToFuse2)
 [fusedTracks2,~,~,info2] = v2Fuser(tracksToFuse2,time);
 wasFuser2Updated = true;
 pos = getTrackPositions(fusedTracks2,posSelector);
 ids = string([fusedTracks2.TrackID]');
 plotTrack(plotters.veh2FusePlotter,pos,ids);
 else
 wasFuser2Updated = false;
 fusedTracks2 = objectTrack.empty(0,1);
 end
 else
 wasFuser2Updated = false;
 fusedTracks2 = objectTrack.empty(0,1);
 end

 % Update the display
 updateV2VDisplay(plotters, scenario, sensors, attachedVehicle)

 % Advance the scenario one time step and exit the loop if the scenario is complete
 running = advance(scenario);

 % Capture an image of the frame at specified times
 if time >= snaptimes(i)
 snaps{i} = takesnap(f);
 i = i + 1;
 end
end

6 Featured Examples

6-698

The figure shows the scene and tracking results at the end of the scenario. Subsequent sections of
this example analyze the tracking results at key times.

Analyze Tracking at Beginning of Simulation

When the simulation begins, vehicle 1 detects the vehicles parked on the right side of the street.
Then, vehicle 1 tracker confirms the tracks associated with the parked vehicles. At this time, the only
object detected and tracked by vehicle 2 tracker is vehicle 1, which is immediately in front of it. Once
the vehicle 1 track fuser confirms the tracks, it broadcasts them, and the vehicle 2 track fuser fuses
them. As a result, vehicle 2 becomes aware of the parked vehicles before it can detect them on its
own.

showsnap(snaps,1)

 Track-to-Track Fusion for Automotive Safety Applications

6-699

Analyze Tracking of Pedestrian at Side of Street

As the simulation continues, vehicle 2 is able to detect and track the vehicles parked at the side as
well and fuses them with the tracks coming from vehicle 1. Vehicle 2 is able to detect and track the
pedestrian about 4 seconds into the simulation, and vehicle 2 fuses the track associated with the
pedestrian around 4.4 seconds into the simulation (see snapshot 2). However, it takes vehicle 2 about
two seconds before it can detect and track the pedestrian by its own sensors (see snapshot 3).
Detecting a pedestrian in the street two seconds earlier can markedly improve safety.

showsnap(snaps,2)

6 Featured Examples

6-700

showsnap(snaps,3)

 Track-to-Track Fusion for Automotive Safety Applications

6-701

Avoiding Rumor Propagation

When the two vehicles communicate tracks to each other, there is a risk that they will continue
communicating information about objects that they do not detect anymore just by repeating what the
other vehicle communicated. This situation is called rumor propagation.

As the vehicles pass the objects, and these objects go out of their field of view, the fused tracks
associated with these objects are dropped by both trackers (see snapshot 4). Dropping the tracks
demonstrates that the fused tracks broadcast back and forth between the two vehicles are not used
to propagate rumors.

showsnap(snaps,4)

6 Featured Examples

6-702

% Restart the driving scenario to return the actors to their initial positions
restart(scenario);

% Release all the sensor objects so they can be used again
for sensorIndex = 1:numSensors
 release(sensors{sensorIndex});
end

% Return the random seed to its previous value
rng(s)

Summary

In this example, you saw how track-to-track fusion can enhance the situational awareness and
increase the safety in automotive applications. You saw how to set up a trackFuser to perform
track-to-track fusion and how to define sources as either internal or external by using the
fuserSourceConfiguration object. By doing so, you avoid rumor propagation and keep only the
fused tracks that are really observed by each vehicle to be maintained.

 Track-to-Track Fusion for Automotive Safety Applications

6-703

References

[1] Duraisamy, B., T. Schwarz, and C. Wohler. “Track Level Fusion Algorithms for Automotive Safety
Applications.” In 2013 International Conference on Signal Processing , Image Processing & Pattern
Recognition, 179–84, 2013. https://doi.org/10.1109/ICSIPR.2013.6497983.

Supporting Functions

createDrivingScenario

Create a driving scenario defined in the Driving Scenario Designer app.

function [scenario, egoVehicle, secondVehicle] = createDrivingScenario
% Construct a drivingScenario object
scenario = drivingScenario('SampleTime', 0.1);

% Add all road segments
roadCenters = [50.8 0.5 0; 253.4 1.5 0];
roadWidth = 12;
road(scenario, roadCenters, roadWidth);

roadCenters = [100.7 -100.6 0; 100.7 103.7 0];
road(scenario, roadCenters);

roadCenters = [201.1 -99.2 0; 199.7 99.5 0];
road(scenario, roadCenters);

% Add the ego vehicle
egoVehicle = vehicle(scenario, 'ClassID', 1, 'Position', [65.1 -0.9 0], 'PlotColor', [0 0.7410 0.4470]);
waypoints = [71 -0.5 0; 148.7 -0.5 0];
speed = 12;
trajectory(egoVehicle, waypoints, speed);

% Add the second vehicle
secondVehicle = vehicle(scenario, 'ClassID', 1, 'Position', [55.1 -0.9 0]);
waypoints = [61 -0.5 0; 138.7 -0.5 0];
speed = 12;
trajectory(secondVehicle, waypoints, speed);

% Add the parked cars
vehicle(scenario, 'ClassID', 1, 'Position', [111.0 -3.6 0]);
vehicle(scenario, 'ClassID', 1, 'Position', [140.6 -3.6 0]);
vehicle(scenario, 'ClassID', 1, 'Position', [182.6 -3.6 0]);
vehicle(scenario, 'ClassID', 1, 'Position', [211.3 -4.1 0]);

% Add pedestrian
actor(scenario, 'ClassID', 4, 'Length', 0.5, 'Width', 0.5, ...
 'Height', 1.7, 'Position', [130.3 -2.7 0], 'RCSPattern', [-8 -8;-8 -8]);

% Add parked truck
vehicle(scenario, 'ClassID', 2, 'Length', 8.2, 'Width', 2.5, ...
 'Height', 3.5, 'Position', [117.5 -3.5 0]);
end

createSensors

Create the sensors used in the scenario and list their attachments to vehicles.

6 Featured Examples

6-704

https://doi.org/10.1109/ICSIPR.2013.6497983

function [sensors, numSensors, attachedVehicle] = createSensors(scenario)
% createSensors Returns all sensor objects to generate detections
% Units used in createSensors and createDrivingScenario
% Distance/Position - meters
% Speed - meters/second
% Angles - degrees
% RCS Pattern - dBsm

% Assign into each sensor the physical and radar profiles for all actors
profiles = actorProfiles(scenario);

% Vehicle 1 radar reports clustered detections
sensors{1} = radarDataGenerator('No scanning', 'SensorIndex', 1, 'UpdateRate', 10, ...
 'MountingLocation', [3.7 0 0.2], 'RangeLimits', [0 50], 'FieldOfView', [60 5], ...
 'RangeResolution', 2.5, 'AzimuthResolution', 4, ...
 'Profiles', profiles, 'HasOcclusion', true, 'HasFalseAlarms', false, ...
 'TargetReportFormat', 'Clustered detections');

% Vehicle 2 radar reports tracks
sensors{2} = radarDataGenerator('No scanning', 'SensorIndex', 2, 'UpdateRate', 10, ...
 'MountingLocation', [3.7 0 0.2], 'RangeLimits', [0 120], 'FieldOfView', [30 5], ...
 'RangeResolution', 2.5, 'AzimuthResolution', 4, ...
 'Profiles', profiles, 'HasOcclusion', true, 'HasFalseAlarms', false, ...
 'TargetReportFormat', 'Tracks', 'DeletionThreshold', [3 3]);

% Vehicle 1 vision sensor reports detections
sensors{3} = visionDetectionGenerator('SensorIndex', 3, ...
 'MaxRange', 100, 'SensorLocation', [1.9 0], 'DetectorOutput', 'Objects only', ...
 'ActorProfiles', profiles);
attachedVehicle = [1;2;1];
numSensors = numel(sensors);
end

scenarioToEgo

Perform coordinate transformation from scenario to ego coordinates.

trackInScenario has StateParameters defined to transform it from scenario coordinates to ego
coordinates.

The state uses the constant velocity model [x;vx;y;vy;z;vz].

function trackInEgo = scenarioToEgo(trackInScenario)
egoPosInScenario = trackInScenario.StateParameters.OriginPosition;
egoVelInScenario = trackInScenario.StateParameters.OriginVelocity;
stateInScenario = trackInScenario.State;
stateShift = [egoPosInScenario(1);egoVelInScenario(1);egoPosInScenario(2);egoVelInScenario(2);egoPosInScenario(3);egoVelInScenario(3)];
stateInEgo = stateInScenario - stateShift;
trackInEgo = objectTrack('UpdateTime',trackInScenario.UpdateTime,'State',stateInEgo,'StateCovariance',trackInScenario.StateCovariance,'StateParameters',trackInScenario.StateParameters);
end

egoToScenario

Perform coordinate transformation from ego to scenario coordinates.

trackInEgo has StateParameters defined to transform it from ego coordinates to scenario
coordinates.

 Track-to-Track Fusion for Automotive Safety Applications

6-705

The state uses the constant velocity model [x;vx;y;vy;z;vz].

function trackInScenario = egoToScenario(trackInEgo)
egoPosInScenario = trackInEgo.StateParameters.OriginPosition;
egoVelInScenario = trackInEgo.StateParameters.OriginVelocity;
stateInScenario = trackInEgo.State;
stateShift = [egoPosInScenario(1);egoVelInScenario(1);egoPosInScenario(2);egoVelInScenario(2);egoPosInScenario(3);egoVelInScenario(3)];
stateInEgo = stateInScenario + stateShift;
trackInScenario = objectTrack('UpdateTime',trackInEgo.UpdateTime,'State',stateInEgo,'StateCovariance',trackInEgo.StateCovariance,'StateParameters',trackInEgo.StateParameters);
end

detectAndTrack

This function is used for collecting all the detections from the sensors in one vehicle and updating the
tracker with them.

The agent is a structure that contains the actor information and the sensors, tracker, and plotter to
plot detections and vehicle tracks.

function [tracks,wasTrackerUpdated] = detectAndTrack(agent,time,posSelector)
% Create detections from the vehicle
poses = targetPoses(agent.Actor);
[detections,isValid] = vehicleDetections(agent.Actor.Position,agent.Sensors,poses,time,agent.DetPlotter);

% Update the tracker to get tracks from sensors that reported detections
if isValid
 agent.Tracker.StateParameters = struct(...
 'Frame','Rectangular', ...
 'OriginPosition', agent.Actor.Position, ...
 'OriginVelocity', agent.Actor.Velocity);
 tracks = agent.Tracker(detections,time);
 tracksInScenario = tracks;
 for i = 1:numel(tracks)
 tracksInScenario(i) = egoToScenario(tracks(i));
 end
 pos = getTrackPositions(tracksInScenario,posSelector);
 plotTrack(agent.TrkPlotter,pos)
 wasTrackerUpdated = true;
else
 tracks = objectTrack.empty(0,1);
 wasTrackerUpdated = false;
end

% Get additional tracks from tracking sensors
[sensorTracks,wasSensorTrackerUpdated] = vehicleTracks(agent.Actor,agent.Sensors,poses,time,agent.TrkPlotter);
tracks = vertcat(tracks,sensorTracks);
wasTrackerUpdated = wasTrackerUpdated || wasSensorTrackerUpdated;
end

vehicleDetections

Collect the detections from all the sensors attached to this vehicle that return detections.

function [objectDetections,isValid] = vehicleDetections(position, sensors, poses, time, plotter)
numSensors = numel(sensors);
objectDetections = {};
isValidTime = false(1, numSensors);

6 Featured Examples

6-706

% Generate detections for each sensor
for sensorIndex = 1:numSensors
 sensor = sensors{sensorIndex};
 if isa(sensor, 'visionDetectionGenerator') || ~strcmpi(sensor.TargetReportFormat,'Tracks')
 [objectDets, ~, sensorConfig] = sensor(poses, time);
 if islogical(sensorConfig)
 isValidTime(sensorIndex) = sensorConfig;
 else
 isValidTime(sensorIndex) = sensorConfig.IsValidTime;
 end
 objectDets = cellfun(@(d) setAtt(d), objectDets, 'UniformOutput', false);
 numObjects = numel(objectDets);
 objectDetections = [objectDetections; objectDets(1:numObjects)]; %#ok<AGROW>
 end
end
isValid = any(isValidTime);

% Plot detections
if numel(objectDetections)>0
 detPos = cellfun(@(d)d.Measurement(1:2), objectDetections, 'UniformOutput', false);
 detPos = cell2mat(detPos')' + position(1:2);
 plotDetection(plotter, detPos);
end
end

function d = setAtt(d)
% Set the attributes to be a structure
d.ObjectAttributes = struct;
% Keep only the position measurement and remove velocity
if numel(d.Measurement)==6
 d.Measurement = d.Measurement(1:3);
 d.MeasurementNoise = d.MeasurementNoise(1:3,1:3);
 d.MeasurementParameters{1}.HasVelocity = false;
end
end

vehicleTracks

Collect all the tracks from sensors that report tracks on the vehicle.

function [tracks,wasTrackerUpdated] = vehicleTracks(actor, sensors, poses, time, plotter)
% Create detections from the vehicle
numSensors = numel(sensors);
tracks = objectTrack.empty;
isValidTime = false(1, numSensors);

% Generate detections for each sensor
for sensorIndex = 1:numSensors
 sensor = sensors{sensorIndex};
 if isa(sensor, 'radarDataGenerator') && strcmpi(sensor.TargetReportFormat,'Tracks')
 [sensorTracks, ~, sensorConfig] = sensor(poses, time);
 if islogical(sensorConfig)
 isValidTime(sensorIndex) = sensorConfig;
 else
 isValidTime(sensorIndex) = sensorConfig.IsValidTime;
 end
 numObjects = numel(sensorTracks);
 tracks = [tracks; sensorTracks(1:numObjects)]; %#ok<AGROW>

 Track-to-Track Fusion for Automotive Safety Applications

6-707

 end
end
wasTrackerUpdated = any(isValidTime);

if ~wasTrackerUpdated % No vehicle tracking sensor udpated
 return
end

% Add vehicle position and velocity to track state parameters
for i = 1:numel(tracks)
 tracks(i).StateParameters.OriginPosition = tracks(i).StateParameters.OriginPosition + actor.Position';
 tracks(i).StateParameters.OriginVelocity = tracks(i).StateParameters.OriginVelocity + actor.Velocity';
end

% Plot tracks
if numel(tracks)>0
 trPos = arrayfun(@(t)t.State([1,3]), tracks, 'UniformOutput', false);
 trPos = cell2mat(trPos')' + actor.Position(1:2);
 plotTrack(plotter, trPos);
end
end

6 Featured Examples

6-708

Detect and Track LEO Satellite Constellation with Ground
Radars

This example shows how to import a Two-Line Element (TLE) file of a satellite constellation, simulate
radar detections of the constellation, and track the constellation.

The task of populating and maintaining a catalog of space objects orbiting Earth is crucial in space
surveillance. This task consists of several processes: detecting and identifying new objects and
adding them to the catalog, updating known objects orbits in the catalog, tracking orbit changes
throughout their lifetime, and predicting reentries in the atmosphere. In this example, we are study
how to detect and track new satellites and add them to a catalog.

To guarantee safe operations in space and prevent collisions with other satellites or known debris, it
important to correctly detect and track newly launched satellites. Space agencies typically share
prelaunch information, which can be used to select a search strategy. A Low Earth Orbit (LEO)
satellite search strategy consisting of fence-type radar systems is commonly used. A fence-type radar
system searches a finite volume in space and detects satellites as they pass through its field of view.
This strategy can detect and track newly launched constellation quickly. [1]

Importing a satellite constellation from a TLE file

Two-Line Element sets are a common data format to save orbital information of satellites. You can use
the satelliteScenario object to import satellite orbits defined in a TLE file. By default, the
imported satellite orbits are propagated using the SGP4 orbit propagation algorithm which provides
good accuracy for LEO objects. In this example, these orbits provide with the ground truth to test the
radar tracking system capability to detect newly launched satellites.

% Create a satellite scenario
satscene = satelliteScenario;
% Add satellites from TLE file.
tleFile = "leoSatelliteConstellation.tle";
constellation = satellite(satscene, tleFile);

Use the satellite scenario viewer to visualize the constellation.

play(satscene);

Simulating synthetic detections and track constellation

Modeling space surveillance radars

Define two stations with fan-shaped radar beams looking into space. The fans cut through the
satellite orbits to maximize the number of detections. The radar stations located on North America
form an East-West fence.

% First station coordinates in LLA
station1 = [48 -80 0];

% Second station coordinates in LLA
station2 = [50 -117 0];

Each station is equipped with a radar, which is modeled by using a fusionRadarSensor object. In
order to detect satellites in the LEO range, the radar has the following requirements:

• Detecting a 10 dBsm object up to 2000 km away

 Detect and Track LEO Satellite Constellation with Ground Radars

6-709

• Resolving objects horizontally and vertically with a precision of 100 m at 2000 km range
• Having a field of view of 120 degrees in azimuth and 30 degrees in elevation
• Looking up into space

% Create fan-shaped monostatic radars
fov = [120;40];
radar1 = fusionRadarSensor(1,...
 'UpdateRate',0.1,... 10 sec
 'ScanMode','No scanning',...
 'MountingAngles',[0 90 0],... look up
 'FieldOfView',fov,... degrees
 'ReferenceRange',2000e3,... m
 'RangeLimits', [0 2000e3], ... m
 'ReferenceRCS', 10,... dBsm
 'HasFalseAlarms',false,...
 'HasNoise', true,...
 'HasElevation',true,...
 'AzimuthResolution',0.03,... degrees
 'ElevationResolution',0.03,... degrees
 'RangeResolution',2000, ... m % accuracy ~= 2000 * 0.05 (m)
 'DetectionCoordinates','Sensor Spherical',...
 'TargetReportFormat','Detections');

radar2 = clone(radar1);
radar2.SensorIndex = 2;

Radar Processing Chain

In this example, several coordinate conversions and axes transformation are performed to properly
run the radar tracking chain. The diagram below illustrates how the inputs defined above are
transformed and passed to the radar.

In the first step, you calculate each satellite pose in the local radar station NED axes. You achieve this
by first obtaining the ground station ECEF pose and converting the satellite position and velocity to
the ECEF coordinates. The radar input is obtained by taking the differences between the satellite
pose and the ground station pose and rotating the differences into ground station local NED axes. See
the assembleRadarInputs supporting function for the implementation details.

In the second step, you add the required information to the detection object so that the tracker can
operate with an ECEF state. You use the MeasurementParameters property in each object
detection to achieve that purpose, as shown in the addMeasurementParams supporting function.

6 Featured Examples

6-710

Defining a tracker

The radar models you defined above output detections. To estimate the satellite orbits, you use a
tracker. The Sensor Fusion and Tracking Toolbox™ provides a variety of multi-object trackers. In this
example, you choose a Joint Probabilistic Data Association (JPDA) tracker because it offers a good
balance of tracking performance and computational cost.

You need to define a tracking filter for the tracker. You can use a lower fidelity model than SGP4, such
as a Keplerian integration of the equation of motion, to track the satellite. Often, the lack of fidelity in
the motion model of targets is compensated by measurement updates and incorporating process
noise in the filter. The supporting function initKeplerUKF defines the tracking filter.

% Define the tracker
tracker = trackerJPDA('FilterInitializationFcn',@initKeplerUKF,...
 'HasDetectableTrackIDsInput',true,...
 'ClutterDensity',1e-40,...
 'AssignmentThreshold',1e4,...
 'DeletionThreshold',[5 8],...
 'ConfirmationThreshold',[5 8]);

Running the simulation

In the remainder of this example, you step through the scenario to simulate radar detections and
track satellites. This section uses the trackingGlobeViewer for visualization. You use this class to
display sensor and tracking data with uncertainty ellipses and show the true position of each satellite.

viewer = trackingGlobeViewer('ShowDroppedTracks',false, 'PlatformHistoryDepth',700);

% Define coverage configuration of each radar and visualize it on the globe
ned1 = dcmecef2ned(station1(1), station1(2));
ned2 = dcmecef2ned(station2(1), station2(2));
covcon(1) = coverageConfig(radar1,lla2ecef(station1),quaternion(ned1,'rotmat','frame'));
covcon(2) = coverageConfig(radar2,lla2ecef(station2),quaternion(ned2, 'rotmat','frame'));
plotCoverage(viewer, covcon, 'ECEF');

You first generate the entire history of the states of the constellation over 5 hours. Then, you simulate
radar detections and generate tracks in a loop.

satscene.StopTime = satscene.StartTime + hours(5);
satscene.SampleTime = 10;
numSteps = ceil(seconds(satscene.StopTime - satscene.StartTime)/satscene.SampleTime);

% Get constellation positions and velocity over the course of the simulation
plats = repmat(...
 struct('PlatformID',0,'Position',[0 0 0], 'Velocity', [0 0 0]),...
 numSteps, 40);
for i=1:numel(constellation)
 [pos, vel] = states(constellation(i),'CoordinateFrame',"ECEF");
 for j=1:numSteps
 plats(j,i).Position = pos(:,j)';
 plats(j,i).Velocity = vel(:,j)';
 plats(j,i).PlatformID = i;
 end
end

% Initialize tracks and tracks log
confTracks = objectTrack.empty(0,1);

 Detect and Track LEO Satellite Constellation with Ground Radars

6-711

trackLog = cell(1,numSteps);

% Initialize radar plots
radarplt = helperRadarPlot(fov);

% Set random seed for reproducible results
s = rng;
rng(2020);
step = 0;
while step < numSteps
 time = step*satscene.SampleTime;
 step = step + 1;

 % Generate detections of the constellation following the radar
 % processing chain
 targets1 = assembleRadarInputs(station1, plats(step,:));
 [dets1,numdets1] = radar1(targets1, time);
 dets1 = addMeasurementParams(dets1,numdets1,station1);

 targets2 = assembleRadarInputs(station2, plats(step,:));
 [dets2, numdets2] = radar2(targets2, time);
 dets2 = addMeasurementParams(dets2, numdets2, station2);

 detections = [dets1; dets2];
 updateRadarPlots(radarplt,targets1, targets2 ,dets1, dets2)

 % Generate and update tracks
 detectableInput = isDetectable(tracker,time, covcon);
 if ~isempty(detections) || isLocked(tracker)
 [confTracks,~,~,info] = tracker(detections,time,detectableInput);
 end
 trackLog{step} = confTracks;

 % Update viewer
 plotPlatform(viewer, plats(step,:),'ECEF', 'Color',[1 0 0],'LineWidth',1);
 plotDetection(viewer, detections,'ECEF');
 plotTrack(viewer, confTracks, 'ECEF','Color',[0 1 0], 'LineWidth',3);

end

6 Featured Examples

6-712

The plot above shows the orbits (blue dots) and the detections (red circles) from the point of view of
each radar.

% Restore previous random seed state
rng(s);

figure;
snapshot(viewer);

 Detect and Track LEO Satellite Constellation with Ground Radars

6-713

After 5 hours of tracking, about half the constellation is tracked successfully. Maintaining tracks with
a partial orbit coverage is challenging since satellites can often stay undetected for long periods of
time in this configuration. In this example, there are only two radar stations. Additional tracking
stations are expected to generate better tracking performance. The assignment metrics, which
evaluate the tracking performance by comparing between the true objects and the tracks, are shown
below.

% Show Assignment metrics
truthIdFcn = @(x)[x.PlatformID];

tam = trackAssignmentMetrics('DistanceFunctionFormat','custom',...
 'AssignmentDistanceFcn',@distanceFcn,...
 'DivergenceDistanceFcn',@distanceFcn,...
 'TruthIdentifierFcn',truthIdFcn,...
 'AssignmentThreshold',1000,...
 'DivergenceThreshold',2000);

for i=1:numSteps
 % Extract the tracker and ground truth at the i-th tracker update
 tracks = trackLog{i};
 truths = plats(i,:);
 % Extract summary of assignment metrics against tracks and truths
 [trackAM,truthAM] = tam(tracks, truths);
end

6 Featured Examples

6-714

% Show cumulative metrics for each individual recorded truth object
results = truthMetricsTable(tam);
results(:,{'TruthID','AssociatedTrackID','BreakLength','EstablishmentLength'})

ans=40×4 table
 TruthID AssociatedTrackID BreakLength EstablishmentLength
 _______ _________________ ___________ ___________________

 1 57 5 232
 2 45 680 598
 3 29 0 664
 4 61 11 492
 5 18 0 436
 6 54 5 807
 7 22 0 513
 8 47 6 675
 9 42 0 1221
 10 56 0 1500
 11 49 0 1339
 12 40 0 1056
 13 NaN 0 1800
 14 NaN 0 1800
 15 NaN 0 1800
 16 NaN 0 1800
 ⋮

The table above lists 40 satellites in the launched constellation and shows the tracked satellites with
associated track IDs. A track ID of value NaN indicates that the satellite is not tracked by the end of
the simulation. This either means that the orbit of the satellite did not pass through the field of view
of one of the two radars or the track of the satellite has been dropped. The tracker can drop a track
due to an insufficient number of initial detections, which leads to a large uncertainty on the estimate.
Alternately, the tracker can drop the track if the satellite is not re-detected soon enough, such that
the lack of updates leads to divergence and eventually deletion.

Summary

In this example, you have learned how to use the satelliteScenario object from the Aerospace
Toolbox™ to import orbit information from TLE files. You propagated the satellite trajectories using
SGP4 and visualized the scenario using the Satellite Scenario Viewer. You learned how to use the
radar and tracker models from the Sensor Fusion and Tracking Toolbox™ to model a space
surveillance radar tracking system. The constructed tracking system can predict the estimated orbit
of each satellite using a low fidelity model.

Supporting functions

initKeplerUKF initializes an Unscented Kalman filter using the Keplerian motion model.

function filter = initKeplerUKF(detection)

radarsphmeas = detection.Measurement;
[x, y, z] = sph2cart(deg2rad(radarsphmeas(1)),deg2rad(radarsphmeas(2)),radarsphmeas(3));
radarcartmeas = [x y z];
Recef2radar = detection.MeasurementParameters.Orientation;
ecefmeas = detection.MeasurementParameters.OriginPosition + radarcartmeas*Recef2radar;
% This is equivalent to:

 Detect and Track LEO Satellite Constellation with Ground Radars

6-715

% Ry90 = [0 0 -1 ; 0 1 0; 1 0 0]; % frame rotation of 90 deg around y axis
% nedmeas(:) = Ry90' * radarcartmeas(:);
% ecefmeas = lla2ecef(lla) + nedmeas * dcmecef2ned(lla(1),lla(2));
initState = [ecefmeas(1); 0; ecefmeas(2); 0; ecefmeas(3); 0];

sigpos = 2;% m
sigvel = 0.5;% m/s^2

filter = trackingUKF(@keplerorbit,@cvmeas,initState,...
 'StateCovariance', diag(repmat([1000, 10000].^2,1,3)),...
 'ProcessNoise',diag(repmat([sigpos, sigvel].^2,1,3)));

end

function state = keplerorbit(state,dt)
% keplerorbit performs numerical integration to predict the state of
% Keplerian bodies. The state is [x;vx;y;vy;z;vz]

% Runge-Kutta 4th order integration method:
k1 = kepler(state);
k2 = kepler(state + dt*k1/2);
k3 = kepler(state + dt*k2/2);
k4 = kepler(state + dt*k3);

state = state + dt*(k1+2*k2+2*k3+k4)/6;

 function dstate=kepler(state)
 x =state(1,:);
 vx = state(2,:);
 y=state(3,:);
 vy = state(4,:);
 z=state(5,:);
 vz = state(6,:);

 mu = 398600.4405*1e9; % m^3 s^-2
 omega = 7.292115e-5; % rad/s

 r = norm([x y z]);
 g = mu/r^2;

 % Coordinates are in a non-intertial frame, account for Coriolis
 % and centripetal acceleration
 ax = -g*x/r + 2*omega*vy + omega^2*x;
 ay = -g*y/r - 2*omega*vx + omega^2*y;
 az = -g*z/r;
 dstate = [vx;ax;vy;ay;vz;az];
 end
end

isDetectable is used in the example to determine which tracks are detectable at a given time.

function detectInput = isDetectable(tracker,time,covcon)

if ~isLocked(tracker)
 detectInput = zeros(0,1,'uint32');
 return
end
tracks = tracker.predictTracksToTime('all',time);

6 Featured Examples

6-716

if isempty(tracks)
 detectInput = zeros(0,1,'uint32');
else
 alltrackid = [tracks.TrackID];
 isDetectable = zeros(numel(tracks),numel(covcon),'logical');
 for i = 1:numel(tracks)
 track = tracks(i);
 pos_scene = track.State([1 3 5]);
 for j=1:numel(covcon)
 config = covcon(j);
 % rotate position to sensor frame:
 d_scene = pos_scene(:) - config.Position(:);
 scene2sens = rotmat(config.Orientation,'frame');
 d_sens = scene2sens*d_scene(:);
 [az,el] = cart2sph(d_sens(1),d_sens(2),d_sens(3));
 if abs(rad2deg(az)) <= config.FieldOfView(1)/2 && abs(rad2deg(el)) < config.FieldOfView(2)/2
 isDetectable(i,j) = true;
 else
 isDetectable(i,j) = false;
 end
 end
 end

 detectInput = alltrackid(any(isDetectable,2))';
end
end

assembleRadarInput is used to construct the constellation poses in each radar body frame. This is
the first step described in the diagram.

function targets = assembleRadarInputs(station, constellation)
% For each satellite in the constellation, derive its pose with respect to
% the radar frame.
% inputs:
% - station : LLA vector of the radar ground station
% - constellation : Array of structs containing the ECEF position
% and ECEF velocity of each satellite
% outputs:
% - targets : Array of structs containing the pose of each
% satellite with respect to the radar, expressed in the local
% ground radar frame (NED)

% Template structure for the outputs which contains all the field required
% by the radar step method
targetTemplate = struct(...
 'PlatformID', 0, ...
 'ClassID', 0, ...
 'Position', zeros(1,3), ...
 'Velocity', zeros(1,3), ...
 'Acceleration', zeros(1,3), ...
 'Orientation', quaternion(1,0,0,0), ...
 'AngularVelocity', zeros(1,3),...
 'Dimensions', struct(...
 'Length', 0, ...
 'Width', 0, ...
 'Height', 0, ...
 'OriginOffset', [0 0 0]), ...
 'Signatures', {{rcsSignature}});

 Detect and Track LEO Satellite Constellation with Ground Radars

6-717

% First fill in the current satellite ECEF pose
targetPoses = repmat(targetTemplate, 1, numel(constellation));
for i=1:numel(constellation)
 targetPoses(i).Position = constellation(i).Position;
 targetPoses(i).Velocity = constellation(i).Velocity;
 targetPoses(i).PlatformID = constellation(i).PlatformID;
 % Orientation and angular velocity are left null, assuming satellite to
 % be point targets with a uniform rcs
end

% Then derive the radar pose in ECEF based on the ground station location
Recef2station = dcmecef2ned(station(1), station(2));
radarPose.Orientation = quaternion(Recef2station,'rotmat','frame');
radarPose.Position = lla2ecef(station);
radarPose.Velocity = zeros(1,3);
radarPose.AngularVelocity = zeros(1,3);

% Finally, take the difference and rotate each vector to the ground station
% NED axes
targets = targetPoses;
for i=1: numel(targetPoses)
 thisTgt = targetPoses(i);
 pos = Recef2station*(thisTgt.Position(:) - radarPose.Position(:));
 vel = Recef2station*(thisTgt.Velocity(:) - radarPose.Velocity(:)) - cross(radarPose.AngularVelocity(:),pos(:));
 angVel = thisTgt.AngularVelocity(:) - radarPose.AngularVelocity(:);
 orient = radarPose.Orientation' * thisTgt.Orientation;

 % Store into target structure array
 targets(i).Position(:) = pos;
 targets(i).Velocity(:) = vel;
 targets(i).AngularVelocity(:) = angVel;
 targets(i).Orientation = orient;
end
end

addMeasurementParam implements step 2 in the radar chain process as described in the diagram.

function dets = addMeasurementParams(dets, numdets, station)
% Add radar station information to the measurement parameters
Recef2station = dcmecef2ned(station(1), station(2));
for i=1:numdets
 dets{i}.MeasurementParameters.OriginPosition = lla2ecef(station);
 dets{i}.MeasurementParameters.IsParentToChild = true; % parent = ecef, child = radar
 dets{i}.MeasurementParameters.Orientation = dets{i}.MeasurementParameters.Orientation' * Recef2station;
end
end

distanceFcn is used with the assignment metrics to evaluate the tracking assignment.

function d = distanceFcn(track, truth)

estimate = track.State([1 3 5 2 4 6]);
true = [truth.Position(:) ; truth.Velocity(:)];
cov = track.StateCovariance([1 3 5 2 4 6], [1 3 5 2 4 6]);
d = (estimate - true)' / cov * (estimate - true);
end

6 Featured Examples

6-718

Reference

[1] Sridharan, Ramaswamy, and Antonio F. Pensa, eds. Perspectives in Space Surveillance. MIT Press,
2017.

 Detect and Track LEO Satellite Constellation with Ground Radars

6-719

Highway Vehicle Tracking with Multipath Radar Reflections
This example shows the challenges associated with tracking vehicles on a highway in the presence of
multipath radar reflections. It also shows a ghost filtering approach used with an extended object
tracker to simultaneously filter ghost detections and track objects.

Introduction

Automotive radar sensors are robust against adverse environment conditions encountered during
driving, such as fog, snow, rain, and strong sunlight. Automotive radar sensors have this advantage
because they operate at substantially large wavelengths compared to visible-wavelength sensors,
such as lidar and camera. As a side effect of using large wavelengths, surfaces around the radar
sensor act like mirrors and produce undesired detections due to multipath propagation. These
detections are often referred to as ghost detections because they seem to originate from regions
where no target exists. This example shows you the impact of these multipath reflections on
designing and configuring an object tracking strategy using radar detections. For more details
regarding multipath phenomenon and simulation of ghost detections, see the “Simulate Radar Ghosts
Due to Multipath Return” (Radar Toolbox) example.

In this example, you simulate the multipath detections from radar sensors in an urban highway
driving scenario. The highway is simulated with a barrier on both sides of the road. The scenario
consists of an ego vehicle and four other vehicles driving on the highway. The ego vehicle is equipped
with four radar sensors providing 360-degree coverage. This image shows the configuration of the
radar sensors and detections from one scan of the sensors. The red regions represent the field of view
of the radar sensors and the black dots represent the detections.

6 Featured Examples

6-720

The radar sensors report detections from the vehicles and from the barriers that are on both sides of
the highway. The radars also report detections that do not seem to originate from any real object in
the scenario. These are ghost detections due to multipath propagation of radar signals. Object
trackers assume all detections originate from real objects or uniformly distributed random clutter in
the field of view. Contrary to this assumption, the ghost detections are typically more persistent than
clutter and behave like detections from real targets. Due to this reason, an object tracking algorithm
is very likely to generate false tracks from these detections. It is important to filter out these
detections before processing the radar scan with a tracker.

 Highway Vehicle Tracking with Multipath Radar Reflections

6-721

Generate Sensor Data

The scenario used in this example is created using the drivingScenario class. You use the
radarDataGenerator (Radar Toolbox) System object™ to simulate radar returns from a direct path
and from reflections in the scenario. The HasGhosts property of the sensor is specified as true to
simulate multipath reflections. The creation of the scenario and the sensor models is wrapped in the
helper function helperCreateMultipathDrivingScenario, which is attached with this example.
The data set obtained by sensor simulation is recorded in a MAT file that contains returns from the
radar and the corresponding sensor configurations. To record the data for a different scenario or
sensor configuration, you can use the following command:

 helperRecordData(scenario, egoVehicle, sensors, fName);

% Create the scenario
[scenario, egoVehicle, sensors] = helperCreateMultipathDrivingScenario;

% Load the recorded data
load('MultiPathRadarScenarioRecording.mat','detectionLog','configurationLog');

Radar Processing Chain: Radar Detections to Track List

In this section, you set up an integrated algorithm to simultaneously filter radar detections and track
extended objects. The block diagram illustrates the radar processing chain used in this example.

Next, you learn about each of these steps and the corresponding helper functions.

Doppler analysis

The radar sensors report the measured relative radial velocity of the reflected signals. In this step,
you utilize the measured radial velocity of the detections to determine if the target is static or
dynamic [1]. In the previous radar scan, a large percentage of the radar detections originate from the
static environment around the ego vehicle. Therefore, classifying each detection as static or dynamic
greatly helps to improve the understanding of the scene. You use the helper function
helperClassifyStaticDynamic to classify each detection as static or dynamic.

Static reflectors

The static environment is also typically responsible for a large percentage of the ghost reflections
reported by the radar sensors. After segmenting the data set and finding static detections, you
process them to find 2-D line segments in the coordinate frame of the ego vehicle. First, you use the

6 Featured Examples

6-722

DBSCAN algorithm to cluster the static detections into different clusters around the ego vehicle.
Second, you fit a 2-D line segment on each cluster. These fitted line segments define possible
reflection surfaces for signals propagating back to the radar. You use the helper function
helperFindStaticReflectors to find these 2-D line segments from static detections.

Occlusion analysis

Reflection from surfaces produce detections from the radar sensor that seem to originate behind the
reflector. After segmenting the dynamic detections from the radar, you use simple occlusion analysis
to determine if the radar detection is occluded behind a possible reflector. Because signals can be
reflected by static or dynamic objects, you perform occlusion analysis in two steps. First, dynamic
detections are checked against occlusion with the 2-D line segments representing the static
reflectors. You use the helper function helperClassifyGhostsUsingReflectors to classify if the
detection is occluded by a static reflector. Second, the algorithm uses information about predicted
tracks from an extended tracking algorithm to check for occlusion against dynamic objects in the
scene. The algorithm uses only confirmed tracks from the tracker to prevent overfiltering of the radar
detections in the presence of tentative or false tracks. You use the helper function
helperClassifyGhostsUsingTracks to classify if the detection is occluded by a dynamic object.

This entire algorithm for processing radar detections and classifying them is then wrapped into a
larger helper function, helperClassifyRadarDetections, which classifies and segments the
detection list into four main categories:

1 Target detections – These detections are classified to originate from real dynamic targets in the
scene.

2 Environment detections – These detections are classified to originate from the static
environment.

3 Ghost (Static) – These detections are classified to originate from dynamic targets but reflected
via the static environment.

4 Ghost (Dynamic) – These detections are classified to originate from dynamic targets but reflected
via other dynamic objects.

Setup GGIW-PHD Extended Object Tracker

The target detections are processed with an extended object tracker. In this example, you use a
gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) extended object tracker.
The GGIW-PHD tracker models the target with an elliptical shape and the measurement model
assumes that the detections are uniformly distributed inside the extent of the target. This model
allows a target to accept two-bounce ghost detections, which have a higher probability of being
misclassified as a real target. These two-bounce ghost detections also report a Doppler measurement
that is inconsistent with the actual motion of the target. When these ghost detections and real target
detections from the same object are estimated to belong to the same partition of detections, the
incorrect Doppler information can potentially cause the track estimate to diverge.

To reduce this problem, the tracker processes the range-rate measurements with higher
measurement noise variance to account for this imperfection in the target measurement model. The
tracker also uses a combination of a high assignment threshold and low merging threshold. A high
assignment threshold allows the tracker to reduce the generation of new components from ghost
targets detections, which are misclassified as target detections. A low merging threshold enables the
tracker to discard corrected components (hypothesis) of a track, which might have diverged due to
correction with ghost detections.

 Highway Vehicle Tracking with Multipath Radar Reflections

6-723

You set up the tracker using the trackerPHD System object™. For more details about extended
object trackers, refer to the “Extended Object Tracking of Highway Vehicles with Radar and Camera”
(Automated Driving Toolbox) example.

% Configuration of the sensors from the recording to set up the tracker
[~, sensorConfigurations] = helperAssembleData(detectionLog{1},configurationLog{1});

% Configure the tracker to use the GGIW-PHD filter with constant turn-rate motion model
for i = 1:numel(sensorConfigurations)
 sensorConfigurations{i}.FilterInitializationFcn = @helperInitGGIWFilter;
 sensorConfigurations{i}.SensorTransformFcn = @ctmeas;
end

% Create the tracker using trackerPHD with Name-value pairs
tracker = trackerPHD('SensorConfigurations', sensorConfigurations,...
 'PartitioningFcn',@(x)helperMultipathExamplePartitionFcn(x,2,5),...
 'AssignmentThreshold',450,...
 'ExtractionThreshold',0.8,...
 'ConfirmationThreshold',0.85,...
 'MergingThreshold',25,...
 'DeletionThreshold',1e-2,...
 'BirthRate',1e-2,...
 'HasSensorConfigurationsInput',true...
);

Run Scenario and Track Objects

Next, you advance the scenario, use the recorded measurements from the sensors, and process them
using the previously described algorithm. You analyze the performance of the tracking algorithm by
using the generalized optimal subpattern assignment (GOSPA) metric. You also analyze the
performance of the classification filtering algorithm by estimating a confusion matrix between true
and estimated classification of radar detections. You obtain the true classification information about
the detections using the helperTrueClassificationInfo helper function.

% Create trackGOSPAMetric object to calculate GOSPA metric
gospaMetric = trackGOSPAMetric('Distance','custom', ...
 'DistanceFcn',@helperGOSPADistance, ...
 'CutoffDistance',35);

% Create display for visualization of results
display = helperMultiPathTrackingDisplay;

% Predicted track list for ghost filtering
predictedTracks = objectTrack.empty(0,1);

% Confusion matrix
confMat = zeros(5,5,numel(detectionLog));

% GOSPA metric
gospa = zeros(4,numel(detectionLog));

% Ground truth
groundTruth = scenario.Actors(2:end);

for i = 1:numel(detectionLog)
 % Advance scene for visualization of ground truth
 advance(scenario);

6 Featured Examples

6-724

 % Current time
 time = scenario.SimulationTime;

 % Detections and sensor configurations
 [detections, configurations] = helperAssembleData(detectionLog{i},configurationLog{i});

 % Predict confirmed tracks to current time for classifying ghosts
 if isLocked(tracker)
 predictedTracks = predictTracksToTime(tracker,'confirmed',time);
 end

 % Classify radar detections as targets, ghosts, or static environment
 [targets, ghostStatic, ghostDynamic, static, reflectors, classificationInfo] = helperClassifyRadarDetections(detections, egoVehicle, predictedTracks);

 % Pass detections from target and sensor configurations to the tracker
 confirmedTracks = tracker(targets, configurations, time);

 % Visualize the results
 display(egoVehicle, sensors, targets, confirmedTracks, ghostStatic, ghostDynamic, static, reflectors);

 % Calculate GOSPA metric
 [gospa(1, i),~,~,gospa(2,i),gospa(3,i),gospa(4,i)] = gospaMetric(confirmedTracks, groundTruth);

 % Get true classification information and generate confusion matrix
 trueClassificationInfo = helperTrueClassificationInfo(detections);
 confMat(:,:,i) = helperConfusionMatrix(trueClassificationInfo, classificationInfo);
end

Results

Animation and snapshot analysis

The animation that follows shows the result of the radar data processing chain. The black ellipses
around vehicles represent estimated tracks. The radar detections are visualized with four different
colors depending on their predicted classification from the algorithm. The black dots in the
visualization represent static radar target detections. Notice that these detections are overlapped by
black lines, which represent the static reflectors found using the DBSCAN algorithm. The maroon
markers represent the detections processed by the extended object tracker, while the green and blue
markers represent radar detections classified as reflections via static and dynamic objects,
respectively. Notice that the tracker is able to maintain a track on all four vehicles during the
scenario.

 Highway Vehicle Tracking with Multipath Radar Reflections

6-725

Next, you analyze the performance of the algorithm using different snapshots captured during the
simulation. The snapshot below is captured at 3 seconds and shows the situation in front of the ego
vehicle. At this time, the ego vehicle is approaching the slow-moving truck, and the left radar sensor
observes reflections of these objects via the left barrier. These detections appear as mirrored
detections of these objects in the barrier. Notice that the black line estimated as a 2-D reflector is in
the line of sight of these detections. Therefore, the algorithm is able to correctly classify these
detections as ghost targets reflected off static objects.

f = showSnaps(display,1:2,1);
if ~isempty(f)
 ax = findall(f,'Type','Axes','Tag','birdsEyePlotAxes');
 ax.XLim = [-10 30];
 ax.YLim = [-10 20];
end

6 Featured Examples

6-726

Next, analyze the performance of the algorithm using the snapshot captured at 4.3 seconds. At this
time, the ego vehicle is even closer to the truck and the truck is approximately halfway between the
green vehicle and the ego vehicle. During these situations, the left side of the truck acts as a strong
reflector and generates ghost detections. The detections on the right half of the green vehicle are
from two-bounce detections off of the green vehicle as the signal travels back to the sensor after
reflecting off the truck. The algorithm is able to classify these detections as ghost detections
generated from dynamic object reflections because the estimated extent of the truck is in the direct
line of sight of these detections.

f = showSnaps(display,1:2,2);
if ~isempty(f)
 ax = findall(f,'Type','Axes','Tag','birdsEyePlotAxes');
 ax.XLim = [-10 30];
 ax.YLim = [-10 20];
end

 Highway Vehicle Tracking with Multipath Radar Reflections

6-727

Also notice the passing vehicle denoted by the yellow car on the left of the ego vehicle. The
detections, which seem to originate from the nonvisible surface of the yellow vehicle, are two-bounce
detections of the barriers, reflected via the front face of the passing vehicle. These ghost detections
are misclassified as target detections because they seem to originate from inside the estimated extent
of the vehicle. At the same location, the detections that lie beyond the barrier are also two-bounce
detections of the front face when the signal is reflected from the barrier and returns to the sensor.
Since these detections lie beyond the extent of the track and the track is in the direct line of sight,
they are classified as ghost detections from reflections off dynamic objects.

Performance analysis

Quantitatively assess the performance of the tracking algorithm by using the GOSPA metric and its
associated components. A lower value of the metric denotes better tracking performance. In the
figure below, the Missed-target component of the metric remains zero after a few steps in the
beginning, representing establishment delay of the tracker as well as an occluded target. The zero
value of the component shows that no targets were missed by the tracker. The False-tracks
component of the metric increased around for 1 second around 85th time step. This denotes a false

6 Featured Examples

6-728

track confirmed by the tracker for a short duration from ghost detections incorrectly classified as a
real target.

figure;
plot(gospa','LineWidth',2);
legend('GOSPA','Localization GOSPA','Missed-target GOSPA','False-tracks GOSPA');

Similar to the tracking algorithm, you also quantitatively analyze the performance of the radar
detection classification algorithm by using a confusion matrix [2]. The rows shown in the table denote
the true classification information of the radar detections and the columns represent the predicted
classification information. For example, the second element of the first row defines the percentage of
target detections predicted as ghosts from static object reflections.

More than 90% of the target detections are classified correctly. However, a small percentage of the
target detections are misclassified as ghosts from dynamic reflections. Also, approximately 3% of
ghosts from static object reflections and 20% of ghosts from dynamic object reflections are
misclassified as targets and sent to the tracker for processing. A common situation when this occurs
in this example is when the detections from two-bounce reflections lie inside the estimated extent of
the vehicle. Further, the classification algorithm used in this example is not designed to find false
alarms or clutter in the scene. Therefore, the fifth column of the confusion matrix is zero. Due to
spatial distribution of the false alarms inside the field of view, the majority of false alarm detections
are either classified as reflections from static objects or dynamic objects.

% Accumulate confusion matrix over all steps
confusionMatrix = sum(confMat,3);
numElements = sum(confusionMatrix,2);

 Highway Vehicle Tracking with Multipath Radar Reflections

6-729

numElemsTable = array2table(numElements,'VariableNames',{'Number of Detections'},'RowNames',{'Targets','Ghost (S)','Ghost (D)','Environment','Clutter'});
disp('True Information');disp(numElemsTable);

True Information
 Number of Detections

 Targets 1974
 Ghost (S) 3203
 Ghost (D) 847
 Environment 27039
 Clutter 123

% Calculate percentages
percentMatrix = confusionMatrix./numElements*100;

percentMatrixTable = array2table(round(percentMatrix,2),'RowNames',{'Targets','Ghost (S)','Ghost (D)','Environment','Clutter'},...
 "VariableNames",{'Targets','Ghost (S)','Ghost (D)', 'Environment','Clutter'});

disp('True vs Predicted Confusion Matrix (%)');disp(percentMatrixTable);

True vs Predicted Confusion Matrix (%)
 Targets Ghost (S) Ghost (D) Environment Clutter
 _______ _________ _________ ___________ _______

 Targets 90.53 0.61 8.36 0.51 0
 Ghost (S) 3.18 86.26 10.24 0.31 0
 Ghost (D) 17 0 83 0 0
 Environment 1.05 2.88 3.96 92.1 0
 Clutter 13.82 67.48 17.07 1.63 0

Summary

In this example, you simulated radar detections due to multipath propagation in an urban highway
driving scenario. You configured a data processing algorithm to simultaneously filter ghost detections
and track vehicles on the highway. You also analyzed the performance of the tracking algorithm and
the classification algorithm using the GOSPA metric and confusion matrix.

References

[1] Prophet, Robert, et al. "Instantaneous Ghost Detection Identification in Automotive Scenarios."
2019 IEEE Radar Conference (RadarConf). IEEE, 2019.

[2] Kraus, Florian, et al. "Using machine learning to detect ghost images in automotive radar." 2020
IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2020.

6 Featured Examples

6-730

Track-Level Fusion of Radar and Lidar Data in Simulink
Autonomous systems require precise estimation of their surroundings to support decision making,
planning, and control. High-resolution sensors such as radar and lidar are frequently used in
autonomous systems to assist in estimation of the surroundings. These sensors generally output
tracks. Outputting tracks instead of detections and fusing the tracks together in a decentralized
manner provide several benefits, including low false alarm rates, higher target estimation accuracy, a
low bandwidth requirement, and low computational costs. This example shows you how to track
objects from measurements of a radar and a lidar sensor and how to fuse them using a track-level
fusion scheme in Simulink®. You process the radar measurements using a Gaussian Mixture
Probability Hypothesis Density (GM-PHD) tracker and the lidar measurements using a Joint
Probabilistic Data Association (JPDA) tracker. You further fuse these tracks using a track-level fusion
scheme. The example closely follows the “Track-Level Fusion of Radar and Lidar Data” on page 6-497
MATLAB® example.

Overview of Model

load_system('TrackLevelFusionOfRadarAndLidarDataInSimulink');
set_param('TrackLevelFusionOfRadarAndLidarDataInSimulink','SimulationCommand','update');
open_system('TrackLevelFusionOfRadarAndLidarDataInSimulink');

The model has six subsystems, each implementing a part of the algorithm.

• Scenario and Sensor Simulation
• Radar Tracking Algorithm
• Lidar Tracking Algorithm
• Track Level Fusion
• Performance Analysis
• Visualization

 Track-Level Fusion of Radar and Lidar Data in Simulink

6-731

Scenario and Sensor Simulation

The scenario recording for this example is captured from the scenario described in “Track-Level
Fusion of Radar and Lidar Data” on page 6-497 MATLAB example. The Scenario Reader block reads a
prerecorded scenario file and generates actors and ego vehicle position data as Simulink.Bus
(Simulink) objects. In this scenario, the ego vehicle is mounted with four 2-D radar sensors. The front
and rear radar sensors have a field of view of 45 degrees. The left and right radar sensors have a field
of view of 150 degrees. Each radar has a resolution of 6 degrees in azimuth and 2.5 meters in range.
The ego vehicle is also mounted with one 3-D lidar sensor with a field of view of 360 degrees in
azimuth and 40 degrees in elevation. The lidar has a resolution of 0.2 degrees in azimuth and 1.25
degrees in elevation (32 elevation channels). The Radar Detection Generator block generates radar
detections and the Lidar Point Cloud Generator block generates point clouds. Detections from all four
radar sensors are grouped together with the Detection Concatenation block and the Digital Clock

6 Featured Examples

6-732

block is used to simulate time. Sensor configurations and the simulated sensor data is visualized in
the animation that follows. Notice that the radars have higher resolution than objects and therefore
return multiple measurements per object. Also notice that the lidar interacts with the actors as well
as the road surface to return multiple points.

 Track-Level Fusion of Radar and Lidar Data in Simulink

6-733

Radar Tracking Algorithm

Radars generally have higher resolution than the objects and return multiple detections per object.
Conventional trackers such as Global Nearest Neighbor (GNN) and Joint Probabilistic Data
Association (JPDA) assume that the sensors return at most one detection per object per scan.
Therefore, the detections from high-resolution sensors must be either clustered before processing
them with conventional trackers or must be processed using extended object trackers. Extended

6 Featured Examples

6-734

object trackers do not require preclustering of detections. Generally, extended object trackers offer
better estimation of objects since they handle clustering and data association simultaneously.

In this example, you use a Gaussian mixture probability hypothesis density (GM-PHD) extended
object tracker for radar tracking. The tracker block takes detections, prediction time, and sensor
configurations as input and outputs confirmed tracks as a Simulink.Bus (Simulink) object.
Detections from the radar are preprocessed to include ego vehicle INS information in the Radar
Detection Preprocessing MATLAB Function (Simulink) Block. The Sensor Configuration Reader block
provides Sensor Configuration to the tracker block. The block is implemented by using MATLAB
System (Simulink) block. Code for this block is defined in the HelperSourceConfigReader class.

This visualization shows radar tracking at a single time step. Notice that the radar sensors report
multiple detections per object and the GM-PHD tracker forms two-dimensional rectangular tracks
corresponding to each object.

Lidar Tracking Algorithm

 Track-Level Fusion of Radar and Lidar Data in Simulink

6-735

Lidar sensors have high resolution capabilities, and each scan from the sensor contains many points,
commonly known as a point cloud . This raw data must be preprocessed to extract objects. The
preprocessing is performed using a RANSAC-based plane-fitting algorithm and bounding boxes are
fitted using a Euclidian-based distance clustering algorithm. For more information about the
algorithm, refer to the “Track Vehicles Using Lidar: From Point Cloud to Track List” on page 6-351
example.

The Bounding Box Detector block is implemented using a MATLAB System (Simulink) block. Code for
this block is defined in a helper class, HelperBoundingBoxDetectorBlk. The block accepts point
cloud locations and a prediction time as input and outputs bounding box detections corresponding to
obstacles and segmentation information. Detections are processed using a conventional JPDA tracker,
configured with an interacting multiple model (IMM) filter. The IMM filter is implemented using the
helper function helperInitIMMUKFFilter, which is specified as the Filter initialization function
parameter of the block. Detections from lidar sensor are preprocessed to include ego vehicle INS
information in the Lidar Detection Preprocessing MATLAB Function (Simulink) block.

The Calculate Detectability block calculates the Detectable TrackIDs input for the tracker and
outputs an two-column array. The first column represents the TrackIDs of the tracks and the second
column specifies their detection probability by the sensor and bounding box detector. The block is
implemented using a MATLAB Function (Simulink) block.

This visualization shows the lidar tracking at a single time step. The Bounding Box Detector block
generates detections from the point cloud, and the JPDA tracker forms three-dimensional cuboid
tracks corresponding to each object.

6 Featured Examples

6-736

Track-Level Fusion

The track fusion algorithm is implemented using the Track-To-Track Fuser block. The block takes a
prediction time, rectangular radar tracks, and cuboid lidar tracks as input and outputs fused tracks.
It uses a traditional track-to-track association-based fusion scheme and GNN assignment to create a
single hypothesis. The Track Concatenation block combines tracks from both sources and generates a
single track bus. The fuser source configuration for radar and lidar is set using the SourceConfig
variable through the PreLoadFcn callback. See “Model Callbacks” (Simulink) for more information
about callback functions. The state fusion algorithm for this example is implemented in the
helperRadarLidarFusionFunction helper function and specified as the 'custom fusion
function' property.

This visualization shows track fusion at a single time step. The fused tracks are closer to the actual
objects than the individual sensor tracks, which indicates that track accuracy increased after fusion
of track estimates from both sensors.

 Track-Level Fusion of Radar and Lidar Data in Simulink

6-737

Performance Analysis

In this example, you assess the performance of each algorithm using the Generalized Optimal
Subpattern Assignment (GOSPA) metric. The GOSPA metric aims to evaluate the performance of a
tracking system with a scalar cost.

The GOSPA metric can be calculated with the following equation

where is the number of ground truths, is the number of estimated tracks, is the
cutoff distance threshold, is the base distance between track and truth calculated by a distance
function specified in the Distance property, is order of the metric and is the alpha parameter of
the metric, defined from the block mask.

A lower value of the metric indicates better performance of the tracking algorithm. To use the GOSPA
metric with custom motion models like the one used in this example, you set the Distance property
to custom and define a distance function between a track and its associated ground truth. These
distance functions are defined in helperRadarDistance and helperLidarDistance helper files.
The Ground Truth Reader block provides truth data at each time step. The block is implemented
using a MATLAB System (Simulink) block and code for this block is defined in the
HelperGroundTruthReader class. Finally, the GOSPA score for radar tracking, lidar tracking, and
track fusion algorithms are grouped together.

6 Featured Examples

6-738

Visualization

The Visualization block is implemented using a MATLAB System (Simulink) block. Code for this block
is defined in the helper class helperLidarRadarTrackFusionDisplayBlock. The block uses the
RunTimeObject parameter of the blocks to display their outputs. See “Access Block Data During
Simulation” (Simulink) for further information on how to access block outputs during simulation.

This animation shows the entire run every three time steps. Each three tracking system (radar, lidar,
and track-level fusion) was able to track all four vehicles in the scenario without confirming any false
tracks.

The GOSPA metric is visualized using the scope block. The x-axis in the figure that follows represents
time and y-axis represents the GOSPA score. Each unit on the x-axis represents 10 time steps in the
scenario. The track-level localization accuracy of each tracker can be quantitatively assessed with the
GOSPA metric at each time step. A lower value indicates better tracking accuracy. As there were no
missed targets or false tracks, the metric captures the localization errors resulting from the state
estimation of each vehicle. Each component of the GOSPA metric can also be selected as a block
output and visualized separately.

 Track-Level Fusion of Radar and Lidar Data in Simulink

6-739

Note that the GOSPA metric for fused estimates is lower than the metric for individual sensor, which
indicates that track accuracy increased after fusion of track estimates from both sensors.

close_system('TrackLevelFusionOfRadarAndLidarDataInSimulink');

Summary

In this example, you learned how to track radar measurements using an extended object tracker with
a two-dimensional rectangular model, how to track lidar measurements using a conventional JPDA
tracker with a three-dimensional cuboid model, and how to set up a track-level fusion algorithm for
fusing tracks from radar and lidar sensors in Simulink. You also learned how to evaluate performance
of a tracking algorithm using the Generalized Optimal Subpattern Assignment metric. The simulation
results show that tracking by fusing tracks from radar and lidar is more accurate than tracking by
each individual sensor.

6 Featured Examples

6-740

Track Point Targets in Dense Clutter Using GM-PHD Tracker in
Simulink

Radars generally receive echoes from all surfaces in the signal path. These unwanted back-scattered
signals or echoes generated from physical objects are called clutter. In a densely cluttered
environment, missed detections and false alarms make tracking objects a challenging task for
conventional trackers such as Global Nearest-Neighbor (GNN) tracker. In such an environment a PHD
tracker provides better estimation of objects as it can handle multiple detections per object per
sensor without clustering them first. This example shows you how to track points targets in dense
clutter using a Gaussian mixture probability hypothesis density (GM-PHD) tracker with a constant
velocity model in Simulink. The example closely follows the “Track Point Targets in Dense Clutter
Using GM-PHD Tracker” on page 6-468 MATLAB® example.

Overview of the model

load_system('TrackPointTargetsInDenseClutterSimulinkExample');
set_param('TrackPointTargetsInDenseClutterSimulinkExample','SimulationCommand','update');
open_system('TrackPointTargetsInDenseClutterSimulinkExample');

The model consists of the four sections, each implementing a part of the workflow:

• Scenario and Sensor Simulation
• Tracking Algorithm
• Performance Analysis
• Visualization

Scenario and Sensor Simulation

In this example the scenario is created using trackingScenario. The scenario consists of five point
targets moving at a constant velocity. You use the fusionRadarSensor to simulate radar detections
in the scenario. The targets move within the field of view of the sensor. You use the FalseAlarmRate
property of the sensor to control the density of the clutter. The value of the FalseAlarmRate
property represents the probability of generating a false alarm in one resolution cell of the sensor.
Based on a false alarm rate of 1e-3 and the resolution of the sensor defined in this example, there
are approximately 53 false alarms generated per step. The scenario for this example is defined in
helper file helperCreateClutterTrackingScenario. You use the Tracking Scenario Reader block
to read the scenario object from the workspace. You configure the block to output detections along
with platform poses and simulation time. The block output platform poses and detections as
Simulink.Bus (Simulink) objects.

 Track Point Targets in Dense Clutter Using GM-PHD Tracker in Simulink

6-741

Tracking Algorithm

In this example you use the Probability Hypothesis Density (PHD) Tracker block with the gmphd filter
to track targets. The first step towards configuring a PHD tracker is to define the configuration of the
sensor. You define the sensor configuration as a structure with fields same as
trackingSensorConfiguration. You set the SensorIndex of the configuration to 1 to match the
index of the simulated sensor. As the sensor is a point object sensor that outputs at most one
detection per object per scan, you set the MaxNumDetsPerObject field of the configuration as 1. You
assume that all tracks are detectable, therefore, the SensorTransformFcn is defined as
@(x,params)x and SensorLimits are defined as [-inf inf] for all states. You define the
ClutterDensity field in the configuration, which refers to false alarm rate per-unit volume from the
sensor. You set the FilterInitializationFcn to initcvgmphd, which creates a constant-velocity
GM-PHD filter. You specify the birth rate of new targets from block mask to define the expected
number of targets appearing in the field of view per unit time. Code for creating the sensor
configuration is defined in the helper function helperCreateSensorConfig. You call this function
in the PreLoadFcn callback. See “Model Callbacks” (Simulink) for more information about callback
functions.

6 Featured Examples

6-742

Performance Analysis

To evaluate the performance of the tracker, you use the Generalized Optimal Subpattern Assignment
Metric block. The GOSPA metric aims to evaluate the performance of a tracker using a single
combined score for errors in assignment and distance. The GOSPA metric can be calculated by the
following equation:

Where is the number of ground truths and is the number of estimated tracks. is the
cutoff distance threshold, and is the base distance between track and truth calculated by a

 Track Point Targets in Dense Clutter Using GM-PHD Tracker in Simulink

6-743

distance function specified in the Distance property. is order of the metric and is the alpha
parameter of the metric, defined from block mask.

The lower GOSPA cost represents better tracking performance. A value of zero represents a perfect
tracking. You enable Missed target error and False track error components of GOSPA metric as block
outputs and visualize them. Before passing the truth information to the GOSPA metric block you
remove the sensor platform from the truth information. To do this, you use the Helper Filter Sensor
Platform helper block, implemented using MATLAB Function (Simulink) block.

Visualization

In this example the GOSPA metric is visualized using the scope block and the scenario is visualized
using Scenario Visualization block. The Scenario Visualization block is implemented using MATLAB
System (Simulink) block. Code for this block is defined in the helper class
helperClutterTrackingDisplayBlock. The block uses RunTimeObject parameter of the blocks
to display their outputs. See “Access Block Data During Simulation” (Simulink) for further information
on how to access block outputs during simulation.

Notice that GOSPA metric decreases after a few steps. The initial value of GOSPA metric is higher
due to the establishment delay for each track. The GOSPA metric results show that the GM-PHD
tracker performed well in the densely cluttered scenario with zero false alarms and zero missed
tracks.

close_system('TrackPointTargetsInDenseClutterSimulinkExample');

6 Featured Examples

6-744

Summary

In this example you learned how to use a PHD tracker to track point objects in dense clutter in
Simulink. You also learned how to evaluate performance of a tracking algorithm using GOSPA metric
and its associated components. The simulation results show that the GM-PHD tracker does not miss
targets or create false alarms. The lower overall GOSPA score also indicates desirable tracking
performance.

 Track Point Targets in Dense Clutter Using GM-PHD Tracker in Simulink

6-745

Define and Test Tracking Architectures for System-of-Systems
This example shows how to define the tracking architecture of a system-of-systems that includes
multiple detection-level multi-object trackers and track-level fusion algorithms. You can use the
tracking architectures to compare different tracking system designs and find the best solution for
your system.

Introduction

The “Simulate and Track En-Route Aircraft in Earth-Centered Scenarios” on page 6-565 example
shows how to track aircraft using multiple long-range radar systems and fuse data from Automatic
Dependent Surveillance Broadcast (ADS-B) transponders to get an accurate air situation picture. In
that example, radar detections are fused centrally by a tracker before these tracks are fused with
tracks from the ADS-B reports. You first load scenario data from that example and set up a globe-
based visualization.

% Create the scenario and globe viewer
load('recordedScenario','scenarioData');
viewer = createGlobe(scenarioData);

The architecture described above is only one possible architecture and tracking system engineers
often consider various other options. There are many factors that determine how a system can be
architected, some of them are:

1 Sensor outputs: Some sensor manufacturers design their sensors to output detection lists while
others track objects internally and only provide sensor tracks as an output.

2 Communication networks: The amount of data that is required to be transmitted can be reduced
if sensors report tracks instead of detections. Additionally, latency, physical distance, and other
limitations may require that sensors report tracks.

3 Computational resources: Processing all the detections in a single central tracker usually
requires more memory and computations than if processing data distributively between different
nodes.

However, there are reasons to prefer central processing over decentralized architectures. First,
centralized tracking systems can be optimal, because all the available data is processed in one place
and there are no constraints on the data being processed. In addition, the architecture is much
simpler as there is only one tracker.

Centralized Air Surveillance Architecture

As a baseline for comparison, you define an architecture that reflects the centralized tracking system
described in the “Simulate and Track En-Route Aircraft in Earth-Centered Scenarios” on page 6-565
example. To do that, you first define the same centralized trackerGNN for the radars. Note that the
radars update every 12 seconds and the ADS-B receiver updates every second. To accommodate
different update rates, you wrap the tracker inside a helperScheduledTracker object.

gnn = trackerGNN(...
 'TrackerIndex',2,...
 'FilterInitializationFcn',@initfilter,...
 'ConfirmationThreshold',[3 5],...
 'DeletionThreshold',[5 5],...
 'AssignmentThreshold',[1000 Inf]);

tracker = helperScheduledTracker(gnn, 12);

6 Featured Examples

6-746

You define the ADS-B and tracker as two sources that are fused by a trackFuser. Note that the
SourceIndex value for each source configuration must match the SourceIndex value of the ADS-B
tracks (1) and the TrackerIndex value of the tracker (2). Additionally, the FuserIndex value must
be unique as well. In this case you set it to 3.

sources = {...
 fuserSourceConfiguration("SourceIndex", 1);... % ADS-B
 fuserSourceConfiguration("SourceIndex", 2) ... % Tracker
 };

fuser = trackFuser("FuserIndex",3, ...
 "MaxNumSources", 2,...
 "SourceConfigurations", sources, ...
 "AssignmentThreshold", [1000 Inf],...
 "StateFusion", "Intersection",...
 "StateFusionParameters", "trace",...
 "ProcessNoise", 10*eye(3));

With the tracker and track fuser defined, you define the trackingArchitecture. You add the
tracker to it, with sensors 1, 2, and 3 reporting to the tracker. You also add the track fuser to the
trackingArchitecture. The trackingArchitecture directs fuser sources to the fuser based on
the fuser's SoucreConfigurations property. Finally, you use the show object function to display
the architecture.

centralizedArchitecture = trackingArchitecture;
addTracker(centralizedArchitecture,tracker,'Name','Tracker','SensorIndices',[1 2 3],'ToOutput',false);
addTrackFuser(centralizedArchitecture,fuser,'Name','Fuser','ToOutput',true);
show(centralizedArchitecture)

 Define and Test Tracking Architectures for System-of-Systems

6-747

Run the scenario and track using the tracking architecture

% Clear previous viewer data and reset the architecture if previously used
clear(viewer);
plotTruth(scenarioData, viewer);
reset(centralizedArchitecture);

for i = 1:numel(scenarioData)
 % Read the timestamp from the recorded scenario data
 time = scenarioData(i).Time;

 % Read detections from all radars in the scenario
 detections = scenarioData(i).Detections;

 % Update detections on the globe
 plotDetection(viewer, detections);

 % Read ADS-B tracks
 truePose = scenarioData(i).TruePose;
 adsbTracks = scenarioData(i).ADSBTrack;

 % Pass the detections and ADS-B tracks to the tracking architecture
 tracks = centralizedArchitecture(detections,adsbTracks,time);

 % Update display
 plotTrack(viewer, tracks);
end

6 Featured Examples

6-748

% Provide an output image
snap(viewer);

Decentralized Architecture

You want to explore how the system works when each radar reports sensor-level tracks that are fused
with the ADS-B tracks by a track-level fusion algorithm. You define the trackingArchitecture that
represents this decentralized architecture.

decentralizedArchitecture = trackingArchitecture;

Next, you define a tracker for each radar. There are three radar sensors in the original example, so
you define three trackers. For simplicity, assume that these trackers are defined in the same way as
the central case. Since the SourceIndex of the ADS-B tracks is 1, you define the trackers with
TrackerIndex of 2, 3, and 4. Meanwhile, the radar detections have SensorIndex = 1, 2, and 3.

sensorTracker = trackerGNN(...
 'TrackerIndex',2,...
 'FilterInitializationFcn',@initfilter,...
 'ConfirmationThreshold',[3 5],...
 'DeletionThreshold',[5 5],...
 'AssignmentThreshold',[1000 Inf]);

 Define and Test Tracking Architectures for System-of-Systems

6-749

% Add one tracker to each radar
for i = 2:4
 tracker = helperScheduledTracker(clone(sensorTracker),12);
 tracker.TrackerIndex = i; % Specify each radar tracker with a different index
 addTracker(decentralizedArchitecture, tracker, 'Name', strcat('Radar',num2str(i-1)), 'SensorIndices', i-1, 'ToOutput', false); % Connect the tracker to the correct radar index
end

You add a trackFuser that fuses tracks from four sources, the ADS-B and the three radar trackers.

% Define the sources
sources = {...
 fuserSourceConfiguration(1);... % ADS-B
 fuserSourceConfiguration(2);... % Tracker for radar 1
 fuserSourceConfiguration(3);... % Tracker for radar 2
 fuserSourceConfiguration(4);... % Tracker for radar 3
 };

% Add the fuser
fuser = trackFuser("FuserIndex", 5, ...
 "MaxNumSources", 4,...
 "SourceConfigurations", sources, ...
 "AssignmentThreshold", [1000 Inf],...
 "StateFusion", "Intersection", ...
 "StateFusionParameters", "trace", ...
 "ProcessNoise", 10*eye(3));
addTrackFuser(decentralizedArchitecture, fuser, 'Name', 'Fuser');

% Show the tracking architecture in a figure
show(decentralizedArchitecture)

The replayScenario function reads the recorded scenario data, steps the new architecture, and
displays the results.

% Rerun the scenario and observe tracking results
replayScenario(decentralizedArchitecture,scenarioData,viewer)

6 Featured Examples

6-750

 Define and Test Tracking Architectures for System-of-Systems

6-751

Regional Air Surveillance Architecture

Another possible configuration can fall between the centralized and decentralized architectures
above. In many cases, there is no need for an air traffic control center to track aircraft that are too
far away from it. In that case, regional air traffic control centers can be used, where one or more
radars report to each region.

regionalArchitecture = trackingArchitecture;
for i = 2:4
 tracker = helperScheduledTracker(clone(sensorTracker),12);
 tracker.TrackerIndex = i; % Specify each radar with a different index
 addTracker(regionalArchitecture, tracker, 'Name', strcat('Radar',num2str(i-1)), 'SensorIndices', i-1, 'ToOutput', false);
end

You define two regions and attach two radar sensors to each. Additionally, each region only fuses
ADS-B tracks if the reporting aircraft is close enough to the region.

region1Fuser = trackFuser('FuserIndex',5, 'MaxNumSources',3, ...
 'SourceConfigurations',sources([1,2,3]),... % Two radars and ADS-B
 "AssignmentThreshold",[1000 Inf],...
 "StateFusion",'Intersection',...
 'StateFusionParameters','trace',...
 'ProcessNoise',10*eye(3));

6 Featured Examples

6-752

region2Fuser = trackFuser('FuserIndex',6, 'MaxNumSources',3, ...
 'SourceConfigurations',sources([1,3,4]),... % Two radars and ADS-B
 "AssignmentThreshold",[1000 Inf],...
 "StateFusion",'Intersection',...
 'StateFusionParameters','trace',...
 'ProcessNoise',10*eye(3));
addTrackFuser(regionalArchitecture, region1Fuser, 'Name', 'Region1');
addTrackFuser(regionalArchitecture, region2Fuser, 'Name', 'Region2');
show(regionalArchitecture)

% Rerun the scenario and observe tracking results
replayScenario(regionalArchitecture,scenarioData,viewer)

 Define and Test Tracking Architectures for System-of-Systems

6-753

Summary

In this example, you learned how to define tracking architectures for system-of-systems that use
multiple trackers and track-to-track fusion algorithms. You saw how to pass detections and tracks as
inputs to the tracking architecture and how to output tracks from it.

Supporting Functions

createGlobe Creates the globe visualization

function gl = createGlobe(scenarioData)
% You use the helperGlobeViewer object attached in this example to display
% platforms, trajectories, detections, and tracks on the Earth.
gl = helperGlobeViewer;
setCamera(gl,[28.9176 -95.3388 5.8e5],[0 -30 10]);

% Show flight route
plotTruth(scenarioData, gl);
end

plotTruth plots the ground truth position

6 Featured Examples

6-754

function plotTruth(scenarioData, viewer)
poses = [scenarioData.TruePose];
positions = vertcat(poses.Position);
plotLines(viewer, positions(:,1), positions(:,2), positions(:,3))
end

initfilter defines the extended Kalman filter used by the tracker

Airplane motion is well approximated by a constant velocity motion model. Therefore a rather small
process noise will give more weight to the dynamics compared to the measurements which are
expected to be quite noisy at long ranges.

function filter = initfilter(detection)
filter = initcvekf(detection);
filter.StateCovariance = 10*filter.StateCovariance; % initcvekf uses measurement noise as the default
filter.ProcessNoise = eye(3);
end

replayScenario Replays the recorded scenario and generates results

function replayScenario(arch,scenarioData,viewer)
clear(viewer);
plotTruth(scenarioData, viewer);
reset(arch);
numFusers = numel(arch.TrackFusers);
tracks = cell(1,numFusers);
for i = 1:numel(scenarioData)
 time = scenarioData(i).Time;

 % Create detections from all radars in the scenario
 detections = scenarioData(i).Detections;

 % Update detections on the globe
 plotDetection(viewer, detections);

 % Generate ADS-B tracks
 adsbTracks = scenarioData(i).ADSBTrack;

 % Pass the detections and ADS-B tracks to the tracking architecture
 [tracks{1:numFusers}] = arch(detections,adsbTracks,time);

 % Update display
 plotTrack(viewer, vertcat(tracks{:}));
end
snap(viewer);
end

 Define and Test Tracking Architectures for System-of-Systems

6-755

Estimate Phone Orientation Using Sensor Fusion
MATLAB Mobile™ reports sensor data from the accelerometer, gyroscope, and magnetometer on
Apple or Android mobile devices. Raw data from each sensor or fused orientation data can be
obtained. This examples shows how to compare the fused orientation data from the phone with the
orientation estimate from the ahrsfilter (Navigation Toolbox) object.

Read the Accelerometer, Gyroscope, Magnetometer, and Euler Angles

Read the logged phone sensor data. The MAT-file samplePhoneData.mat contains sensor data
logged on an iPhone at a 100 Hz sampling rate. To run this example with your own phone data, refer
to “Sensor Data Collection with MATLAB Mobile or MATLAB Online”.

matfile = 'samplePhoneData.mat';
SampleRate = 100; % This must match the data rate of the phone.

[Accelerometer, Gyroscope, Magnetometer, EulerAngles] ...
 = exampleHelperProcessPhoneData(matfile);

Convert to North-East-Down (NED) Coordinate Frame

MATLAB Mobile uses the convention shown in the following image. To process the sensor data with
the ahrsfilter object, convert to NED, a right-handed coordinate system with clockwise motion
around the axes corresponding to positive rotations. Swap the x- and y-axis and negate the z-axis for
the various sensor data. Note that the accelerometer readings are negated since the readings have
the opposite sign in the two conventions.

Accelerometer = -[Accelerometer(:,2), Accelerometer(:,1), -Accelerometer(:,3)];
Gyroscope = [Gyroscope(:,2), Gyroscope(:,1), -Gyroscope(:,3)];
Magnetometer = [Magnetometer(:,2), Magnetometer(:,1), -Magnetometer(:,3)];

6 Featured Examples

6-756

qTrue = quaternion([EulerAngles(:,3), -EulerAngles(:,2), EulerAngles(:,1)], ...
 'eulerd', 'ZYX', 'frame');

Correct Phone Initial Rotation

The phone may have a random rotational offset. Without knowing the offset, you cannot compare the
ahrsfilter object and the phone results. Use the first four samples to determine the rotational
offset, then rotate the phone data back to desirable values.

% Get a starting guess at orientation using ecompass. No coefficients
% required. Use the initial orientation estimates to figure out what the
% phone's rotational offset is.
q = ecompass(Accelerometer, Magnetometer);

Navg = 4;
qfix = meanrot(q(1:Navg))./meanrot(qTrue(1:Navg));
Orientation = qfix*qTrue; % Rotationally corrected phone data.

Tune the AHRS Filter

To optimize the noise parameters for the phone, tune the ahrsfilter object. The parameters on the
filter need to be tuned for the specific IMU on the phone that logged the data in the MAT-file. Use the
tune (Navigation Toolbox) function with the logged orientation data as ground truth.

orientFilt = ahrsfilter('SampleRate', SampleRate);
groundTruth = table(Orientation);
sensorData = table(Accelerometer, Gyroscope, Magnetometer);

tc = tunerconfig('ahrsfilter', "MaxIterations", 30, ...
 'ObjectiveLimit', 0.001, 'Display', 'none');
tune(orientFilt, sensorData, groundTruth, tc);

Fuse Sensor Data With Filter

Estimate the device orientation using the tuned ahrsfilter object.

reset(orientFilt);
qEst = orientFilt(Accelerometer,Gyroscope,Magnetometer);

Plot Results

Plot the Euler angles for each orientation estimate and the quaternion distance between the two
orientation estimates. Quaternion distance is measured as the angle between two quaternions. This
distance can be used as an error metric for orientation estimation.

numSamples = numel(Orientation);
t = (0:numSamples-1).'/SampleRate;

d = rad2deg(dist(qEst, Orientation));

figure
plot(t, eulerd(qEst, 'ZYX', 'frame'))
legend yaw pitch roll
title('ahrsfilter Euler Angles')
ylabel('Degrees')
xlabel('Time (s)')

 Estimate Phone Orientation Using Sensor Fusion

6-757

figure
plot(eulerd(Orientation, 'ZYX', 'frame'))
legend yaw pitch roll
title('Phone Euler Angles')
ylabel('Degrees')
xlabel('Time (s)')

6 Featured Examples

6-758

figure
plot(t, d)
title('Orientation Error')
ylabel('Degrees')
xlabel('Time (s)')
% Add RMS error
rmsval = sqrt(mean(d.^2));
line(t, repmat(rmsval,size(t)),'LineStyle','-.','Color','red');
text(t(1),rmsval + 0.7,"RMS Error = " + rmsval,'Color','red')

 Estimate Phone Orientation Using Sensor Fusion

6-759

Use poseplot to view the orientation estimates of the phone as a 3-D rectangle.

figure
pp = poseplot("MeshFileName", "phoneMesh.stl");

for i = 1:numel(qEst)
 set(pp, "Orientation", qEst(i));
 drawnow
end

6 Featured Examples

6-760

 Estimate Phone Orientation Using Sensor Fusion

6-761

Handle Out-of-Sequence Measurements in Multisensor
Tracking Systems

This example shows how to handle out-of-sequence measurements (OOSM) in a multisensor tracking
system. The example compares tracking results when OOSM are present using various handling
techniques. For more information about OOSM handling techniques see “Handle Out-of-Sequence
Measurements with Filter Retrodiction” on page 6-772 example.

Introduction

In a multisensor system, when multiple sensors report to the same tracker, the measurements may
arrive at the tracker with a time delay relative to the time when they are generated by the sensor.
The delay can be caused by any of the following reasons:

1 The sensor may require a significant amount of time to process the data. For example, a vision
sensor may require tens of milliseconds to detect objects in a frame it captures.

2 If the sensor and the tracker are connected by a network, there may be a communication delay.
3 The tracker may update at a different rate from the sensor scan rate. For example, if the tracker

is updated just before the sensor measurements arrive, these measurements are considered as
out-of-sequence.

There are various OOSM handling techniques. In this example, you explore two techniques:

Neglect: In this technique, any OOSM is simply ignored and not used to update the tracker, as shown
in the figure below. This technique is the easiest and is useful in cases where the OOSM is not
expected to contain data that would significantly modify the filter state and uncertainty. It is also the
most efficient technique, in terms of memory and processing.

Retrodiction: In this technique, the tracker saves its state for the last n steps. When a new set of
detections is sent to the tracker, the tracker:

• Uses the detection time to classify the detections as: in-sequence (after the last tracker update
time) or out-of-sequence (before the last tracker update time).

• The tracker neglects any detections with timestamps that are older than the tracker n steps
history.

• The tracker retrodict existing tracks to the time of the out-of-sequence detections and
calculates the cost of assignment for each combination of track and detection.

6 Featured Examples

6-762

• The tracker attempts to assign the out-of-sequence detections to the tracks.
• The tracker retrodicts the track to the time of each assigned out-of-sequence detection and

retroCorrect the track with the OOSM, see the picture below.
• The tracker initializes new tracks from unassigned out-of-sequence detections.
• Then, the tracker resumes its usual processing with the in-sequence detections.

The retrodiction technique is more expensive in terms of memory and processing time than the
neglect technique. However, it is important to handle OOSM in the following cases:

• The sensor that provides OOSM covers areas that are not covered by any other sensor. In that
case, neglecting the OOSM would result in complete loss of coverage in the area.

• The OOSM contain novel information that other sensors cannot provide. For example, if the OOSM
are provided by the only sensor that reports object classification, neglecting the OOSM would
result in tracks that have no classification data.

• The sensors that report to the tracker operate at a low scan rate. In that case, every detection is
important and neglecting OOSM would result in low tracking accuracy.

Define the Scenario and Sensor Lag

To explore OOSM handling techniques and their impact on tracking, you create a simple scenario. In
the scenario, there are two moving platforms that approach from left and right to the middle of the
scenario, where they move close to each other. There are two radars, one on the left and one on the
right. The radar on the left reports detections directly to the tracker with no time delay. The radar on
the right reports detections through a network that has a time delay. Note that initially only the radar
on the right covers the platform on the right until it reaches an area covered by the left sensor.

The following lines of code create and visualize the scenario.

 Handle Out-of-Sequence Measurements in Multisensor Tracking Systems

6-763

scenario = createScenario();
[tp, platp, trajp, detp, covp, trp] = createPlotters(scenario);

In this code section you define the time delay between the radar on the right and the tracker. You use
the helperDataDelay object to add the network time delay to data coming from the right radar
sensor, with SensorIndex = 2, to the tracker. Use the slider on line 5 to select the time delay. Valid
values range from 0 (no delay) to 4 seconds with a default value of 2 seconds. Once you set the value
on the slider, the radar updates its time delay.

% Set the time delay of the sensor
sensorDelay = helperDataDelay("SensorIndex", 2);

sensorDelay.ConstantTimeDelay =

sensorDelay =
 helperDataDelay with properties:

 SensorIndex: 2
 DelayInterval: [0 Inf]
 ConstantTimeDelay: 2
 DelayDistribution: "None"

Define the Tracker and OOSM Handling Technique

The trackerGNN System object allows you to choose the OOSM handling technique by setting the
OOSMHandling property. Use the drop down menu on line 11 to choose between 'Neglect' and
'Retrodiction'. Once selected, the tracker uses the value you choose.

6 Featured Examples

6-764

tracker = trackerGNN(...
 'FilterInitializationFcn', @initfilter, ...
 'MaxNumTracks', 10, ...
 'AssignmentThreshold', [30 Inf], ...
 'ConfirmationThreshold', [2 4]);

tracker.OOSMHandling =

tracker =
 trackerGNN with properties:

 TrackerIndex: 0
 FilterInitializationFcn: @initfilter
 Assignment: 'MatchPairs'
 AssignmentThreshold: [30 Inf]
 MaxNumTracks: 10
 MaxNumDetections: Inf
 MaxNumSensors: 20

 OOSMHandling: 'Retrodiction'
 MaxNumOOSMSteps: 3

 TrackLogic: 'History'
 ConfirmationThreshold: [2 4]
 DeletionThreshold: [5 5]

 HasCostMatrixInput: false
 HasDetectableTrackIDsInput: false
 StateParameters: [1x1 struct]

 NumTracks: 0
 NumConfirmedTracks: 0

Run the Scenario and Analyze Metrics

In this section, you run the scenario with the time delay you set for the right radar and the OOSM
handling technique you defined for the tracker.

You define a Generalized Optimal Sub-Pattern Association (GOSPA) metric to evaluate the tracker
performance in terms of overall GOSPA, localization, missed targets, and false tracks. For more
information about GOSPA, see trackGOSPAMetric.

gospa = trackGOSPAMetric;
lgospa = zeros(1,33);
localization = zeros(1,33);
missTarget = zeros(1,33);
falseTracks = zeros(1,33);
i = 0;

The next code section initializes the scenario and the visualization, resets the tracker, and sets the
random seed for repeatable results.

s = rng(2021, 'twister');
h = onCleanup(@() rng(s));
delayedDets = {};
detBuffer = {};
restart(scenario);

 Handle Out-of-Sequence Measurements in Multisensor Tracking Systems

6-765

reset(tracker);
clearPlotterData(tp);
plotTrueTrajectories(trajp, scenario);

Next, you run the main simulation loop. You can see the results in the figure below the block of code.
Because the tracker is connected to the left radar, it updates when the left radar finishes a scan, or
every 1.7 seconds.

% Main simulation loop
while advance(scenario) && ishghandle(tp.Parent)
 % Generate sensor data
 [dets, configs, sensorConfigPIDs] = detect(scenario);

 % Apply time delay to the detections
 time = scenario.SimulationTime;
 if isLocked(sensorDelay) || ~isempty(dets)
 delayedDets = sensorDelay(dets,time);
 end

 detBuffer = vertcat(detBuffer, delayedDets); %#ok<AGROW>

 [truePosition, meas, measCov] = readData(scenario, detBuffer);

 % Tracker update
 if configs(1).IsScanDone
 if isLocked(tracker) || ~isempty(detBuffer)
 [tracks,~,~,info] = tracker(detBuffer, time);
 else
 tracks = objectTrack.empty;
 end
 detBuffer = {};

 % Update the trackPlotter
 posSelector = [1 0 0 0 0 0; 0 0 1 0 0 0; 0 0 0 0 1 0];
 trpos = getTrackPositions(tracks, posSelector);
 plotTrack(trp, trpos, string([tracks.TrackID]));

 % Update GOSPA metric
 i = i + 1;
 truths = platformPoses(scenario);
 [lgospa(i), ~, ~, localization(i), missTarget(i), falseTracks(i)] = gospa(tracks,truths(3:4));
 end

 % Update plots
 plotPlatform(platp,truePosition);
 plotDetection(detp,meas,measCov);
 plotCoverage(covp,coverageConfig(scenario));

 drawnow limitrate
end

6 Featured Examples

6-766

You want to analyze the results of the tracker for the selected radar time delay. The following code
block shows the four GOSPA metrics. Remember that a lower GOSPA metric value indicates better
tracking.

For the default selection of 2 seconds radar time delay and 'Retrodiction' OOSM handling
technique, the GOSPA metrics show that there are no false tracks and that both platforms are being
tracked after 3 tracker updates. After the third update, only the localization errors contribute to the
overall GOSPA metric.

Use the time delay slider and the tracker OOSM handling drop down menu in the previous section to
choose other combinations and compare them with these values. For example, if the tracker OOSM
handling is set to 'Neglect', and the radar data delay is 2 seconds, the platform on the right will not
be tracked until it enters the coverage area of the left radar. As a result, the missed targets GOSPA
remains high for the first part of the scenario until the platform enters the coverage area of the left
radar sensor.

% Display GOSPA metrics
figure;
subplot(2,2,1),plot(lgospa);
ylim([0 30]);
grid
title('Total GOSPA')
subplot(2,2,2),plot(localization);
ylim([0 30]);
grid
title('Localization GOSPA')

 Handle Out-of-Sequence Measurements in Multisensor Tracking Systems

6-767

subplot(2,2,3),plot(missTarget);
ylim([0 30]);
grid
title('Missed Targets GOSPA')
subplot(2,2,4),plot(falseTracks);
ylim([0 30]);
grid
title('False Tracks GOSPA');

Summary

In this example you learned the importance of handling out-of-sequence measurements (OOSM). You
used the retrodiction handling to process detections that arrived late to the tracker and compared the
results of retrodiction to the results of neglecting the OOSM.

Supporting Functions

The readData function prepares detection and platform data to update the plotters.

function [position, meas, measCov] = readData(scenario,dets)
allDets = [dets{:}];

if ~isempty(allDets)
 % extract column vector of measurement positions
 meas = cat(2,allDets.Measurement)';

 % extract measurement noise
 measCov = cat(3,allDets.MeasurementNoise);

6 Featured Examples

6-768

else
 meas = zeros(0,3);
 measCov = zeros(3,3,0);
end

truePoses = platformPoses(scenario);
position = vertcat(truePoses(:).Position);
end

The createPlotters function creates the plotters and sets up the initial display.

function [tp, platp, trajp, detp, covp, trp] = createPlotters(scenario)
% Create plotters
tp = theaterPlot('XLim', [-1000 1000], 'YLim', [-1500 500], 'ZLim', [-1500 200]);
set(tp.Parent,'YDir','reverse', 'ZDir','reverse');

% Change to 2-D view
view(2)

platp = platformPlotter(tp,'DisplayName','Targets','MarkerFaceColor','k');
detp = detectionPlotter(tp,'DisplayName','Detections','MarkerSize',6,'MarkerFaceColor',[0.85 0.325 0.098],'MarkerEdgeColor','k','History',10000);
covp = coveragePlotter(tp,'DisplayName','Sensor Coverage');
trp = trackPlotter(tp, 'ConnectHistory', 'on', 'ColorizeHistory', 'on');

% Plot ground truth trajectories for the moving objects
poses = platformPoses(scenario);
plotPlatform(platp, vertcat(poses.Position));
trajp = trajectoryPlotter(tp,'DisplayName','Trajectories','LineWidth',1);
plotTrueTrajectories(trajp, scenario);

% Plot coverage
covcon = coverageConfig(scenario);
plotCoverage(covp,covcon);
end

The createScenario function creates the scenario, platforms, and radars.

function scenario = createScenario
% Create Scenario
scenario = trackingScenario;
scenario.StopTime = Inf;
scenario.UpdateRate = 0;

% Create platforms
Tower = platform(scenario,'ClassID',3);
Tower.Dimensions = struct(...
 'Length', 10, ...
 'Width', 10, ...
 'Height', 60, ...
 'OriginOffset', [0 0 30]);
Tower.Trajectory.Position = [-400 500 0];

Tower1 = platform(scenario,'ClassID',3);
Tower1.Dimensions = struct(...
 'Length', 10, ...
 'Width', 10, ...
 'Height', 60, ...

 Handle Out-of-Sequence Measurements in Multisensor Tracking Systems

6-769

 'OriginOffset', [0 0 30]);
Tower1.Trajectory.Position = [400 500 0];

Plane = platform(scenario,'ClassID',1);
Plane.Dimensions = struct(...
 'Length', 1, ...
 'Width', 1, ...
 'Height', 1, ...
 'OriginOffset', [0 0 0]);
Plane.Signatures = {...
 rcsSignature(...
 'Pattern', [20 20;20 20], ...
 'Azimuth', [-180 180], ...
 'Elevation', [-90;90], ...
 'Frequency', [0 1e+20])};
Plane.Trajectory = waypointTrajectory(...
 [-400 200 0;-50 100 0;-20 -600 0; 0 -1000 0], ...
 [0;22;45;60], ...
 'AutoPitch', true, ...
 'AutoBank', true);

Plane1 = platform(scenario,'ClassID',1);
Plane1.Dimensions = struct(...
 'Length', 1, ...
 'Width', 1, ...
 'Height', 1, ...
 'OriginOffset', [0 0 0]);
Plane1.Signatures = {...
 rcsSignature(...
 'Pattern', [20 20;20 20], ...
 'Azimuth', [-180 180], ...
 'Elevation', [-90;90], ...
 'Frequency', [0 1e+20])};
Plane1.Trajectory = waypointTrajectory(...
 [525 200 0;50 100 0;20 -600 0; 0 -1000 0], ...
 [0;22;45;60], ...
 'AutoPitch', true, ...
 'AutoBank', true);

% Create sensors
Sector = fusionRadarSensor('SensorIndex', 1, ...
 'UpdateRate', 10, ...
 'MountingLocation', [4.85 -4.98 0], ...
 'MountingAngles', [0 0 0], ...
 'FieldOfView', [5 1], ...
 'HasINS', true, ...
 'ReferenceRange', 1000, ...
 'DetectionCoordinates', 'Scenario', ...
 'MechanicalAzimuthLimits', [-150 -30]);

Sector1 = fusionRadarSensor('SensorIndex', 2, ...
 'UpdateRate', 10, ...
 'MountingLocation', [-5.01 -5.04 0], ...
 'FieldOfView', [5 1], ...
 'HasINS', true, ...
 'ReferenceRange', 1000, ...
 'DetectionCoordinates', 'Scenario', ...

6 Featured Examples

6-770

 'MechanicalAzimuthLimits', [-150 -30]);

% Assign sensors to platforms
Tower.Sensors = Sector;
Tower1.Sensors = Sector1;
end

The initfilter function initializes a nearly constant velocity trackingEKF filter configured to
allow a higher process noise.

function ekf = initfilter(detection)
ekf = initcvekf(detection);
ekf.ProcessNoise = ekf.ProcessNoise*9;
end

The plotTrueTrajectories function plots ground truth trajectories on the theater plot.

function plotTrueTrajectories(trajp, scenario)
trajpos = cell(1,2);
for i = 3:4
 trajpos{i-2} = lookupPose(scenario.Platforms{i}.Trajectory, (0:0.1:60));
end
plotTrajectory(trajp,trajpos);
end

 Handle Out-of-Sequence Measurements in Multisensor Tracking Systems

6-771

Handle Out-of-Sequence Measurements with Filter
Retrodiction

This example shows how to handle out-of-sequence measurements using the retrodiction technique at
the filter level.

Introduction

In a tracking system, when multiple sensors report to the same tracker, the measurements may arrive
at the tracker with a time delay relative to the time when they are generated from the sensor. The
delay can be caused by any of the following reasons:

1 The sensor may require a significant amount of time to process the data. For example, a vision
sensor may require tens of milliseconds to detect objects in a frame it captures.

2 If the sensor and the tracker are connected by a network, there may be a communications delay.
3 The filter may update in a different rate from the sensor scan rate. For example, if the filter is

updated just before the sensor measurements arrive, these measurements are considered as out-
of-sequence.

The following figure depicts the general case, in which a measurement is expected at time t, but is
received at time t+k, where k is the number of filter updates. After the filter updates its state at time
t+k, the arrived measurement from time t is an out-of-sequence measurement (OOSM) for the filter.
The number of steps, k, is called the lag.

There are several techniques in the literature on how to handle an OOSM:

1 Neglect: In this technique, any OOSM is simply ignored and not used to update the filter state.
This technique is the easiest and is useful in cases where the OOSM is not expected to contain
data that would significantly modify the filter state and uncertainty. It is also the most efficient
technique in terms of memory and processing.

2 Reprocessing: In this technique, the filter state and all the measurements are kept for the last n
updates. Whenever a new measurement arrives, whether in-sequence or out-of-sequence, all the
measurements are reordered by their measurement time and reprocessed to obtain the current
state. This technique is guaranteed to be the most accurate, but is also the most expensive in
terms of memory and processing.

3 Retrodiction: In this technique, the filter state is saved for the last n steps. If an OOSM arrives
with a lag that is less than n steps, the filter is predicted backwards in time, or retrodicted, to the
OOSM time. Then, the OOSM is used to correct the filter's current state estimate. If the lag of
the OOSM is greater than n, it is neglected. This technique is more efficient than reprocessing
but nearly as accurate.

6 Featured Examples

6-772

There are several ways to implement the retrodiction technique. The technique you use in this
example is known as algorithm Bl1, where algorithm B is an approximated algorithm, and the filter
incorporates an OOSM with an l-steps lag and 1 "giant leap"[1].

Initialize the Filter and Enable Retrodiction

In this example, you follow the example shown in section IX of [1]. Consider an object moves along
the x-axis with a nearly constant velocity model.

q = 0.5; % The power spectral density of the continuous time process noise.

The sensor measures both the position and the speed of the object along the x-axis, with the following
measurement covariance matrix.

R = diag([1,0.1]);

You define that the object follows a constant velocity at the speed of 10 m/s along the x axis.

dt = 1; % The time step, in seconds.
v = 10; % The speed along the x axis, in meters per second.

The following code initializes a 1-D constant velocity extended Kalman filter used in this example. See
the utility functions oneDmotion, oneDmeas, oneDmotionJac, and oneDmeasJac provided at the
end of this script.

ekf = trackingEKF(@oneDmotion, @oneDmeas, ...
 'StateTransitionJacobianFcn', @oneDmotionJac, ...
 'MeasurementJacobianFcn', @oneDmeasJac, ...
 'HasAdditiveProcessNoise', false, ...
 'ProcessNoise', q, ...
 'State', [0;10], ... % x=0, v=10
 'StateCovariance', R,...
 'MeasurementNoise', R);

To enable retrodiction, you must set the number of OOSM steps using the MaxNumOOSMSteps
property of the filter so that it prepares the filter history used by the retrodiction algorithm.

ekf.MaxNumOOSMSteps = 5;

Compare OOSM Handling Techniques

In this section, you compare the results of reprocessing, neglect, and retrodiction for a 1-lag
measurement delay.

The in-sequence measurements are obtained at timesteps 1, 2, 3, and 4. The OOSM is obtained at
timestep 3.5, which falls within the first lag interval, between timesteps 3 and 4.

t = [1, 2, 3, 4, 3.5];
x = v * t;
allStates = [x; repmat(v, 1, numel(t))];
allMeasurements = oneDmeasWithNoise(allStates, R);

You use the neglect technique. To do that, you run the filter only with the in-sequence measurements
from timesteps 1, 2, 3, and 4 and you ignore the OOSM at time 3.5.

neglectEKF = clone(ekf); % Clone the EKF to preserve its initial state
for i = 1:4
 predict(neglectEKF, dt); % Predict

 Handle Out-of-Sequence Measurements with Filter Retrodiction

6-773

 correct(neglectEKF, allMeasurements(:,i)); % Correct the filter
end

To compare the different techniques, you observe the state covariance. The state covariance
represents the level of uncertainty about the state estimate. Higher values in the state covariance
mean higher uncertainty or less certainty about the state estimate. A common technique to compare
the magnitude of values in the state covariance is by using the trace or the determinant of the matrix.
You use the trace here.

disp(neglectEKF.StateCovariance);

 0.3142 0.0370
 0.0370 0.0834

disp(trace(neglectEKF.StateCovariance));

 0.3976

For the reprocessing technique, you use the OOSM at timestep 3.5 as if it were given in the right
order with the rest of the in-sequence measurements.

reprocessingEKF = clone(ekf); % Clone the EKF to preserve its initial state
indices = [1 2 3 5 4]; % Reorder the measurements
for i = 1:numel(indices)
 if i <= 3 % Before t=3
 dt = 1;
 else % For 3 -> 3.5 and 3.5 -> 4
 dt = 0.5;
 end
 predict(reprocessingEKF, dt);
 correct(reprocessingEKF, allMeasurements(:,indices(i)));
end
disp(reprocessingEKF.StateCovariance);

 0.2287 0.0225
 0.0225 0.0759

disp(trace(reprocessingEKF.StateCovariance));

 0.3046

You observe that the reprocessing technique provides a much smaller state covariance, which means
a more certain state estimate. The result is expected, because the OOSM at t=3.5 was reprocessed in
the right sequence and the new information it contains helped reduce the uncertainty.

You now use the retrodiction technique. First, you process all the in-sequence measurements. Then,
you retrodict the filter to the OOSM time and then retro-correct the filter with the OOSM.

retroEKF = clone(ekf); % Clone the EKF to preserve its initial state
dt = 1;
for i = 1:4
 predict(retroEKF, dt); % Predict
 correct(retroEKF, allMeasurements(:,i)); % Correct the filter
end
retrodict(retroEKF,-0.5); % Retrodict from t=4 to t=3.5
retroCorrect(retroEKF, allMeasurements(:,5)); % The measurement at t=3.5
disp(retroEKF.StateCovariance);

6 Featured Examples

6-774

 0.2330 0.0254
 0.0254 0.0779

disp(trace(retroEKF.StateCovariance));

 0.3109

As expected, the retrodiction technique provides a state covariance matrix that is about the same
magnitude as the one obtained using the ideal reprocessing technique. The matrix trace for the
retrodiction technique is only 2% greater than the reprocessing state covariance trace. It is
significantly smaller than the state covariance trace obtained by using the neglect technique.

Compare the Results for Various Lag Values

To understand the impact of the lag on OOSM handling, you define four levels of lag from 1-step to 4-
steps lag. These lags correspond to generating the OOSM at times 3.5, 2.5, 1.5, and 0.5, respectively.

You organize the results in a tabular form as shown in the code below.

for lag = 1:4
 timestamps = [0, 1, 2, 3, 4, 4.5-lag];
 allStates = [v*timestamps, repmat(v, 1, numel(timestamps))];
 allMeasurements = oneDmeasWithNoise(allStates, R);
 oneLagStruct(lag) = runOneLagValue(ekf, allMeasurements, timestamps); %#ok<SAGROW>
end
displayTable(oneLagStruct)

 Lag Neglect Reprocessing Retrodiction
══
 1 ⎡ 0.3142 0.0370 ⎤ ⎡ 0.2287 0.0225 ⎤ ⎡ 0.2330 0.0254 ⎤
 ⎣ 0.0370 0.0834 ⎦ ⎣ 0.0225 0.0759 ⎦ ⎣ 0.0254 0.0779 ⎦
──
 2 ⎡ 0.3142 0.0370 ⎤ ⎡ 0.2597 0.0381 ⎤ ⎡ 0.2667 0.0389 ⎤
 ⎣ 0.0370 0.0834 ⎦ ⎣ 0.0381 0.0832 ⎦ ⎣ 0.0389 0.0830 ⎦
──
 3 ⎡ 0.3142 0.0370 ⎤ ⎡ 0.2854 0.0387 ⎤ ⎡ 0.2955 0.0403 ⎤
 ⎣ 0.0370 0.0834 ⎦ ⎣ 0.0387 0.0833 ⎦ ⎣ 0.0403 0.0828 ⎦
──
 4 ⎡ 0.3142 0.0370 ⎤ ⎡ 0.2983 0.0381 ⎤ ⎡ 0.3070 0.0393 ⎤
 ⎣ 0.0370 0.0834 ⎦ ⎣ 0.0381 0.0833 ⎦ ⎣ 0.0393 0.0826 ⎦
──

The first three rows in the table above are equal to the results shown in Table I in [1] for the three
techniques. You make the following observations:

1 Using the neglect technique, there is no difference in the results as a function of lag. This result
is expected because the neglect technique does not use the OOSM at all. It is also the worst
technique of the three as seen by its largest state covariance values.

2 Using the reprocessing technique, which is the best of the three, the state covariance values
increase as the lag increases. This result is expected, because as the lag becomes longer, the
OOSM provides a smaller impact on the current state estimate and uncertainty.

3 Using the retrodiction technique, the results are bound by the results obtained by the
reprocessing technique and the neglect technique for each lag value. As a result, as the lag
becomes longer, introducing the OOSM provides a smaller benefit. This result is important,
because it shows the diminishing returns of keeping more history to support retrodiction beyond
3 or 4 steps. Another interesting result is that the trace of the state covariances obtained by the

 Handle Out-of-Sequence Measurements with Filter Retrodiction

6-775

retrodiction technique is only 2-3% higher than the corresponding state covariance using the
reprocessing technique.

Summary

This example introduced the topic of out-of-sequence measurements, often known by the abbreviation
OOSM. The example showed three common techniques of handling an OOSM at the filter level:
neglecting it, reprocessing it with all the measurements kept in a buffer, or retrodicting the filter and
introducing the OOSM to improve the current estimate. Of the three techniques, neglect is the most
efficient in memory and processing, but provides the worst state estimate. The reprocessing
technique is the most expensive in terms of memory and processing but provides the most accurate
result. The retrodiction technique is a good compromise of processing and memory vs. accuracy. You
also saw that the maximum number of OOSM steps should be limited to 3 or 4 because the benefit of
introducing an OOSM becomes smaller when the number of steps increases.

References

[1] Yaakov Bar-Shalom, Huimin Chen, and Mahendra Mallick, "One-Step Solution for the Multistep
Out-of-Sequence-Measurement Problem in Tracking", IEEE Transactions on Aerospace and Electronic
Systems, Vol. 40, No. 1, January 2004.

Supporting functions

oneDmotion

1-D constant velocity state transition function.

function state = oneDmotion(state, ~, dt)
state = [1 dt;0 1]*state;
end

oneDmotionJac

1-D constant velocity state transition function Jacobian. It provides the process noise used in [1].

function [dfdx,dfdv] = oneDmotionJac(~, ~, dt)
dfdx = [1 dt;0 1];
dfdv = chol([dt^3/3 dt^2/2; dt^2/2 dt],'lower');
end

oneDmeas

1-D constant velocity measurements function. It provides the measurement including position and
velocity without noise.

function z = oneDmeas(state)
z = state;
end

oneDmeasJac

1-D constant velocity measurements function Jacobian.

function H = oneDmeasJac(state)
H = eye(size(state,1));
end

6 Featured Examples

6-776

oneDmeasWithNoise

1-D constant velocity measurements function. It provides the measurement including position and
velocity with Gaussian noise and covariance R.

function z = oneDmeasWithNoise(state,R)
z = state + R * randn(size(R,1), size(state,2));
end

runNeglect

Runs the neglect technique for various values of lags.

function [x,P] = runNeglect(ekf, allMeasurements, timestamps)
neglectEKF = clone(ekf); % Clone the EKF to preserve its initial state
dt = diff(timestamps);
for i = 1:numel(dt)-1
 predict(neglectEKF, dt(i)); % Predict
 correct(neglectEKF, allMeasurements(:,i)); % Correct the filter
end
x = neglectEKF.State;
P = neglectEKF.StateCovariance;
end

runReprocessing

Runs the reprocessing technique for various values of lags.

function [x, P] = runReprocessing(ekf, allMeasurements, timestamps)
reprocessingEKF = clone(ekf); % Clone the EKF to preserve its initial state
[timestamps, indices] = sort(timestamps); % Reorder the timestamps
allMeasurements = allMeasurements(:, indices(2:end)-1); % Reorder the measurements
dt = diff(timestamps);
for i = 1:numel(dt)
 predict(reprocessingEKF, dt(i));
 correct(reprocessingEKF, allMeasurements(:,i));
end
x = reprocessingEKF.State;
P = reprocessingEKF.StateCovariance;
end

runRetrodiction

Runs the retrodiction technique for various values of lags.

function [x, P] = runRetrodiction(ekf, allMeasurements, timestamps)
retrodictionEKF = clone(ekf); % Clone the EKF to preserve its initial state
dt = diff(timestamps);
for i = 1:numel(dt)-1
 predict(retrodictionEKF, dt(i));
 correct(retrodictionEKF, allMeasurements(:,i));
end
retrodict(retrodictionEKF, dt(end));
retroCorrect(retrodictionEKF, allMeasurements(:,end));
x = retrodictionEKF.State;
P = retrodictionEKF.StateCovariance;
end

 Handle Out-of-Sequence Measurements with Filter Retrodiction

6-777

runOneLagValue

Runs and collects results from the three techniques: neglect, reprocessing, and retrodiction.

function oneLagStruct = runOneLagValue(ekf, allMeasurements, timestamps)
oneLagStruct = struct('Lag',ceil(timestamps(end-1)-timestamps(end)),...
 'Neglect',zeros(2,2),...
 'Reprocessing',zeros(2,2),...
 'Retrodiction',zeros(2,2));

% Neglect the OOSM
[~, P] = runNeglect(ekf, allMeasurements, timestamps);
oneLagStruct.Neglect = P;

% Reprocess all the measurements according to time
[~, P] = runReprocessing(ekf, allMeasurements, timestamps);
oneLagStruct.Reprocessing = P;
%
% Use retrodiction
[~, P] = runRetrodiction(ekf, allMeasurements, timestamps);
oneLagStruct.Retrodiction = P;
end

displayTable

Displays the results in an easy to read tabular form.

function displayTable(t)
varNames = fieldnames(t);
fprintf('%6s ', 'Lag');
fprintf('%13s ', string(varNames(2:4)));
fprintf('\n══\n');
for i = 1:numel(t)
 fprintf(' %d', t(i).Lag);
 for j = 2:numel(varNames)
 fprintf(' %c %1.4f %1.4f %c ', 9121, t(i).(varNames{j})(1,1:2), 9124);
 end
 fprintf('\n ');
 for j = 2:numel(varNames)
 fprintf(' %c %1.4f %1.4f %c', 9123, t(i).(varNames{j})(2,1:2), 9126);
 end
 fprintf('\n');
 fprintf('──\n');
end
end

6 Featured Examples

6-778

Extended Object Tracking of Highway Vehicles with Radar and
Camera in Simulink

This example shows you how to track highway vehicles around an ego vehicle in Simulink. In this
example, you use multiple extended object tracking techniques to track highway vehicles and
evaluate their tracking performance. This example closely follows the “Extended Object Tracking of
Highway Vehicles with Radar and Camera” on page 6-147 MATLAB® example.

Extended Objects and Extended Object Tracking

In the sense of object tracking, extended objects are objects, whose dimensions span multiple sensor
resolution cells. As a result, the sensors report multiple detections per objects in a single scan. The
key benefit of using a high-resolution sensor is getting more information about the object, such as its
dimensions and orientation. This additional information can improve the probability of detection and
reduce the false alarm rate. For example, the image below depicts multiple detections for a single
vehicle that spans multiple radar resolution cells.

In conventional tracking approaches such as global nearest neighbor, joint probabilistic data
association and multi-hypothesis tracking, tracked objects are assumed to return one detection per
sensor scan. High resolution sensors that report multiple returns per object in a scan present new
challenges to conventional tracker. In some cases, you can cluster the sensor data to provide the
conventional trackers with a single detection per object. However, by doing so, the benefit of using a
high-resolution sensor may be lost.

 Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink

6-779

Extended object trackers can handle multiple detections per object. In addition, these trackers can
estimate not only the kinematic states, such as position and velocity of the object, but also the
dimensions and orientation of the object. In this example, you track vehicles around the ego vehicle
using the following trackers:

• A conventional multi-object tracker using a point-target model, Multi-Object Tracker (Automated
Driving Toolbox).

• A GGIW-PHD tracker, Probability Hypothesis Density (PHD) Tracker with Gamma Gaussian
Inverse Wishart (ggiwphd) filter.

• A GM-PHD tracker, Probability Hypothesis Density (PHD) Tracker with Gaussian Mixture (gmphd)
filter using a rectangular target model.

You will evaluate the results using the Optimal Subpattern Assignment Metric, which provides a
single combined score accounting for errors in both assignment and distance. A lower score means
better tracking.

Overview of the Model

load_system('ExtendedObjectTrackingInSimulink');
set_param('ExtendedObjectTrackingInSimulink','SimulationCommand','update');
open_system('ExtendedObjectTrackingInSimulink');

The model has three sub-systems, each implementing a part of the workflow:

• Scenario and Sensor Simulation
• Tracking Algorithms
• Tracking Performance and Visualization

6 Featured Examples

6-780

Scenario and Sensor Simulation

The Scenario Reader (Automated Driving Toolbox) block reads a drivingScenario (Automated
Driving Toolbox) object from workspace and generates Actors and Ego vehicle position data as
“Explore Simulink Bus Capabilities” (Simulink) Objects. The Vehicle To World block converts the actor
position from vehicle coordinates to world coordinates. The Driving Radar Data Generator
(Automated Driving Toolbox) block simulates radar detections and Vision Detection Generator
(Automated Driving Toolbox) simulates camera detections. Detections from all the sensors are
grouped together using the Detection Concatenation (Automated Driving Toolbox) block.

In the scenario there is an ego vehicle and four other vehicles: a vehicle ahead of the ego vehicle in
the center lane, a vehicle behind the ego vehicle in the center lane, a truck ahead of the ego vehicle
in the right lane, and an overtaking vehicle in the left lane.

In this example, you simulate an ego vehicle that has six radar sensors and two vision sensors
covering the 360-degree field of view. The sensors have some coverage overlaps and gaps. The ego
vehicle is equipped with a long-range radar sensor and a vision sensor on the front and back of the
vehicle. On each side of the vehicle two short-range radar sensors cover 90 degrees respectively. One

 Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink

6-781

of the two sensors cover from the middle of the vehicle to the back, and the other sensor covers from
the middle of the vehicle to the front.

Tracking Algorithms

You implement three different extended object tracking algorithms using a variant sub-system. See
“Variant Subsystems” (Simulink) for more information. The variant sub-system has one Subsystem,
Atomic Subsystem, CodeReuse Subsystem (Simulink) for each tracking algorithm. You can select the
tracking algorithm by changing the value of the workspace variable TRACKER. The default value of
TRACKER is 1.

6 Featured Examples

6-782

Point Object Tracker

 Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink

6-783

In this section you use the Multi-Object Tracker (Automated Driving Toolbox) block to implement the
tracking algorithm based on a point target model. Detections from the radar are preprocessed to
include ego vehicle INS information using the Helper Preprocess Detection block. The block is
implemented using the MATLAB System (Simulink) block. Code for this block is defined in the helper
class helperPreProcessDetections. The Multi-Object Tracker assumes one detection per object
per sensor and uses a global nearest neighbor approach to associate detections to tracks. It assumes
that every object can be detected at most once by a sensor in a scan. However, the simulated radar
sensors have a high enough resolution and generate multiple detections per object. If these
detections are not clustered, the tracker generates multiple tracks per object. Clustering returns one
detection per cluster, at the cost of having a larger uncertainty covariance and losing information
about the true object dimensions. Clustering also makes it hard to distinguish between two objects
when they are close to each other, for example, when one vehicle passes another vehicle.

To cluster the radar detections, you configure the Driving Radar Data Generator block to output
Clustered Detections instead of detections. To do this you set the TargetReportFormat parameter
on the block as Clustered detections. In the model, this is achieved by specifying the block
parameters in the InitFcn callback of the Point Object Tracker subsystem. See “Model Callbacks”
(Simulink) for more information about callback functions.

The animation below shows that, with clustering, the tracker can keep track of the objects in the
scene. The track associated with the overtaking vehicle (yellow) moves from the front of the vehicle
at the beginning of the scenario to the back of the vehicle at the end. At the beginning of the
scenario, the overtaking vehicle is behind the ego vehicle (blue), so radar and vision detections are
made from its front. As the overtaking vehicle passes the ego vehicle, radar detections are made from
the side of the overtaking vehicle and then from its back. You can also observe that the clustering is
not perfect. When the passing vehicle passes the vehicle that is behind the ego vehicle (purple), both
tracks are slightly shifted to the left due to the imperfect clustering.

6 Featured Examples

6-784

GGIW-PHD Extended Object Tracker

In this section you use a Probability Hypothesis Density (PHD) Tracker tracker block to implement
the extended object tracking algorithm with ggiwphd filter to track objects. Detections from the
radar are preprocessed to include ego vehicle INS information using the Helper Preprocess Detection
block. The block is implemented using the MATLAB System (Simulink) block. Code for this block is
defined in the helper class helperPreProcessDetections. It also outputs the sensor
configurations required by the tracker for calculating the detectability of each component in the
density.

 Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink

6-785

You specify the Sensor configurations parameter of the PHD tracker block as a structure with
fields same as trackingSensorConfiguration and set the FilterInitializationFcn field as
helperInitGGIWFilter and SensorTransformFcn field as ctmeas. In the model this is achieved
by specifying the InitFcn callback of the GGIW PHD Tracker subsystem. See “Model Callbacks”
(Simulink) for more information about callback functions.

Unlike Multi-Object Tracker, which maintains one hypothesis per track, the GGIW-PHD is a multi-
target filter which describes the probability hypothesis density (PHD) of the scenario. GGIW-PHD
filter uses these distributions to model the extended targets:

Gamma: Represents the expected number of detections on a sensor from the extended object.

Gaussian: Represents the kinematic state of the extended object.

Inverse-Wishart: Represents the spatial extent of the target. In 2-D space, the extent is represented
by a 2-by-2 random positive definite matrix, which corresponds to a 2-D ellipse description. In 3-D
space, the extent is represented by a 3-by-3 random matrix, which corresponds to a 3-D ellipsoid
description. The probability density of these random matrices is given as an Inverse-Wishart
distribution.

The model assumes that each distribution is independent of each other. Thus, the probability
hypothesis density (PHD) in GGIW-PHD filter is described by a weighted sum of the probability
density functions of several GGIW components. In contrast to a point object tracker, which assumes
one partition of detections, the PHD tracker creates multiple possible partitions of a set of detections
and evaluates it against the current components in the PHD filter. You specify a PartitioningFcn
to create detection partitions, which provides multiple hypotheses about the clustering.

The animation below shows that the GGIW-PHD can handle multiple detections per object per sensor,
without the need to cluster these detections first. Moreover, by using the multiple detections, the
tracker estimates the position, velocity, dimension, and orientation of each object. The dashed
elliptical shape in the figure demonstrates the expected extent of the target.

The GGIW-PHD filter assumes that detections are distributed around the target's elliptical center.
Therefore, the tracks tend to follow observable portions of the vehicle. Such observable portions
include rear face of the vehicle that is directly ahead of the ego vehicle or the front face of the vehicle
directly behind the ego vehicle. The tracker can better approximate the length and width of vehicles
that are nearby using the ellipse. In the simulation, for example, the tracker produces a better ellipse
overlap with the actual size of the passing vehicle.

6 Featured Examples

6-786

GM-PHD Rectangular Object Tracker

In this section you use a Probability Hypothesis Density (PHD) Tracker tracker block with a gmphd
filter to track objects using a rectangular target model. Unlike ggiwphd, which uses an elliptical
shape to estimate the object extent, gmphd allows you to use a Gaussian distribution to define the
shape of your choice. You define a rectangular target model by using motion models, ctrect and
ctrectjac and measurement models, ctrectmeas and ctrectmeasjac.

 Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink

6-787

The sensor configurations defined for PHD Tracker remain the same except for definition of the
SensorTransformFcn and FilterInitializationFcn fields. You set the
FilterInitializationFcn field as helperInitRectangularFilter and the
SensorTransformFcn field as ctrectcorners. In the model this is achieved by specifying the
InitFcn callback of the GM PHD Tracker subsystem. See “Model Callbacks” (Simulink) for more
information about callback functions.

The animation below shows that the GM-PHD can also handle multiple detections per object per
sensor. Similar to GGIW-PHD, it also estimates the size and orientation of the object. The filter
initialization function uses similar approach as GGIW-PHD tracker and initializes multiple
components of different sizes.

You can see that the estimated tracks, modeled as rectangles, have a good fit with the simulated
ground truth object, depicted by the solid color patches. In particular, the tracks are able to correctly
track the shape of the vehicles along with their kinematic centers.

6 Featured Examples

6-788

Tracking Performance and Visualization

You assess the performance of each algorithm using the Optimal Subpattern Assignment (OSPA)
metric. The OSPA metric aims to evaluate the performance of a tracking system with a scalar cost by
combining different error components.

where , , and are localization, cardinality and labeling error components and p is the
order of the OSPA metric. See trackOSPAMetric for more information.

 Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink

6-789

6 Featured Examples

6-790

You set the Distance type parameter to custom and define the distance function between a track
and its associated ground truth as the helperExtendedTargetDistance helper function. This
distance helper function captures position, velocity, dimension and yaw error between a track and an
associated truth. The OSPA metric is shown in the scope block. Each unit on the x-axis represents 10
time steps in the scenario. Notice that the OSPA metric decreases and thus shows performance
improvement when you switch from point object tracker to GGIW-PHD tracker and from GGIW-PHD
tracker to GM-PHD tracker. The scenario is visualized using the Helper Scenario Visualization block,
implemented using the MATLAB System (Simulink) block. Code for this block is defined in the helper
class helperExtendedTargetTrackingDisplayBlk.

bdclose('ExtendedObjectTrackingInSimulink');

Summary

In this example you learned how to track objects that return multiple detections in a single sensor
scan using different tracking approaches in Simulink environment. You also learned how to evaluate
the performance of a tracking algorithm using the OSPA metric.

 Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink

6-791

Grid-based Tracking in Urban Environments Using Multiple
Lidars in Simulink

This example shows how to track moving objects with multiple lidars using a grid-based tracker in
Simulink. You use the Grid-Based Multi Object Tracker Simulink block to define the grid-based
tracker. This Grid-based tracker uses dynamic occupancy grid map as an intermediate representation
of the environment. This example closely follows the “Grid-Based Tracking in Urban Environments
Using Multiple Lidars” on page 6-619 MATLAB® example.

Overview of the model

The model is composed of three parts:

• Scenario and Sensor Simulation
• Grid-Based Multi Object Tracker
• Visualization

6 Featured Examples

6-792

Scenario and Sensor Simulation

The Scenario Reader block reads a drivingScenario (Automated Driving Toolbox) object from
workspace and generates Actors and Ego vehicle position data as Simulink.Bus (Simulink) Objects.
The Lidar Point Cloud Generator (Automated Driving Toolbox) block is used to simulate point cloud
location data. The HelperLidarSensorConfigurations block generates real time lidar sensor
configurations with the help of Runtime objects obtained from the Scenario Reader and Lidar
Point Cloud Generator blocks. These sensor configurations allow you to specify the mounting of
each sensor with respect to the tracking coordinate frame. The sensor configurations also allow you
to specify the detection limits - field of view and maximum range - of each sensor. As the sensors
move in the scenario system, their configuration must be updated each time by specifying the
configurations as an input to the tracker block. The HelperConcatenateSensorData block is
implemented using a MATLAB Function (Simulink) block. Code for this block is defined in the

 Grid-based Tracking in Urban Environments Using Multiple Lidars in Simulink

6-793

HelperSensorData file. This block groups and formats the data coming from lidar sensors and the
HelperLidarSensorConfigurations block into high resolution sensor data, which is used as an
input to the tracker block.

The scenario used in this example was created using the Driving Scenario Designer (Automated
Driving Toolbox) app and then exported to a MATLAB® function. The scenario represents an urban
intersection scene and contains a variety of objects including pedestrians, bicyclists, cars, and trucks.
The ego vehicle is equipped with six homogeneous lidars, each with a horizontal field of view of 90
degrees and a vertical field of view of 40 degrees. Each lidar has 32 elevation channels and has a
resolution of 0.16 degrees in azimuth. Under this configuration, each lidar sensor outputs
approximately 18,000 points per scan. The configuration of each sensor is shown here.

Grid-Based Multi Object Tracker

You use the Grid-Based Multi Object Tracker block to implement the tracking algorithm to track
dynamic objects in the scene. You define all the parameters in the block mask based on the scenario
requirement. To visualize the dynamic grid map, make sure you select the Enable dynamic grid
map visualization parameter on the visualization tab of the tracker block.

Visualization

The visualization used for this example is defined using a helper class, HelperVisualization a
MATLAB System (Simulink) block, attached with this example. In the step call of visualization block
make sure you set the "Parent" property to the current axes. This allows you to visualize the dynamic

6 Featured Examples

6-794

grid map on the current figure axes. The color disc classifies the motion of the grid cells object. You
can see that the grid cells motion in the positive x-direction are classified with red color, objects
moving in the negative x-direction are classified with the blue color, objects moving in the negative y-
direction are classified with purple and objects moving in the positive y-direction are classified with
light-green color. The Visualization contains three parts:

• Ground truth - Front View: This panel shows the front-view of the ground truth using a
chase plot from the ego vehicle. To emphasize dynamic actors in the scene, the static objects are
shown in gray.

• Lidar Views: These panels show the point cloud returns from each sensor.

• Grid-based tracker: This panel shows the grid-based tracker outputs. The tracks are shown as
boxes, each annotated by their identity. The tracks are overlaid on the dynamic grid map. The
colors of the dynamic grid cells are defined according to the color wheel, which represents the
direction of motion of in the scenario frame. The static grid cells are represented in grayscale
according to their occupancy. The degree of grayness denotes the probability that the space
occupied by the grid cell is free. The positions of the tracks are shown in the ego vehicle
coordinate system, while the velocity vector corresponds to the velocity of the track in the
scenario frame.

Results and Analysis

You can analyze the performance of the tracker based on the visualization results. The Grid-based
tracker panel shows the estimated dynamic map as well as the estimated tracks of the objects. It
also shows the configurations of sensors, which are mounted on the ego vehicle and shown as blue
circular sectors. Notice that the grey area shown in the dynamic grid map is not observable from any
of the ego vehicle sensors since the view direction is blocked. You can also find that the tracks are
only extracted from the dynamic cells and hence the tracker is able to filter out static objects.

 Grid-based Tracking in Urban Environments Using Multiple Lidars in Simulink

6-795

Summary

In this example you learned how to construct a grid-based multi object tracking system and how to
track and visualize dynamic objects in a complex urban driving environment in Simulink.

6 Featured Examples

6-796

Simulate INS Block
In this example, you simulate an INS block by using the pose information of a vehicle undertaking a
left-turn trajectory.

Load Vehicle Trajectory Data

First, you load the trajectory information of the vehicle to the workspace.

load leftTurnTrajectory.mat

You notice that seven new variables appear in MATLAB workspace.

• dt — The time step size of 0.4 seconds.
• t — The total time span of 7.88 seconds.
• vehPos, vehVel, vehAcc, vehOrient, vehAngVel — The history of position, velocity,

acceleration, orientation, and angular velocity, each specified as a 198-by-3 matrix, where 198 is
the total number of steps.

Open Simulink Model

Next, you open the Simulink model.

open simulateINS.slx

The model contains three parts: the data importing part, the INS block, and the scope block to
compare the true positions with the INS outputs.

The data importing part imports the vehicle trajectory data into Simulink using the From Workspace
(Simulink) block. You use a helper function helperFromWorkspace, attached in the example folder,
to convert the trajectory data into a structure format required by the From Workspace block.

Run the Model

Run the Simulink model.

resulsts = sim('simulateINS');

Click on the scope block and see the results. The INS block position outputs closely follow the truth
with the addition of noise.

 Simulate INS Block

6-797

6 Featured Examples

6-798

Reconstruct Ground Truth Trajectory from Sampled Data Using
Filtering, Smoothing, and Interpolation

This example shows how to use an interactive motion-model based filter along with a smoother to
reconstruct the ground truth trajectory based on interpolation techniques.

Using Tracking Filters

Many trajectories can be segmented into a series of discrete maneuvers across time, where each
maneuver is governed by a small set of parameters that control how the pose of the object changes
over time. These maneuvers often consist of very simple models, for example, a constant velocity,
constant turn, or constant acceleration model. These simple models can be used with a tracking filter
that is tolerant to small perturbations of the parameters.

While these perturbations should be small, they do not necessarily need to be random. For example, a
constant velocity filter can often track an object with a small constant acceleration at the expense of a
small bias in the tracking result. Filter performance can drop severely when these perturbations are
significant.

In the “Tracking Maneuvering Targets” on page 6-192 example, you learn how to use an interacting
multiple-model (IMM) filter to track a target whose trajectory can be divided into three segments: a
single constant velocity, a constant turn, and a constant acceleration segment. The IMM filter is a
“hybrid” filter that runs a set of filters in parallel and returns a result that weights the estimates of
each filter by its performance. You can see the result of the example reproduced below:

n = 1000;
[trueState, time, fig1] = helperGenerateTruthLoop(n);
dt = diff(time(1:2));
numSteps = numel(time);

rng(2021); % for repeatable results

% Select position from 9-dimenstional state [x;vx;ax;y;vy;ay;z;vz;az]
positionSelector = [1 0 0 0 0 0 0 0 0;
 0 0 0 1 0 0 0 0 0;
 0 0 0 0 0 0 1 0 0];
truePos = positionSelector*trueState;
sigma = 10; % Measurement noise standard deviation
measNoise = sigma* randn(size(truePos));
measPos = truePos + measNoise;
initialState = positionSelector'*measPos(:,1);
initialCovariance = diag([1 1e4 1e4 1 1e4 1e4 1 1e4 1e4]); % Velocity and acceleration are not measured

detection = objectDetection(0,[0; 0; 0],'MeasurementNoise',sigma^2 * eye(3));
f1 = initcaekf(detection); % Constant acceleration EKF
f1.ProcessNoise = 0.3*eye(3);
f2 = initctekf(detection); % Constant turn EKF
f2.ProcessNoise = diag([1 1 100 1]);
f3 = initcvekf(detection); % Constant velocity EKF
imm = trackingIMM({f1; f2; f3},'TransitionProbabilities',0.99, ...
 'ModelConversionFcn',@switchimm);
initialize(imm, initialState, initialCovariance);

estState = zeros(9,numSteps);
for i = 2:size(measPos,2)

 Reconstruct Ground Truth Trajectory from Sampled Data Using Filtering, Smoothing, and Interpolation

6-799

 predict(imm,dt);
 estState(:,i) = correct(imm,measPos(:,i));
end

figure(fig1);
ax = gca(fig1);
line(ax,estState(1,:),estState(4,:),estState(7,:),'Color','k','LineStyle',':','DisplayName','Correction estimates');
axis(ax,'image');

Zoom into the transition regions between each model:

axis(ax,[6000 7000 -200 200])
legend(ax,'Location','bestoutside')

6 Featured Examples

6-800

The IMM filter faces challenges in the time intervals after the motion model changes from one to
another. In each transition region the centripetal acceleration is not accounted for in the constant
velocity and constant acceleration models. Therefore, the estimation bias persists for a small duration
until the IMM filter has enough data to determine the correct motion model. The bias vanishes
thereafter until the next transition region.

Smooth Trajectory Estimates

Smoothing is an effective technique to retroactively improve the trajectory estimates. Smoothing is
performed by applying both a forwards and backwards filter. The smoother can then choose the
"best" of the forwards and backwards predicted regions that mitigate prediction errors in the
transition region between maneuvers. You use the same data and filter setup as above, but with the
smoothing capability enabled.

imm = trackingIMM({f1; f2; f3},'TransitionProbabilities',0.99, ...
 'ModelConversionFcn',@switchimm, ...
 'EnableSmoothing',true, ...
 'MaxNumSmoothingSteps',size(measPos,2)-1);
initialize(imm, initialState, initialCovariance);

estState = zeros(9,numSteps);

for i = 2:size(measPos,2)
 predict(imm,dt);
 estState(:,i) = correct(imm,measPos(:,i));
end

 Reconstruct Ground Truth Trajectory from Sampled Data Using Filtering, Smoothing, and Interpolation

6-801

smoothState = smooth(imm);

line(ax,smoothState(1,:),smoothState(4,:),smoothState(7,:),'Color','g','LineStyle','-','DisplayName','Smooth estimates')
axis(ax,'image');

Zoom in the same region as above and you can see that the smoothed estimates are considerably
more successful at recovering the ground truth trajectory.

axis(ax,[6000 7000 -200 200])

6 Featured Examples

6-802

From the results, you can see that smoothing is an effective tool to recover trajectory data when
transitioning from one motion model to another with an abrupt change. This forward-backward
smoothing often reasonably well in estimating a ground truth trajectory.

Using Low-Order Polynomials for Densely Sampled Data

When comparing tracking algorithms, it can be advantageous to present the tracking results into a
format so that pose information can be queried for an arbitrary time instant. When data is sampled at
a sufficiently high rate, you can use a set of low-order piecewise polynomials to approximate the data.
These polynomials can be differentiated to provide velocity and acceleration information. Additionally,
you can use a set of algorithms to infer the orientation of an object based on certain assumptions. For
example, assume an object always faces the direction of travel and banks to counteract centripetal
forces. The following code shows how to use the smoothed positions and velocities to infer the total
acceleration of the object by using a cubic spline.

smoothPos = smoothState([1 4 7],:);
smoothVel = smoothState([2 5 8],:);

% Smoothed state vector does not include acceleration
% Create piecewise polynomial from velocity information
velPP = pchip(time(2:end),smoothVel);

% Construct a new piecewise polynomial with the derivative
[breaks,coefs,~,k,dim]=unmkpp(velPP);
coefs = coefs(:,1:k-1).*(k-1:-1:1);
accPP=mkpp(breaks,coefs,dim);

 Reconstruct Ground Truth Trajectory from Sampled Data Using Filtering, Smoothing, and Interpolation

6-803

% Evaluate the piecewise polynomial to get the acceleration
smoothAcc = ppval(accPP,time(2:end));

% Display the velocity and resulting acceleration
fig = figure;
ax1 = subplot(2,1,1,'Parent',fig);
plot(ax1,time(2:end),smoothVel(1,:),time(2:end),smoothVel(2,:),time(2:end),smoothVel(3,:));
xlabel('time [s]');
ylabel('velocity [m/s]')
title('Velocity Profile')
legend('v_x','v_y','v_z')

ax2 = subplot(2,1,2,'Parent',fig);
plot(ax2,time(2:end),smoothAcc(1,:),time(2:end),smoothAcc(2,:),time(2:end),smoothAcc(3,:));
xlabel('time [s]')
ylabel('acceleration [m/s^2]')
title('Acceleration Profile')
legend('a_x','a_y','a_z')

The computed acceleration is not purely sinusoidal while in the constant turn maneuver, which is due
to small variations in the smoothed output. Nevertheless, the result provides information to identify
the distinct regions of each maneuver.

Though the cubic polynomials are numerically efficient to interpolate the position, they rely on having
dense sampling to faithfully represent circular arcs. If greater accuracy is required, you need to use
data sampled at a higher rate, which requires an increase of memory resources and a larger lookup
table.

6 Featured Examples

6-804

Using High-Order Polynomials

In the previous section you used cubic polynomials to compute the acceleration at each point. For
trajectories that consist mainly of circular and straight motion, using an interpolant that favors
constant curvature works considerably better than low-order polynomials. The
waypointTrajectory object can model trajectories with constant turn (constant curvature). It can
also faithfully represent trajectories with gradual changes in both curvature and acceleration.

A simple technique to reduce the memory footprint of the interpolant and reduce the magnitude of
transients is to use changepoint estimation to locate significant changes in curvature of the trajectory.
After that, use those points to compute the interpolant.

% Obtain curvature of trajectory projected into x-y plane
planarCurvature = cross(smoothVel,smoothAcc) ./ vecnorm(smoothVel,2).^3;
horizontalCurvature = planarCurvature(3,:);

% Obtain the estimates of the changepoints
threshold = var(horizontalCurvature);
[tf,m] = ischange(horizontalCurvature,'Threshold',threshold);

fig=figure;
hAx=gca(fig);
line(hAx,time(2:end),horizontalCurvature,'DisplayName','Computed');
[xx,yy]=stairs(time(2:end),m);
line(hAx,xx,yy,'DisplayName','Estimated','Color','k')
legend(hAx)
xlabel('time [s]');
ylabel('curvature [rad/m]')
title('Horizontal curvature')

 Reconstruct Ground Truth Trajectory from Sampled Data Using Filtering, Smoothing, and Interpolation

6-805

You can then take these changepoints as starting points for constructing the waypoints of the
trajectory:

idx = 1+[0 find(tf) numel(tf)-1];

waypoints = smoothPos(:,idx)';
wayvels = smoothVel(:,idx)';
timeOfArrival = time(idx);
traj = waypointTrajectory(waypoints,timeOfArrival,'Velocities',wayvels);
[wayPos, ~, wayVel] = lookupPose(traj,time(1:end-1));

clf
plot(trueState(1,:),trueState(4,:),'-');
hold on;
plot(wayPos(:,1),wayPos(:,2),'-')
plot(waypoints(:,1),waypoints(:,2),'o ');
grid on;
xlabel('X Position [m]');
ylabel('Y Position [m]');
axis equal;
legend('Truth','Waypoint Estimate', 'Waypoints', 'Location','southwest')

6 Featured Examples

6-806

From the results, you recovered a circular trajectory by using just a few waypoints and their
corresponding velocities. However, the radius is sensitive to the tangent angles of the velocities
estimated within the transition region - which can be a difficult region for a tracking filter to predict.

If you plot the magnitude of the position error of the reconstructed trajectory against the smoothed
estimates, you can see localized regions with larger errors:

figure;
plot(time(2:end),vecnorm(smoothPos-wayPos',2))
xlabel('time [s]')
ylabel('distance [m]')
title('Magnitude of Position Error');

 Reconstruct Ground Truth Trajectory from Sampled Data Using Filtering, Smoothing, and Interpolation

6-807

Note the close agreement in regions where the waypoints are close to their smoothed counterparts
and the larger deviations in the regions further away from the waypoints. A simple way to reduce the
error is to repeatedly add additional waypoints at the positions of maximum error until a desired
objective is achieved. In this example, if you set an objective of 10 meters for the maximum error, you
only need a few more waypoints.

objective = 10; % use 10 m for objective maximal position error
maxError = Inf; % pre-assign error to a maximal value
while maxError > objective
 [~,maxi] = max(vecnorm(smoothPos-wayPos',2));
 idx = unique(sort([maxi idx]));
 waypoints = smoothPos(:,idx)';
 wayvels = smoothVel(:,idx)';
 timeOfArrival = time(idx);
 traj = waypointTrajectory(waypoints,timeOfArrival,'Velocities',wayvels);
 [wayPos, ~, wayVel, wayAcc] = lookupPose(traj,time(1:end-1));
 maxError = max(vecnorm(smoothPos-wayPos',2));
end

figure;
plot(trueState(1,:),trueState(4,:),'-');
hold on;
plot(wayPos(:,1),wayPos(:,2),'-')
plot(waypoints(:,1),waypoints(:,2),'o ');
grid on;
xlabel('X Position [m]');
ylabel('Y Position [m]');

6 Featured Examples

6-808

axis equal;
legend('Truth','Waypoint Estimate', 'Waypoints', 'Location','southwest')

You can then observe the reduced position error.

figure;
plot(time(2:end),vecnorm(smoothPos-wayPos',2))
xlabel('time [s]')
ylabel('distance [m]')
title('Magnitude of Position Error');

 Reconstruct Ground Truth Trajectory from Sampled Data Using Filtering, Smoothing, and Interpolation

6-809

Now that you have a reasonable position profile, you can inspect the resulting velocity and
acceleration profiles from the trajectory. Note the overall improvement in the recovery of the
sinusoidal acceleration profile.

fig = figure;
ax1 = subplot(2,1,1,'Parent',fig);
plot(ax1,time(1:end-1),wayVel);
title('Velocity Profile')
xlabel('time');
ylabel('velocity [m/s]')
legend('v_x','v_y','v_z')

ax2 = subplot(2,1,2,'Parent',fig);
plot(ax2,time(1:end-1),wayAcc);
title('Acceleration Profile')
xlabel('time [s]');
ylabel('acceleration [m/s^2]')
legend('a_x','a_y','a_z')

6 Featured Examples

6-810

Summary

In this example you learned how to reconstruct a ground truth trajectory using an interacting
multiple-model smoother and low order polynomials. You also used a simple scheme that used a high-
order interpolant (contained in the waypointTrajectory object) along with critical sampling to
recover higher-order derivatives that would otherwise be masked by noise.

 Reconstruct Ground Truth Trajectory from Sampled Data Using Filtering, Smoothing, and Interpolation

6-811

Event-Based Sensor Fusion and Tracking with Retrodiction
This example shows how to construct an event-based sensor fusion and tracking model in Simulink®.

Introduction

In this example you create a model for sensor fusion and tracking by simulating radar and vision
camera, each running at a different update rate. The sensors and the tracker run on separate
electronic control units (ECUs). The tracker runs asynchronously from the sensors whenever there is
a batch of detections reported from any sensor.

Model Description

Open the Simulink model using the open_system command.

open_system('EventBasedTrackingModel.slx');

The model consists of five parts.

The Scenario part of the model consists of a Scenario Reader block, which loads the scenario saved in
EventBasedFusion.mat. In the scenario, there are 4 vehicles: the ego vehicle, a car in front of it, a
passing car, and a car behind the ego car.

The ego car has two sensors: a radar and a vision camera. The radar is simulated using the Driving
Radar Data Generator block, running at 25 Hz, or every 40 milliseconds. The camera is simulated
using a Vision Detection Generator block, running every 44 milliseconds. Due to the combination of
sensor rates, the scenario needs to run at a rate of at least 250 Hz, or every 4 milliseconds. Both
sensor models are shown in the Sensor Simulation part of the model.

The Message Delivery System part of the model simulates the asynchronous communication system
between the sensors and the tracker. Each sensor outputs a bus of detections that is packed into by a
Message Send block and delivered to an Entity Queue. The queues are organized as a first-in-first-out
(FIFO) queue. When any queue contains messages, it triggers the tracker subsystem.

The Sensor Fusion and Tracking part of the model consists of a single Triggered Subsystem block.
The subsystem is connected to the radar and vision queues and is triggered when they have
messages.

open_system('EventBasedTrackingModel/SensorFusionAndTracking');

6 Featured Examples

6-812

In the subsystem, the Message Receive blocks read the messages and pass their payload, the
detections bus, to the Detection Concatenation block and then to the tracker. With this setup, the
tracker is stepped only when there is new sensor data to process.

The final part of the model is the Visualization, where all the scenario, sensor, and tracking data are
visualized by a helper block.

Configure the Tracker to Use Retrodiction

For the tracker, you use a Global Nearest Neighbor Tracker block. You modify the tracker to use the
retrodiction technique for out-of-sequence measurement (OOSM) handling. When using the tracker in
an asynchronous way, the tracker clock may run ahead of the messages that arrive, which renders the
messages 'out-of-sequence'. Setting the tracker OOSM handling to retrodiction allows the tracker to
process them instead of terminating with an error or neglecting the OOSM. Overall, retrodiction
improves the tracker accuracy.

Using retrodiction requires more memory because the tracker must maintain a history of each track.
To reduce the memory allocation, you reduce the maximum number of tracks to 20, because there are
just a few objects in the scenario. Similarly, you reduce the maximum number of sensors to 2, because
only two sensors report to the tracker.

You increase the threshold for assigning detections to tracks from the default 30 to 50 to allow vision
and radar detections that may have different offsets on the object to be assigned to the same track. A
larger assignment threshold may result in false detections getting assigned to each other and
creating false tracks. To reduce the rate of false tracks, you make the confirmation threshold stricter
by increasing it from the default 2-out-of-3 to 4-out-of-5 detections.

Run the Model and See the Results

You build and run the model using the command below.

sim('EventBasedTrackingModel.slx');
close_system('EventBasedTrackingModel.slx');

 Event-Based Sensor Fusion and Tracking with Retrodiction

6-813

The simulation shows that the tracker tracks the vehicle in front of the ego vehicle after a few steps
required for confirmation and maintains the track throughout the scenario. The passing vehicle, in
yellow, is tracked only after it enters the radar field of view. The passing vehicle track is dropped after
it becomes obscured by the front vehicle. The vehicle behind the ego vehicle is never detected by any
sensor and therefore it is never tracked.

Summary

This example showed you how to use an event-based sensor fusion and tracking system. The example
showed how to connect sensors with different update rates using an asynchronous tracker and how to
trigger the tracker to process sensor data whenever the data becomes available. The tracker uses the
retrodiction out-of-sequence measurement handling technique to process sensor data that arrives out
of sequence.

6 Featured Examples

6-814

Object Tracking and Motion Planning Using Frenet Reference
Path

This example shows you how to dynamically replan the motion of an autonomous vehicle based on the
estimate of the surrounding environment. You use a Frenet reference path and a joint probabilistic
data association (JPDA) tracker to estimate and predict the motion of other vehicles on the highway.
Compared to the “Highway Trajectory Planning Using Frenet Reference Path” (Navigation Toolbox)
example, you use these estimated trajectories from the multi-object tracker in this example instead of
ground truth for motion planning.

Introduction

Dynamic replanning for autonomous vehicles is typically done with a local motion planner. The local
motion planner is responsible for generating optimal trajectory based on a global plan and real-time
information about the surrounding environment. The global plan for highway trajectory planning can
be described as a pre-generated coordinate list of the highway centerline. The surrounding
environment can be described mainly in two ways:

1 Discrete set of objects in the surrounding environment with defined geometries.
2 Discretized grid with estimates about free and occupied regions in the surrounding environment.

In the presence of dynamic obstacles, a local motion planner also requires predictions about the
surroundings to assess the validity of planned trajectories. In this example, you represent the
surrounding environment using the discrete set of objects approach. For an example using discretized
grid, refer to the “Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map” on
page 6-680 example.

Object State Transition and Measurement Modeling

The object list and their future predictions for motion planning are typically estimated by a multi-
object tracker. The multi-object tracker accepts data from sensors and estimates the list of objects. In
the tracking community, this list of objects is often termed as track list.

In this example, you use radar and camera sensors and estimate the track list using a JPDA multi-
object tracker. The first step towards using any multi-object tracker is defining the object state, how
the state evolves with time (state transition model) and how the sensor perceives it (measurement
model). Common state transition models include constant-velocity model, constant-acceleration
model etc. However, in the presence of map information, road network can be integrated into the
motion model. In this example, you use a Frenet coordinate system to describe the object state at any
given time step, k.

xk = sk sk̇ dk dk̇

where sk and dk represents the distance of the object along and perpendicular to highway centerline,
respectively. You use a constant-speed state transition model to describe the object motion along the
highway and a decaying-speed model to describe the motion perpendicular to the highway centerline.
This decaying speed model allows you to represent lane change maneuvers by other vehicles on the
highway.

 Object Tracking and Motion Planning Using Frenet Reference Path

6-815

sk + 1

sk + 1˙
dk + 1

dk + 1˙

=

1 ΔT 0 0
0 1 0 0

0 0 1 τ 1− e −
ΔT
τ

0 0 0 e −
ΔT
τ

sk

sk̇
dk

dk̇

+

ΔT2

2 0

ΔT 0

0 ΔT2

2
0 ΔT

ws
wd

where ΔT is the time difference between steps k and k + 1, ws and wd are zero-mean Gaussian noise
representing unknown acceleration in Frenet coordinates, and τ is a decaying constant.

This choice of coordinate in modeling the object motion allows you to integrate the highway reference
path into the multi-object tracking framework. The integration of reference path acts as additional
information for the tracker and allows the tracker to improve current state estimates as well as
predicted trajectories of the estimated objects. You can obtain measurement model by first
transforming the object state into Cartesian position and velocity and then converting them to
respective measured quantities such as azimuth and range.

Setup

Scenario and Sensors

The scenario used in this example is created using the Driving Scenario Designer (Automated Driving
Toolbox) and then exported to a MATLAB® function. The ego vehicle is mounted with 1 forward-
looking radar and 5 cameras providing 360-degree coverage. The radar and cameras are simulated
using the drivingRadarDataGenerator (Automated Driving Toolbox) and
visionDetectionGenerator (Automated Driving Toolbox) System objects, respectively.

6 Featured Examples

6-816

The entire scenario and sensor setup is defined in the helper function,
helperTrackingAndPlanningScenario, attached with this example. You define the global plan
describing the highway centerline using a referencePathFrenet (Navigation Toolbox) object. As
multiple algorithms in this example need access to the reference path, you define the
helperGetReferencePath function, which uses a persistent object that can be accessed by any
function.

rng(2022); % For reproducible results

% Setup scenario and sensors
[scenario, egoVehicle, sensors] = helperTrackingAndPlanningScenario();

Joint Probabilistic Data Association Tracker

You set up a joint probabilistic data association tracker using the trackerJPDA System object. You
set the FilterInitializationFcn property of the tracker to helperInitRefPathFilter
function. This helper function defines an extended Kalman filter, trackerJPDA, used to estimate the
state of a single object. Local functions inside the helperInitRefPathFilter file define the state
transition as well as measurement model for the filter. Further, to predict the tracks at a future time
for the motion planner, you use the predictTracksToTime function of the tracker.

tracker = trackerJPDA('FilterInitializationFcn',@helperInitRefPathFilter,...
 'AssignmentThreshold',[200 inf],...
 'ConfirmationThreshold',[8 10],...
 'DeletionThreshold',[5 5]);

Motion Planner

You use a similar highway trajectory motion planner as outlined in the “Highway Trajectory Planning
Using Frenet Reference Path” (Navigation Toolbox) example. The motion planner uses a planning
horizon of 5 seconds and considers three modes for sampling trajectories for the ego vehicle — cruise
control, lead vehicle follow, and basic lane change. The entire process for generating an optimal
trajectory is wrapped in the helper function, helperPlanHighwayTrajectory.

The helper function accepts an dynamicCapsuleList (Navigation Toolbox) object as an input to find
non-colliding trajectories. The collision checking is performed in the entire planning horizon at an
interval of 0.5 seconds. As the track states vary with time, you update the dynamicCapsuleList
object in the simulation loop using the helperUpdateCapsuleList function, attached with this
example.

% Collision check time stamps
tHorizon = 5; % seconds
deltaT = 0.5; % seconds
tSteps = deltaT:deltaT:tHorizon;

% Create the dynamicCapsuleList object
capList = dynamicCapsuleList;
capList.MaxNumSteps = numel(tSteps) + 1;

% Specify the ego vehicle geometry
carLen = 4.7;
carWidth = 1.8;
rearAxleRatio = 0.25;
egoID = 1;
[egoID, egoGeom] = egoGeometry(capList,egoID);

 Object Tracking and Motion Planning Using Frenet Reference Path

6-817

% Inflate to allow uncertainty and safety gaps
egoGeom.Geometry.Length = 2*carLen; % in meters
egoGeom.Geometry.Radius = carWidth/2; % in meters
egoGeom.Geometry.FixedTransform(1,end) = -2*carLen*rearAxleRatio; % in meters
updateEgoGeometry(capList,egoID,egoGeom);

Run Simulation

In this section, you advance the simulation, generate sensor data and perform dynamic replanning
using estimations about the surroundings. The entire process is divided into 5 main steps:

1 You collect simulated sensor data from radar and camera sensors.
2 You feed the sensor data to the JPDA tracker to estimate current state of objects.
3 You predict the state of objects using the predictTracksToTime function.
4 You update the object list for the planner and plan a highway trajectory.
5 You move the simulated ego vehicle on the planned trajectory.

% Create display for visualizing results
display = HelperTrackingAndPlanningDisplay;

% Initial state of the ego vehicle
refPath = helperGetReferencePath;
egoState = frenet2global(refPath,[0 0 0 0.5*3.6 0 0]);
helperMoveEgoToState(egoVehicle, egoState);

while advance(scenario)
 % Current time
 time = scenario.SimulationTime;

 % Step 1. Collect data
 detections = helperGenerateDetections(sensors, egoVehicle, time);

 % Step 2. Feed detections to tracker
 tracks = tracker(detections, time);

 % Step 3. Predict tracks in planning horizon
 timesteps = time + tSteps;
 predictedTracks = repmat(tracks,[1 numel(timesteps)+1]);
 for i = 1:numel(timesteps)
 predictedTracks(:,i+1) = predictTracksToTime(tracker,'confirmed',timesteps(i));
 end

 % Step 4. Update capsule list and plan highway trajectory
 currActorState = helperUpdateCapsuleList(capList, predictedTracks);
 [optimalTrajectory, trajectoryList] = helperPlanHighwayTrajectory(capList, currActorState, egoState);

 % Visualize the results
 display(scenario, egoVehicle, sensors, detections, tracks, capList, trajectoryList);

 % Step 5. Move ego on planned trajectory
 egoState = optimalTrajectory(2,:);
 helperMoveEgoToState(egoVehicle,egoState);
end

6 Featured Examples

6-818

Results

In the animation below, you can observe the planned ego vehicle trajectories highlighted in green
color. The animation also shows all other sampled trajectories for the ego vehicle. For these other
trajectories, the colliding trajectories are shown in red, unevaluated trajectories are shown in grey,
and kinematically-infeasible trajectories are shown in cyan color. Each track is annotated by an ID
representing its unique identity. Notice that the ego vehicle successfully maneuvers around obstacles
in the scene.

In the following sub-sections, you analyze the estimates from the tracker at certain time steps and
understand how it impacts the choices made by the motion planner.

Road-integrated motion prediction

In this section, you learn how the road-integrated motion model allows the tracker to obtain more
accurate long-term predictions about the objects on the highway. Shown below is a snapshot from the
simulation taken at time = 30 seconds. Notice the trajectory predicted for the green vehicle to the
right of the blue ego vehicle. The predicted trajectory follows the lane of the vehicle because the road
network information is integrated with the tracker. If instead, you use a constant-velocity model
assumption for objects, the predicted trajectory will follow the direction of instantaneous velocity and
will be falsely treated as a collision by the motion planner. In this case, the motion planner can
possibly generate an unsafe maneuver.

showSnaps(display,2,4); % Shows snapshot while publishing

 Object Tracking and Motion Planning Using Frenet Reference Path

6-819

Lane change prediction

In the first section, you learned how the lane change maneuvers are captured by using a decaying
lateral velocity model of the objects. Now, notice the snapshot taken at time = 17.5 seconds. At this
time, the yellow vehicle on the right side of the ego vehicle initiates a lane change and intends to
enter the lane of the ego vehicle. Notice that its predicted trajectory captures this maneuver, and the
tracker predicts it to be in the same lane as the ego vehicle at the end of planning horizon. This
prediction informs the motion planner about a possible collision with this vehicle, thus the planner
first proceeds to test feasibility for the ego vehicle to change lane to the left. However, the presence
of purple vehicle on the left and its predicted trajectory causes the ego vehicle to make a right lane
change. You can also observe these colliding trajectories colored as red in the snapshot below.

showSnaps(display,2,1); % Shows snapshot while publishing

6 Featured Examples

6-820

Tracker imperfections

A multi-object tracker may have certain imperfections that can affect motion planning decisions.
Specifically, a multi-object tracker can miss objects, report false tracks, or sometimes report
redundant tracks. In the snapshot below taken at time = 20 seconds, the tracker drops tracks on two
vehicles in front of the ego vehicle due to occlusion. In this particular situation, these missed targets
are less likely to influence the decision of the motion planner due to their distance from the ego
vehicle.

showSnaps(display,2,2); % Shows snapshot while publishing

 Object Tracking and Motion Planning Using Frenet Reference Path

6-821

However, as the ego vehicle approaches these vehicles, their influence on the ego vehicle's decision
increases. Notice that the tracker is able to establish a track on these vehicles by time = 20.4
seconds, as shown in the snapshot below, thus making the system slightly robust to these
imperfections. While configuring a tracking algorithm for motion planning, it is important to consider
these imperfections from the tracker and tune the track confirmation and track deletion logics.

showSnaps(display,2,3); % Show snapshot while publishing

6 Featured Examples

6-822

Summary

You learned how to use a joint probabilistic data association tracker to track vehicles using a Frenet
reference path with radar and camera sensors. You configured the tracker to use highway map data
to provide long term predictions about objects. You also used these long-term predictions to drive a
motion planner for planning trajectories on the highway.

Supporting Functions

function detections = helperGenerateDetections(sensors, egoVehicle, time)
 detections = cell(0,1);
 for i = 1:numel(sensors)
 thisDetections = sensors{i}(targetPoses(egoVehicle),time);
 detections = [detections;thisDetections]; %#ok<AGROW>
 end

 detections = helperAddEgoVehicleLocalization(detections,egoVehicle);
 detections = helperPreprocessDetections(detections);
end

function detectionsOut = helperAddEgoVehicleLocalization(detectionsIn, egoPose)

 Object Tracking and Motion Planning Using Frenet Reference Path

6-823

defaultParams = struct('Frame','Rectangular',...
 'OriginPosition',zeros(3,1),...
 'OriginVelocity',zeros(3,1),...
 'Orientation',eye(3),...
 'HasAzimuth',false,...
 'HasElevation',false,...
 'HasRange',false,...
 'HasVelocity',false);

fNames = fieldnames(defaultParams);

detectionsOut = cell(numel(detectionsIn),1);

for i = 1:numel(detectionsIn)
 thisDet = detectionsIn{i};
 if iscell(thisDet.MeasurementParameters)
 measParams = thisDet.MeasurementParameters{1};
 else
 measParams = thisDet.MeasurementParameters(1);
 end

 newParams = struct;
 for k = 1:numel(fNames)
 if isfield(measParams,fNames{k})
 newParams.(fNames{k}) = measParams.(fNames{k});
 else
 newParams.(fNames{k}) = defaultParams.(fNames{k});
 end
 end

 % Add parameters for ego vehicle
 thisDet.MeasurementParameters = [newParams;newParams];
 thisDet.MeasurementParameters(2).Frame = 'Rectangular';
 thisDet.MeasurementParameters(2).OriginPosition = egoPose.Position(:);
 thisDet.MeasurementParameters(2).OriginVelocity = egoPose.Velocity(:);
 thisDet.MeasurementParameters(2).Orientation = rotmat(quaternion([egoPose.Yaw egoPose.Pitch egoPose.Roll],'eulerd','ZYX','frame'),'frame')';

 % No information from object class and attributes
 thisDet.ObjectClassID = 0;
 thisDet.ObjectAttributes = struct;
 detectionsOut{i} = thisDet;
end

end

function detections = helperPreprocessDetections(detections)
 % This function pre-process the detections from radars and cameras to
 % fit the modeling assumptions used by the tracker

 % 1. It removes velocity information from camera detections. This is
 % because those are filtered estimates and the assumptions from camera
 % may not align with defined prior information for tracker.
 %
 % 2. It fixes the bias for camera sensors that arise due to camera
 % projections for cars just left or right to the ego vehicle.
 %

6 Featured Examples

6-824

 % 3. It inflates the measurement noise for range-rate reported by the
 % radars to match the range-rate resolution of the sensor
 for i = 1:numel(detections)
 if detections{i}.SensorIndex > 1 % Camera
 % Remove velocity
 detections{i}.Measurement = detections{i}.Measurement(1:3);
 detections{i}.MeasurementNoise = blkdiag(detections{i}.MeasurementNoise(1:2,1:2),25);
 detections{i}.MeasurementParameters(1).HasVelocity = false;

 % Fix bias
 pos = detections{i}.Measurement(1:2);
 if abs(pos(1)) < 5 && abs(pos(2)) < 5
 [az, ~, r] = cart2sph(pos(1),pos(2),0);
 [pos(1),pos(2)] = sph2cart(az, 0, r + 0.7); % Increase range
 detections{i}.Measurement(1:2) = pos;
 detections{i}.MeasurementNoise(2,2) = 0.25;
 end
 else % Radars
 detections{i}.MeasurementNoise(3,3) = 0.5^2/4;
 end
 end
end

function helperMoveEgoToState(egoVehicle, egoState)
egoVehicle.Position(1:2) = egoState(1:2);
egoVehicle.Velocity(1:2) = [cos(egoState(3)) sin(egoState(3))]*egoState(5);
egoVehicle.Yaw = egoState(3)*180/pi;
egoVehicle.AngularVelocity(3) = 180/pi*egoState(4)*egoState(5);
end

 Object Tracking and Motion Planning Using Frenet Reference Path

6-825

Extended Target Tracking with Multipath Radar Reflections in
Simulink

This example shows how to model and mitigate multipath radar reflections in a highway driving
scenario in Simulink®. It closely follows the “Highway Vehicle Tracking with Multipath Radar
Reflections” (Radar Toolbox) MATLAB® example.

Introduction

While automotive radars provide robust detection performance across the diverse array of
environmental conditions encountered in autonomous driving scenarios, interpreting the detections
reported by the radar can prove challenging. Sensor fusion algorithms processing the radar
detections will need to be able to identify the desired target detections returned along with
detections arising from road (often referred to as clutter) and multipath between the various objects
in the driving scenario like guardrails and other vehicles on the road. Detections generated by
multiple reflections between the radar and a particular target are often referred to as ghost
detections because they seem to originate in regions where no targets exist. This example shows you
the impact of these multipath reflections on designing and configuring an object tracking strategy
using radar detections. For more details regarding multipath phenomenon and simulation of ghost
detections, refer to the “Simulate Radar Ghosts Due to Multipath Return” (Radar Toolbox) example.

Load Scenario and Radars

This example uses the same scenario and radars defined by the
helperCreateMultipathDrivingScenario function used in the “Highway Vehicle Tracking with
Multipath Radar Reflections” (Radar Toolbox) example. Opening the model loads this scenario into
the workspace for use by the Scenario Reader (Automated Driving Toolbox) block.

open_system('MultipathRadarDetectionsTrackingModel')

6 Featured Examples

6-826

Use the "Ego radars" helper block to playback detections recorded from four radars providing full
360 degree coverage around the ego vehicle. To record a new set of detections, uncheck "Playback
radar recording".

open_system('MultipathRadarDetectionsTrackingModel/Ego radars')

 Extended Target Tracking with Multipath Radar Reflections in Simulink

6-827

close_system('MultipathRadarDetectionsTrackingModel/Ego radars')

The four sensor models are configured in the "Record radars" block.

open_system('MultipathRadarDetectionsTrackingModel/Ego radars/Record radars')

Use Bird's-Eye Scope (Automated Driving Toolbox) to visualize the scenario and sensor coverage in
this model.

6 Featured Examples

6-828

 Extended Target Tracking with Multipath Radar Reflections in Simulink

6-829

The "Classify detections" helper block classifies the detections generated by the four radars by
comparing their measurements to the confirmed tracks from the Probability Hypothesis Density
(PHD) Tracker block. The detection classification utilizes the measured radial velocity from the
targets to determine if the target generating the detection was static or dynamic [1]. The detections
are classified into four categories:

1 Dynamic targets - These (red) detections are classified to originate from real dynamic targets in
the scene.

2 Static ghosts - These (green) detections are classified to originate from dynamic targets but
reflected via the static environment.

3 Dynamic ghosts - These (blue) detections are classified to originate from dynamic targets but
reflected via other dynamic objects.

4 Static targets - These (black) detections are classified to originate from the static environment.

Configure GGIW-PHD Extended Object Tracker

Configure the Probability Hypothesis Density (PHD) Tracker block with the same parameters as used
by the “Highway Vehicle Tracking with Multipath Radar Reflections” (Radar Toolbox) example. Reuse
the helperMultipathExamplePartitionFcn function to define the detection partitions used
within the tracker.

open_system('MultipathRadarDetectionsTrackingModel/Probability Hypothesis Density Tracker')

6 Featured Examples

6-830

close_system('MultipathRadarDetectionsTrackingModel/Probability Hypothesis Density Tracker',0)

Run Simulation

Use the following command to playback the recorded detections and generate tracks.

simout = sim('MultipathRadarDetectionsTrackingModel')

 Extended Target Tracking with Multipath Radar Reflections in Simulink

6-831

6 Featured Examples

6-832

Use helperSaveSimulationLogs to save the logged tracks and classified detections for offline
analysis.

helperSaveSimulationLogs('MultipathRadarDetectionsTrackingModel',simout);

Analyze Performance

Load the logged tracks and detections to assess the performance of the tracking algorithm by using
the GOSPA metric and its associated components.

[confirmedTracks,confusionMatrix] = helperLoadSimulationLogs('MultipathRadarDetectionsTrackingModel');

Use trackGOSPAMetric to calculate GOSPA metrics from the logged tracks.

gospaMetric = trackGOSPAMetric('Distance','custom', ...
 'DistanceFcn',@helperGOSPADistance, ...
 'CutoffDistance',35);

% Number of simulated track updates
numSteps = numel(confirmedTracks.Time);

% GOSPA metric
gospa = NaN(4,numSteps);

restart(scenario);
groundTruth = scenario.Actors(2:end);
iStep = 1;
tol = seconds(scenario.SampleTime/4);
while scenario.SimulationTime<=seconds(confirmedTracks.Time(end))
 % Select data from time table for current simulation time
 tsim = scenario.SimulationTime;
 wt = withtol(seconds(tsim),tol);

 % Select tracks from time table and compute GOSPA metrics
 theseTracks = confirmedTracks{wt,'Tracks'}{1};
 [gospa(1,iStep),~,~,gospa(2,iStep),gospa(3,iStep),gospa(4,iStep)] = gospaMetric(theseTracks,groundTruth);

 if scenario.IsRunning
 advance(scenario);
 else
 break
 end
 iStep = iStep+1;
end

Quantitatively assess the performance of the tracking algorithm by using the GOSPA metric and its
associated components. A lower value of the metric denotes better tracking performance. In the
figure below, the "Missed-target" component of the metric remains zero after a few steps in the
beginning, representing establishment delay of the tracker. This component shows that no targets
were missed by the tracker. The "False-tracks" component of the metric is zero for most of the
simulation, indicating that no false tracks were confirmed by the tracker during those times.

% Plot GOSPA metrics
plot(seconds(confirmedTracks.Time),gospa','LineWidth',2);
xlabel('Time (s)');
title('GOSPA Metrics');
grid on;
legend('GOSPA','Localization GOSPA','Missed-target GOSPA','False-tracks GOSPA');

 Extended Target Tracking with Multipath Radar Reflections in Simulink

6-833

Similar to the tracking algorithm, you also quantitatively analyze the performance of the radar
detection classification algorithm by using a confusion matrix [2]. The rows shown in the table denote
the true classification information of the radar detections and the columns represent the predicted
classification information. For example, the second element of the first row defines the percentage of
target detections predicted as ghosts from static object reflections.

91% of the target detections are classified correctly. However, a small percentage of the target
detections are misclassified as ghosts from dynamic reflections. Also, approximately 3% of ghosts
from static object reflections and 23% of ghosts from dynamic object reflections are misclassified as
targets and sent to the tracker for processing. A common situation when this occurs in this example
is when the detections from two-bounce reflections lie inside the estimated extent of the vehicle.
Further, the classification algorithm used in this example is not designed to find false alarms or
clutter in the scene. Therefore, the fifth column of the confusion matrix is zero. Due to spatial
distribution of the false alarms inside the field of view, the majority of false alarm detections are
either classified as reflections from static objects or dynamic objects.

% Accumulate confusion matrix over all steps
confMat = shiftdim(reshape([confusionMatrix{:,'Confusion Matrix'}],numSteps,5,5),1);
confMat = sum(confMat,3);

% Number of detections for each target type
numDetections = sum(confMat,2);

numDetsTable = array2table(numDetections,'RowNames',{'Targets','Ghost (S)','Ghost (D)','Environment','Clutter'},...
 'VariableNames',{'Number of Detections'});

6 Featured Examples

6-834

disp('True Information');disp(numDetsTable);

True Information
 Number of Detections

 Targets 1986
 Ghost (S) 3244
 Ghost (D) 836
 Environment 27441
 Clutter 139

% Calculate classification percentages
percentMatrix = confMat./numDetections*100;

percentMatrixTable = array2table(round(percentMatrix,2),'RowNames',{'Targets','Ghost (S)','Ghost (D)','Environment','Clutter'},...
 "VariableNames",{'Targets','Ghost (S)','Ghost (D)', 'Environment','Clutter'});

disp('True vs Predicted Confusion Matrix (%)');disp(percentMatrixTable);

True vs Predicted Confusion Matrix (%)
 Targets Ghost (S) Ghost (D) Environment Clutter
 _______ _________ _________ ___________ _______

 Targets 90.99 0.76 7.85 0.4 0
 Ghost (S) 3.18 85.39 11.13 0.31 0
 Ghost (D) 22.97 0.36 76.67 0 0
 Environment 1.56 2.92 3.41 92.1 0
 Clutter 19.42 65.47 14.39 0.72 0

Summary

In this example, you simulated radar detections due to multipath propagation in an urban highway
driving scenario using Simulink. You configured a data processing algorithm to simultaneously filter
ghost detections and track vehicles on the highway. You also analyzed the performance of the
tracking algorithm and the classification algorithm using the GOSPA metric and confusion matrix.

References

[1] Prophet, Robert, et al. "Instantaneous Ghost Detection Identification in Automotive Scenarios."
2019 IEEE Radar Conference (RadarConf). IEEE, 2019.

[2] Kraus, Florian, et al. "Using machine learning to detect ghost images in automotive radar." 2020
IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2020.

 Extended Target Tracking with Multipath Radar Reflections in Simulink

6-835

Lidar and Radar Fusion in an Urban Air Mobility Scenario
In this example you learn how to use multi-object trackers to track various Unmanned Air Vehicles
(UAVs) in an urban environment. You create a scene using the uavScenario object based on building
and terrain data available online. You use lidar and radar sensor models to generate synthetic sensor
data. Finally, you use various tracking algorithms to estimate the state of all UAVs in the scene.

UAVs are designed for a wide range of operations. Many applications are set in urban environments,
such as drone package delivery, air taxis, and power line inspection. The safety of these operations
becomes critical as the number of applications grows, making controlling the urban airspace a
challenge.

Create an urban air mobility scenario

In this example, you use the terrain and building data of Boulder, CO. The Digital Terrain Elevation
Data (DTED) file is downloaded from the "SRTM Void Filled" data set available from the U.S.
Geological Survey. The building data, saved in building.mat, is downloaded from OpenStreetMap
available online. You create a UAV scenario using this data.

dtedfile = "n39_w106_3arc_v2.dt1";
buildingfile = "building.mat";
scene = createScenario(dtedfile,buildingfile);

Next, you add a few UAVs to the scenario.

To model a package delivery operation, you define a trajectory leaving from the roof of a building and
flying to another building. The trajectory is composed of three legs. The quadrotor takes off vertically,
then flies toward the next delivery destination, and finally lands vertically on the roof.

waypointsA = [1895 90 20; 1915 108 35; 1900 115 20];
timeA = [0 25 50];
trajA = waypointTrajectory(waypointsA, "TimeOfArrival", timeA, "ReferenceFrame", "ENU", "AutoBank", true);
uavA = uavPlatform("UAV", scene, "Trajectory", trajA, "ReferenceFrame", "ENU");
updateMesh(uavA, "quadrotor", {5}, [0 1 1], eye(4));

You add another UAV to model an air taxi flying by. Its trajectory is linear, slightly descending. You
use the fixedwing geometry to model a larger UAV that are suitable to transporting people.

waypointsB = [1940 120 50; 1800 50 20];
timeB = [0 41];
trajB = waypointTrajectory(waypointsB, "TimeOfArrival", timeB, "ReferenceFrame", "ENU", "AutoBank", true);
uavB = uavPlatform("UAV2", scene, "Trajectory", trajB, "ReferenceFrame", "ENU");
updateMesh(uavB, "fixedwing", {10}, [0 1 1], eye(4));

Then you add a quadrotor with a trajectory following the street path. This could represent a UAV
inspecting power grid lines for maintenance purposes.

waypointsC = [1950 60 35; 1900 60 35; 1890 80 35];
timeC = linspace(0,41,size(waypointsC,1));
trajC = waypointTrajectory(waypointsC, "TimeOfArrival", timeC, "ReferenceFrame", "ENU", "AutoBank", true);
uavC = uavPlatform("UAV3", scene, "Trajectory", trajC, "ReferenceFrame", "ENU");
updateMesh(uavC, "quadrotor", {5}, [0 1 1], eye(4));

Finally, you add the ego UAV, a UAV responsible for surveilling the scene and tracking different
moving platforms.

6 Featured Examples

6-836

waypointsD = [1900 140 65; 1910 100 65];
timeD = [0 60];
trajD = waypointTrajectory(waypointsD, "TimeOfArrival", timeD, ...
 "ReferenceFrame", "ENU", "AutoBank", true, "AutoPitch", true);
egoUAV = uavPlatform("EgoVehicle", scene, "Trajectory", trajD, "ReferenceFrame", "ENU");
updateMesh(egoUAV, "quadrotor", {5}, [0 0 1], eye(4));

Define UAV sensor suite

Mount sensors on the ego vehicle. You use a lidar puck that is commonly used in automotive [1]. It is
a small sensor that can be attached on a quadrotor. You use the following specification for the lidar
puck:

• Range resolution: 3 cm
• Maximum range: 100 m
• 360 degrees azimuth span with 0.2° resolution
• 30 degrees elevation span with 2° resolution
• Update rate: 10 Hz
• Mount with a 90° tilt to look down

% Mount a lidar on the quadrotor
lidarOrient = [90 90 0];
lidarSensor = uavLidarPointCloudGenerator("MaxRange",100, ...
 "RangeAccuracy", 0.03, ...
 "ElevationLimits", [-15 15], ...
 "ElevationResolution", 2, ...
 "AzimuthLimits", [-180 180], ...
 "AzimuthResolution", 0.2, ...
 "UpdateRate", 10, ...
 "HasOrganizedOutput", false);
lidar = uavSensor("Lidar", egoUAV, lidarSensor, "MountingLocation", [0 0 -3], "MountingAngles",lidarOrient);

Next you add a radar using the radarDataGenerator System object from the Radar Toolbox. To add
this sensor to the UAV platform, you need to define a custom adaptor class. The details are shown in
the “Simulate Radar Sensor Mounted On UAV” (UAV Toolbox) example. In this example, you use the
helperRadarAdaptor class. This class uses the mesh geometry of targets to define cuboid
dimensions for the radar model. The mesh is also used to derive a simple RCS signature for each
target. Inspired from the Echodyne EchoFlight UAV radar [2], the radar configuration is selected as:

• Frequency: 24.45 - 24.65 GHz
• Field of view: 120° azimuth 80° elevation
• Resolution: 2 deg in azimuth, 6° in elevation
• Full scan rate: 1 Hz
• Sensitivity: 0 dBsm at 200 m

Additionally, you configure the radar to output multiple detections per object. Though the radar can
output tracks representing point targets, you want to estimate the extent of the target, which is not
available with the default track output. Therefore, you set the TargetReportFormat property to
Detections so that the radar report crude detections directly.

% Mount a radar on the quadrotor.
radarSensor = radarDataGenerator("no scanning","SensorIndex",1,...
 "FieldOfView",[120 80],...

 Lidar and Radar Fusion in an Urban Air Mobility Scenario

6-837

 "UpdateRate", 1,...
 'MountingAngles',[0 30 0],...
 "HasElevation", true,...
 "ElevationResolution", 6,...
 "AzimuthResolution", 2, ...
 "RangeResolution", 4, ...
 "RangeLimits", [0 200],...
 'ReferenceRange',200,...
 'CenterFrequency',24.55e9,...
 'Bandwidth',200e6,...
 "TargetReportFormat","Detections",...
 "DetectionCoordinates","Sensor rectangular",...
 "HasFalseAlarms",false,...
 "FalseAlarmRate", 1e-7);

radarcov = coverageConfig(radarSensor);
radar = uavSensor("Radar",egoUAV,helperRadarAdaptor(radarSensor));

Define tracking system

Lidar point cloud processing

Lidar sensors return point clouds. To fuse the lidar output, the point cloud must be clustered to
extract object detections. Segment out the terrain using the segmentGroundSMRF function from
Lidar Toolbox. The remaining point cloud is clustered, and a simple threshold is applied to each
cluster mean elevation to filter out building detections. Fit each cluster with a cuboid to extract a
bounding box detection. The helper class helperLidarDetector available in this example has the
implementation details.

Lidar cuboid detections are formatted using the objectDetection object. The measurement state
for these detections is x, y, z, L, W, H, q0, q1, q2, q3 , where:

• x, y, z are the cuboid center coordinates along the East, North, and Up axes of the scenario,
respectively.

• L, W, H are the length, width, and height of the cuboid, respectively.
• q = q0 + q1 . i + q2 . j + q3 . k is the quaternion defining the orientation of the cuboid with

respect to the ENU axes.

lidarDetector = helperLidarDetector(scene)

lidarDetector =
 helperLidarDetector with properties:

 MaxWindowRadius: 3
 GridResolution: 1.5000
 SegmentationMinDistance: 5
 MinDetectionsPerCluster: 2
 MinZDistanceCluster: 20
 EgoVehicleRadius: 10

Lidar tracker

You use a point target tracker, trackerJPDA, to track the lidar bounding box detections. A point
tracker assumes that each UAV can generate at most one detection per sensor scan. This assumption
is valid because you have clustered the point cloud into cuboids. To setup a tracker, you need to

6 Featured Examples

6-838

define the motion model and the measurement model. In this example, you model the dynamics of
UAVs using an augmented constant velocity model. The constant velocity model is sufficient to track
trajectories consisting of straight flight legs or slowly varying segments. Moreover, assume the
orientation of the UAV is constant and assume the dimensions of the UAVs are constant. As a result,
the track state and state transition equations are X = x, vx , y, vy , z, vz , L, W, H, q0, q1, q2, q3 and

Xk + 1 =

1 ts 0 . . 0
0 1 0 . .
. . 1 ts . .
. . 1 0 0
. . 1 ts
0 . . . 0 1

03 03

03 I3 03x4
03 04x3 I4

Xk + Qk

Here, vx, vy, vz are the cuboid velocity vector coordinates along the scenario ENU axes. You track
orientation using a quaternion because of the discontinuity of Euler angles when using tracking
filters. ts , the time interval between updates k and k+1, is equal to 0.1 seconds. Lastly, Qk is the
additive process noise that captures the modeling inaccuracy.

The inner transition matrix corresponds to the constant velocity model. You define an augmented
state version of constvel and cvmeas to account for the additional constant states. The details are
implemented in the supporting functions initLidarFilter, augmentedConstvel,
augmentedConstvelJac, augmentedCVmeas, and augmentedCVMeasJac in the end of the
example.

lidarJPDA = trackerJPDA('TrackerIndex',2,...
 'AssignmentThreshold',[70 150],...
 'ClutterDensity',1e-16,...
 'DetectionProbability',0.99,...
 'DeletionThreshold',[10 10],... Delete lidar track if missed for 1 second
 'ConfirmationThreshold',[4 5],...
 'FilterInitializationFcn',@initLidarFilter)

lidarJPDA =
 trackerJPDA with properties:

 TrackerIndex: 2
 FilterInitializationFcn: @initLidarFilter
 MaxNumEvents: Inf
 EventGenerationFcn: 'jpdaEvents'
 MaxNumTracks: 100
 MaxNumDetections: Inf
 MaxNumSensors: 20
 TimeTolerance: 1.0000e-05

 OOSMHandling: 'Terminate'

 AssignmentThreshold: [70 150]
 InitializationThreshold: 0
 DetectionProbability: 0.9900
 ClutterDensity: 1.0000e-16

 Lidar and Radar Fusion in an Urban Air Mobility Scenario

6-839

 TrackLogic: 'History'
 ConfirmationThreshold: [4 5]
 DeletionThreshold: [10 10]
 HitMissThreshold: 0.2000

 HasCostMatrixInput: false
 HasDetectableTrackIDsInput: false
 StateParameters: [1×1 struct]

 NumTracks: 0
 NumConfirmedTracks: 0

Radar tracker

In this example, you assume the radar returns are preprocessed such that only returns from moving
objects are preserved, that is no returns from the ground or the buildings. The radar measurement
state is x, vx , y, vy , z, vz . The radar resolution is fine enough to generate multiple returns per UAV
target and its detections should not be fed directly to a point target tracker. There are two possible
approaches to track with the high-resolution radar detections. One way, you can cluster the
detections and augment the state with dimensions and orientation constants as done previously with
the lidar cuboids. On the other way, you can feed the detections to an extended target tracker
adopted in this example by using a GGIW-PHD tracker. This tracker estimates the extent of each
target using an inverse Wishart distribution, whose expectation is a 3-by-3 positive definite matrix,
representing the extent of a target as a 3D ellipse. This second approach is preferable because there
aren't too many detections per object and clustering is less accurate than extended-target tracking

To create a GGIW-PHD tracker, you first define the tracking sensor configuration for each sensor
reporting to the tracker. In this case, you only need to define the configuration for one radar. When
the radar mounting platform is moving, you need to update this configuration with the current radar
pose before each tracker step. Next, you define a filter initialization function based on the sensor
configuration. Finally, you construct a trackerPHD object and increase the partitioning threshold to
capture the dimensions of objects tracked in this example. The implementation details are shown at
the end of the example in the supporting function createRadarTracker.

radarPHD = createRadarTracker(radarSensor, egoUAV)

radarPHD =
 trackerPHD with properties:

 TrackerIndex: 1
 SensorConfigurations: {[1×1 trackingSensorConfiguration]}
 PartitioningFcn: @(dets)partitionDetections(dets,threshold(1),threshold(2),'Distance','euclidean')
 MaxNumSensors: 20
 MaxNumTracks: 1000

 AssignmentThreshold: 50
 BirthRate: 1.0000e-03
 DeathRate: 1.0000e-06

 ExtractionThreshold: 0.8000
 ConfirmationThreshold: 0.9900
 DeletionThreshold: 0.1000
 MergingThreshold: 50
 LabelingThresholds: [1.0100 0.0100 0]

6 Featured Examples

6-840

 StateParameters: [1×1 struct]
 HasSensorConfigurationsInput: true
 NumTracks: 0
 NumConfirmedTracks: 0

Track fusion

The final step in creating the tracking system is to define a track fuser object to fuse lidar tracks and
radar tracks. You use the 13-dimensional state of lidar tracks as the fused state definition.

radarConfig = fuserSourceConfiguration('SourceIndex',1,...
 'IsInitializingCentralTracks',true);

lidarConfig = fuserSourceConfiguration('SourceIndex',2,...
 'IsInitializingCentralTracks',true);

fuser = trackFuser('SourceConfigurations',{radarConfig,lidarConfig},...
 'ProcessNoise',blkdiag(2*eye(6),1*eye(3),0.2*eye(4)),...
 'HasAdditiveProcessNoise',true,...
 'AssignmentThreshold',200,...
 'ConfirmationThreshold',[4 5],...
 'DeletionThreshold',[5 5],...
 'StateFusion','Cross',...
 'StateTransitionFcn',@augmentedConstvel,...
 'StateTransitionJacobianFcn',@augmentedConstvelJac);

Visualization

You use a helper class to visualize the scenario. This helper class utilizes the uavScenario
visualization capabilities and the theaterPlot plotter to represent detection and track information.

The display is divided into 5 tiles, showing respectively, the overall 3D scene, three chase cameras for
three UAVs, and the legend.

viewer = helperUAVDisplay(scene);

 Lidar and Radar Fusion in an Urban Air Mobility Scenario

6-841

Simulate the scenario

You run the scenario and visualize the results of the tracking system. The true pose of each target as
well as the radar, lidar, and fused tracks are saved for off-line metric analysis.

setup(scene);
s = rng;
rng(2021);

numSteps = scene.StopTime*scene.UpdateRate;
truthlog = cell(1,numSteps);
radarlog = cell(1,numSteps);
lidarlog = cell(1,numSteps);
fusedlog = cell(1,numSteps);
logCount = 0;

while advance(scene)
 time = scene.CurrentTime;
 % Update sensor readings and read data.
 updateSensors(scene);
 egoPose = read(egoUAV);

 % Track with radar
 [radardets, radarTracks, inforadar] = updateRadarTracker(radar,radarPHD, egoPose, time);

6 Featured Examples

6-842

 % Track with lidar
 [lidardets, lidarTracks, nonGroundCloud, groundCloud] = updateLidarTracker(lidar,lidarDetector, lidarJPDA, egoPose);

 % Fuse lidar and radar tracks
 rectRadarTracks = formatPHDTracks(radarTracks);
 if isLocked(fuser) || ~isempty(radarTracks) || ~isempty(lidarTracks)
 [fusedTracks,~,allfused,info] = fuser([lidarTracks;rectRadarTracks],time);
 else
 fusedTracks = objectTrack.empty;
 end

 % Save log
 logCount = logCount + 1;
 lidarlog{logCount} = lidarTracks;
 radarlog{logCount} = rectRadarTracks;
 fusedlog{logCount} = fusedTracks;
 truthlog{logCount} = logTargetTruth(scene.Platforms(1:3));

 % Update figure
 viewer(radarcov, nonGroundCloud, groundCloud, lidardets, radardets, lidarTracks, radarTracks, fusedTracks);
end

Based on the visualization results, you perform an initial qualitative assessment of the tracking
performance. The display at the end of the scenario shows that all three UAVs were well tracked by
the ego. With the current sensor suite configuration, lidar tracks were only established partially due

 Lidar and Radar Fusion in an Urban Air Mobility Scenario

6-843

to the limited coverage of the lidar sensor. The wider field of view of the radar allowed establishing
radar tracks more consistently in this scenario.

The three animated GIFs above show parts of the chase views. You can see that the quality of lidar
tracks (orange box) is affected by the geometry of the scenario. UAV A (left) is illuminated by the lidar
(shown in yellow) almost directly from above. This enables the tracker to capture the full extent of the
drone over time. However, UAV C (right) is partially seen by the radar which leads to underestimating
the size of the drone. Also, the estimated centroid periodically oscillates around the true drone
center. The larger fixed-wing UAV (middle) generates many lidar points. Thus, the tracker can detect
and track the full extent of the target once it has completely entered the field of view of the lidar. In
all three cases, the radar, shown in blue, provides more accurate information of the target extent. As
a result, the fused track box (in purple) is more closely capturing the extent of each UAV. However,
the radar returns are less accurate in position. Radar tracks show more position bias and poorer
orientation estimate.

Tracking metrics

In this section you analyze the performance of the tracking system using the GOSPA tracking metric.
You first define the distance function which quantifies the error between track and truth using a
scalar value. A lower GOSPA value means an overall better performance.

gospaR = trackGOSPAMetric('Distance','custom','DistanceFcn',@metricDistance);
gospaL = clone(gospaR);
gospaF = clone(gospaR);

gospaRadar = zeros(1,numSteps);
gospaLidar = zeros(1,numSteps);
gospaFused = zeros(1,numSteps);

for i=1:numSteps
 truth = truthlog{i};
 gospaRadar(i) = gospaR(radarlog{i},truth);
 gospaLidar(i) = gospaL(lidarlog{i},truth);
 gospaFused(i) = gospaF(fusedlog{i},truth);
end

figure
plot(gospaRadar,'Color',viewer.RadarColor,'LineWidth',2);
hold on

6 Featured Examples

6-844

grid on
plot(gospaLidar,'Color',viewer.LidarColor,'LineWidth',2);
plot(gospaFused,'Color',viewer.FusedColor,'LineWidth',2);
legend('Radar','Lidar','Lidar + Radar');
xlabel('Steps')
ylabel('GOSPA')

You analyze the overall system performance. Each tracker is penalized for not tracking any of the
UAVs even if the target UAV is outside of the sensor coverage. This shows improved performance
when fusing lidar and radar due to the added surveillance area. This is particularly noticeable at the
end of the simulation where two targets are tracked, one by radar and the other by lidar, but both are
tracked by the fuser. Additionally, you can see that the fused GOSPA is below the minimum of lidar
and radar GOSPA, showing the fused track has better quality than each individual track.

% clean up
removeCustomTerrain("southboulder");
rng(s);

Summary

In this example, you have learned how to model a UAV-borne lidar and radar tracking system and
tested it on an urban air mobility scenario. You used the uavScenario object to create a realistic
urban environment with terrain and buildings. You generated synthetic sensor data to test a complete
tracking system chain, involving point cloud processing, point target and extended target tracking,
and track fusion.

 Lidar and Radar Fusion in an Urban Air Mobility Scenario

6-845

Supporting Functions

createScenario creates the uavScenario using the OpenStreetMap terrain and building mesh
data

function scene = createScenario(dtedfile,buildingfile)

try
 addCustomTerrain("southboulder",dtedfile);
catch
 % custom terrain was already added.
end
load(buildingfile,'buildings');

minHeight = 1.6925e+03;
latlonCenter = [39.9786 -105.2882 minHeight];
scene = uavScenario("UpdateRate",10,"StopTime",40,...
 "ReferenceLocation",latlonCenter);

% Add terrain mesh
sceneXLim = [1800 2000];
sceneYLim = [0 200];
scene.addMesh("terrain", {"southboulder", sceneXLim, sceneYLim},[0 0 0]);

% Add buildings
for idx = 1:numel(buildings)-1
 v = buildings{idx}.Vertices;
 v(:,3) = v(:,3) - minHeight;
 rangeVMin = min(v);
 rangeVMax = max(v);
 if rangeVMin(1) > sceneXLim(1) && rangeVMax(1) < sceneXLim(2) &&...
 rangeVMin(2) > sceneYLim(1) && rangeVMax(2) < sceneYLim(2)
 scene.addMesh("custom", {v, buildings{idx}.Faces},[0 0 0]);
 end
end

end

createRadarTracker creates the trackerPHD tracker to fuse radar detections.

function tracker = createRadarTracker(radar, egoUAV)

% Create sensor configuration for trackerPHD
fov = radar.FieldOfView;
sensorLimits = [-fov(1)/2 fov(1)/2; -fov(2)/2 fov(2)/2; 0 inf];
sensorResolution = [radar.AzimuthResolution;radar.ElevationResolution; radar.RangeResolution];
Kc = radar.FalseAlarmRate/(radar.AzimuthResolution*radar.RangeResolution*radar.ElevationResolution);
Pd = radar.DetectionProbability;

sensorPos = radar.MountingLocation(:);
sensorOrient = rotmat(quaternion(radar.MountingAngles, 'eulerd', 'ZYX', 'frame'),'frame');

% Specify frame info of radar with respect to UAV
sensorTransformParameters(1) = struct('Frame','Spherical',...
 'OriginPosition', sensorPos,...
 'OriginVelocity', zeros(3,1),...% Sensor does not move relative to ego
 'Orientation', sensorOrient,...
 'IsParentToChild',true,...% Frame rotation is supplied as orientation

6 Featured Examples

6-846

 'HasElevation',true,...
 'HasVelocity',false);

% Specify frame info of UAV with respect to scene
egoPose = read(egoUAV);
sensorTransformParameters(2) = struct('Frame','Rectangular',...
 'OriginPosition', egoPose(1:3),...
 'OriginVelocity', egoPose(4:6),...
 'Orientation', rotmat(quaternion(egoPose(10:13)),'Frame'),...
 'IsParentToChild',true,...
 'HasElevation',true,...
 'HasVelocity',false);

radarPHDconfig = trackingSensorConfiguration(radar.SensorIndex,...
 'IsValidTime', true,...
 'SensorLimits',sensorLimits,...
 'SensorResolution', sensorResolution,...
 'DetectionProbability',Pd,...
 'ClutterDensity', Kc,...
 'SensorTransformFcn',@cvmeas,...
 'SensorTransformParameters', sensorTransformParameters);

radarPHDconfig.FilterInitializationFcn = @initRadarFilter;

radarPHDconfig.MinDetectionProbability = 0.4;

% Threshold for partitioning
threshold = [3 16];
tracker = trackerPHD('TrackerIndex',1,...
 'HasSensorConfigurationsInput',true,...
 'SensorConfigurations',{radarPHDconfig},...
 'BirthRate',1e-3,...
 'AssignmentThreshold',50,...% Minimum negative log-likelihood of a detection cell to add birth components
 'ExtractionThreshold',0.80,...% Weight threshold of a filter component to be declared a track
 'ConfirmationThreshold',0.99,...% Weight threshold of a filter component to be declared a confirmed track
 'MergingThreshold',50,...% Threshold to merge components
 'DeletionThreshold',0.1,...% Threshold to delete components
 'LabelingThresholds',[1.01 0.01 0],...% This translates to no track-splitting. Read LabelingThresholds help
 'PartitioningFcn',@(dets) partitionDetections(dets, threshold(1),threshold(2),'Distance','euclidean'));
end

initRadarfilter implements the GGIW-PHD filter used by the trackerPHD object. This filter is
used during a tracker update to 1) initialize new birth components in the density and 2) initialize new
component from detection partitions.

function phd = initRadarFilter (detectionPartition)

if nargin == 0

 % Process noise
 sigP = 0.2;
 sigV = 1;
 Q = diag([sigP, sigV, sigP, sigV, sigP, sigV].^2);

 phd = ggiwphd(zeros(6,0),repmat(eye(6),[1 1 0]),...
 'ScaleMatrices',zeros(3,3,0),...
 'MaxNumComponents',1000,...
 'ProcessNoise',Q,...

 Lidar and Radar Fusion in an Urban Air Mobility Scenario

6-847

 'HasAdditiveProcessNoise',true,...
 'MeasurementFcn', @cvmeas,...
 'MeasurementJacobianFcn', @cvmeasjac,...
 'PositionIndex', [1 3 5],...
 'ExtentRotationFcn', @(x,dT)eye(3,class(x)),...
 'HasAdditiveMeasurementNoise', true,...
 'StateTransitionFcn', @constvel,...
 'StateTransitionJacobianFcn', @constveljac);

else %nargin == 1
 % ------------------
 % 1) Configure Gaussian mixture
 % 2) Configure Inverse Wishart mixture
 % 3) Configure Gamma mixture
 % -----------------

 %% 1) Configure Gaussian mixture
 meanDetection = detectionPartition{1};
 n = numel(detectionPartition);

 % Collect all measurements and measurement noises.
 allDets = [detectionPartition{:}];
 zAll = horzcat(allDets.Measurement);
 RAll = cat(3,allDets.MeasurementNoise);

 % Specify mean noise and measurement
 z = mean(zAll,2);
 R = mean(RAll,3);
 meanDetection.Measurement = z;
 meanDetection.MeasurementNoise = R;

 % Parse mean detection for position and velocity covariance.
 [posMeas,velMeas,posCov] = matlabshared.tracking.internal.fusion.parseDetectionForInitFcn(meanDetection,'initRadarFilter','double');

 % Create a constant velocity state and covariance
 states = zeros(6,1);
 covariances = zeros(6,6);
 states(1:2:end) = posMeas;
 states(2:2:end) = velMeas;
 covariances(1:2:end,1:2:end) = posCov;
 covariances(2:2:end,2:2:end) = 10*eye(3);

 % process noise
 sigP = 0.2;
 sigV = 1;
 Q = diag([sigP, sigV, sigP, sigV, sigP, sigV].^2);

 %% 2) Configure Inverse Wishart mixture parameters
 % The extent is set to the spread of the measurements in positional-space.
 e = zAll - z;
 Z = e*e'/n + R;
 dof = 150;
 % Measurement Jacobian
 p = detectionPartition{1}.MeasurementParameters;
 H = cvmeasjac(states,p);

 Bk = H(:,1:2:end);
 Bk2 = eye(3)/Bk;

6 Featured Examples

6-848

 V = (dof-4)*Bk2*Z*Bk2';

 % Configure Gamma mixture parameters such that the standard deviation
 % of the number of detections is n/4
 alpha = 16; % shape
 beta = 16/n; % rate

 phd = ggiwphd(...
 ... Gaussian parameters
 states,covariances,...
 'HasAdditiveMeasurementNoise' ,true,...
 'ProcessNoise',Q,...
 'HasAdditiveProcessNoise',true,...
 'MeasurementFcn', @cvmeas,...
 'MeasurementJacobianFcn' , @cvmeasjac,...
 'StateTransitionFcn', @constvel,...
 'StateTransitionJacobianFcn' , @constveljac,...
 'PositionIndex' ,[1 3 5],...
 'ExtentRotationFcn' , @(x,dT) eye(3),...
 ... Inverse Wishart parameters
 'DegreesOfFreedom',dof,...
 'ScaleMatrices',V,...
 'TemporalDecay',150,...
 ... Gamma parameters
 'Shapes',alpha,'Rates',beta,...
 'GammaForgettingFactors',1.05);
end

end

formatPHDTracks formats the elliptical GGIW-PHD tracks into rectangular augmented state tracks
for track fusion. convertExtendedTrack returns state and state covariance of augmented
rectangular state. The Inverse Wishart random matrix eigen values are used to derive rectangular
box dimensions. The eigen vectors provide with the orientation quaternion. In this example, you use
an arbitrary covariance for radar track dimension and orientation, which is often sufficient for
tracking.

function tracksout = formatPHDTracks(tracksin)
% Convert track struct from ggiwphd to objectTrack with state definition
% [x y z vx vy vz L W H q0 q1 q2 q3]
N = numel(tracksin);
tracksout = repmat(objectTrack,N,1);
for i=1:N
 tracksout(i) = objectTrack(tracksin(i));
 [state, statecov] = convertExtendedTrack(tracksin(i));
 tracksout(i).State = state;
 tracksout(i).StateCovariance = statecov;
end
end

function [state, statecov] = convertExtendedTrack(track)
% Augment the state with the extent information

extent = track.Extent;
[V,D] = eig(extent);
% Choose L > W > H. Use 1.5 sigma as the dimension
[dims, idx] = sort(1.5*sqrt(diag(D)),'descend');

 Lidar and Radar Fusion in an Urban Air Mobility Scenario

6-849

V = V(:,idx);
q = quaternion(V,'rotmat','frame');
q = q./norm(q);
[q1, q2, q3, q4] = parts(q);
state = [track.State; dims(:); q1 ; q2 ; q3 ; q4];
statecov = blkdiag(track.StateCovariance, 4*eye(3), 4*eye(4));

end

updateRadarTracker updates the radar tracking chain. The function first reads the current radar
returns. Then the radar returns are passed to the GGIW-PHD tracker after updating its sensor
configuration with the current pose of the ego drone.

function [radardets, radarTracks, inforadar] = updateRadarTracker(radar,radarPHD, egoPose, time)
[~,~,radardets, ~, ~] = read(radar); % isUpdated and time outputs are not compatible with this workflow
inforadar = [];
if mod(time,1) ~= 0
 radardets = {};
end
if mod(time,1) == 0 && (isLocked(radarPHD) || ~isempty(radardets))
 % Update radar sensor configuration for the tracker
 configs = radarPHD.SensorConfigurations;
 configs{1}.SensorTransformParameters(2).OriginPosition = egoPose(1:3);
 configs{1}.SensorTransformParameters(2).OriginVelocity = egoPose(4:6);
 configs{1}.SensorTransformParameters(2).Orientation = rotmat(quaternion(egoPose(10:13)),'frame');
 [radarTracks,~,~,inforadar] = radarPHD(radardets,configs,time);
elseif isLocked(radarPHD)
 radarTracks = predictTracksToTime(radarPHD,'confirmed', time);
 radarTracks = arrayfun(@(x) setfield(x,'UpdateTime',time), radarTracks);
else
 radarTracks = objectTrack.empty;
end
end

updateLidarTracker updates the lidar tracking chain. The function first reads the current point
cloud output from the lidar sensor. Then the point cloud is processed to extract object detections.
Finally, these detections are passed to the point target tracker.

function [lidardets, lidarTracks,nonGroundCloud, groundCloud] = updateLidarTracker(lidar, lidarDetector,lidarJPDA, egoPose)
[~, time, ptCloud] = read(lidar);
% lidar is always updated
[lidardets,nonGroundCloud, groundCloud] = lidarDetector(egoPose, ptCloud,time);
if isLocked(lidarJPDA) || ~isempty(lidardets)
 lidarTracks = lidarJPDA(lidardets,time);
else
 lidarTracks = objectTrack.empty;
end
end

initLidarFilter initializes filter for the lidar tracker. The initial track state is derived from the
detection position measurement. Velocity is set to 0 with a large covariance to allow future detections
to be associated to the track. Augmented state motion model, measurement functions, and jacobians
are also defined below.

function ekf = initLidarFilter(detection)

% Lidar measurement: [x y z L W H q0 q1 q2 q3]
meas = detection.Measurement;

6 Featured Examples

6-850

initState = [meas(1);0;meas(2);0;meas(3);0; meas(4:6);meas(7:10)];
initStateCovariance = blkdiag(100*eye(6), 100*eye(3), eye(4));

% Process noise standard deviations
sigP = 1;
sigV = 2;
sigD = 0.5; % Dimensions are constant but partially observed
sigQ = 0.5;

Q = diag([sigP, sigV, sigP, sigV, sigP, sigV, sigD, sigD, sigD, sigQ, sigQ, sigQ, sigQ].^2);

ekf = trackingEKF('State',initState,...
 'StateCovariance',initStateCovariance,...
 'ProcessNoise',Q,...
 'StateTransitionFcn',@augmentedConstvel,...
 'StateTransitionJacobianFcn',@augmentedConstvelJac,...
 'MeasurementFcn',@augmentedCVmeas,...
 'MeasurementJacobianFcn',@augmentedCVmeasJac);
end

function stateOut = augmentedConstvel(state, dt)
% Augmented state for constant velocity
stateOut = constvel(state(1:6,:),dt);
stateOut = vertcat(stateOut,state(7:end,:));
% Normalize quaternion in the prediction stage
idx = 10:13;
qparts = stateOut(idx);
n = sqrt(sum(qparts.^2));
qparts = qparts./n;
if qparts(1) < 0
 stateOut(idx) = -qparts;
else
 stateOut(idx) = qparts;
end
end

function jacobian = augmentedConstvelJac(state,varargin)
jacobian = constveljac(state(1:6,:),varargin{:});
jacobian = blkdiag(jacobian, eye(7));
end

function measurements = augmentedCVmeas(state)
measurements = cvmeas(state(1:6,:));
measurements = [measurements; state(7:9,:); state(10:13,:)];
end

function jacobian = augmentedCVmeasJac(state,varargin)
jacobian = cvmeasjac(state(1:6,:),varargin{:});
jacobian = blkdiag(jacobian, eye(7));
end

logTargetTruth logs true pose and dimensions throughout the simulation for performance
analysis.

function logEntry = logTargetTruth(targets)
n = numel(targets);
targetPoses = repmat(struct('Position',[],'Velocity',[],'Dimension',[],'Orientation',[]),1,n);
uavDimensions = [5 5 0.3 ; 9.8 8.8 2.8; 5 5 0.3];

 Lidar and Radar Fusion in an Urban Air Mobility Scenario

6-851

for i=1:n
 pose = read(targets(i));
 targetPoses(i).Position = pose(1:3);
 targetPoses(i).Velocity = pose(4:6);
 targetPoses(i).Dimension = uavDimensions(i,:);
 targetPoses(i).Orientation = pose(10:13);
end
logEntry = targetPoses;
end

metricDistance defines a custom distance for GOSPA. This distance incorporates errors in
position, velocity, dimension, and orientation of the tracks.

function out = metricDistance(track,truth)
positionIdx = [1 3 5];
velIdx = [2 4 6];
dimIdx = 7:9;
qIdx = 10:13;

trackpos = track.State(positionIdx);
trackvel = track.State(velIdx);
trackdim = track.State(dimIdx);
trackq = quaternion(track.State(qIdx)');

truepos = truth.Position;
truevel = truth.Velocity;
truedim = truth.Dimension;
trueq = quaternion(truth.Orientation);

errpos = truepos(:) - trackpos(:);
errvel = truevel(:) - trackvel(:);
errdim = truedim(:) - trackdim(:);

% Weights expressed as inverse of the desired accuracy
posw = 1/0.2; %m^-1
velw = 1/2; % (m/s) ^-1
dimw = 1/4; % m^-1
orw = 1/20; % deg^-1

distPos = sqrt(errpos'*errpos);
distVel = sqrt(errvel'*errvel);
distdim = sqrt(errdim'*errdim);
distq = rad2deg(dist(trackq, trueq));

out = (distPos * posw + distVel * velw + distdim * dimw + distq * orw)/(posw + velw + dimw + orw);
end

References

1 Velodyne Lidar puck: https://velodynelidar.com/products/puck/
2 Echodyne UAV radar: https://www.echodyne.com/defense/uav-radar/

6 Featured Examples

6-852

https://velodynelidar.com/products/puck/
https://www.echodyne.com/defense/uav-radar/

Smooth Trajectory Estimation of trackingIMM Filter
This example shows how to smooth state estimates of a target using the smooth object function.
Smoothing is a technique to refine previous state estimates using the up-to-date measurements and
the state estimate information. In this example, you will learn how to improve previously corrected
estimates from an Interacting Multi-Model (IMM) filter by running a backward recursion, which
produces smoothed and more accurate state estimates. In the first section, you implement a smooth
algorithm to smooth the trajectory of a turning car. In the remainder of this example, you perform
smoothing on several highly maneuvering aircraft trajectories, taken from the “Benchmark
Trajectories for Multi-Object Tracking” on page 6-258 example.

Fixed Interval Smoothing to Track Turning Car

In this section, you smooth the trajectory estimate of a turning car. First, you use the
helperGenerateCarMeasurements function to generate the position measurements of the car and
the corresponding truth.

rng(2021); % For repeatable results

% Generate measurements for a car taking a turn
[measPositionCar, trueStateCar, timeCar] = helperGenerateCarMeasurements();

% Define the initial detection in the format of objectDetection
detection = objectDetection(0, [0;0;0], 'MeasurementNoise', eye(3,3));

Using the initekfimm initialization function, you create an IMM filter based on the constant
velocity, constant acceleration, and constant turn motion models. To setup the filter for backward
smoothing, you set the EnableSmoothing property of the filter to true. Since you want to perform
fixed interval smoothing (offline smoothing) on the state estimates, which utilizes all corrected and
predicted steps, you set the MaxNumSmoothingSteps property to the number of measurement steps.

defaultIMMCar = initekfimm(detection);
% Enable Smoothing
defaultIMMCar.EnableSmoothing = true;
defaultIMMCar.MaxNumSmoothingSteps = size(measPositionCar,1);
% Initilaize IMM
positionSelector = [1 0 0 0 0 0;0 0 1 0 0 0;0 0 0 0 1 0]; % Select position from state
initialState = positionSelector' * measPositionCar(1,:)';
initialCovariance = diag([1,1e4,1,1e4,1,1e4]);
initialize(defaultIMMCar, initialState, initialCovariance);

To obtain the forward estimates of the car, you run the filter by iteratively predicting and correcting
the state estimates.

% Initialize the corrected states
numSteps = numel(timeCar);
correctState = zeros(6,numSteps);
correctStateCovariance = zeros(6,6,numSteps);
correcState(:,1) = defaultIMMCar.State;
correctStateCovariance(:,:,1) = defaultIMMCar.StateCovariance;

% Forward tracking with prediction and correction
for i = 2:numSteps
 dt = timeCar(i) - timeCar(i-1);
 predict(defaultIMMCar, dt);
 [correctState(:,i), correctStateCovariance(:,:,i)] = correct(defaultIMMCar, measPositionCar(i,:));
end

 Smooth Trajectory Estimation of trackingIMM Filter

6-853

To perform the smoothing, simply call the smooth object function of the filter. The function returns
the smoothed states, state covariance, and model probabilities.

[smoothState, smoothStateCovariance, modelProbabilities] = smooth(defaultIMMCar);

Next, use the helperTrajectoryViewer function to visualize the smooth results and the RMS
errors. The results show that using offline smoothing of an IMM filter enables you to reduce the
errors in estimates.

trajNum = 0;
helperTrajectoryViewer(trajNum,timeCar,correctState, smoothState, trueStateCar, measPositionCar);

Smooth Highly Maneuvering Aircraft Trajectories with Default IMM Configuration

In this section, you smooth the trajectories of six highly maneuvering aircraft. The trajectories used in
this section are the same as those in the “Benchmark Trajectories for Multi-Object Tracking” on page
6-258 example. In the example, the aircraft acceleration changes as much as 35 m/s2 during some of
the maneuvers. You use the helperGenerateAircraftTrajMeasurements function to generate
the measurement data and truth.

[measPosition, trueState, time] = helperGenerateAircraftTrajMeasurements;

Configurate an IMM filter similar as the previous section.

% Define initial detection
detection = objectDetection(0, [0;0;0], 'MeasurementNoise', eye(3,3));

6 Featured Examples

6-854

defaultIMMAircraft = initekfimm(detection);
% Enable Smoothing
defaultIMMAircraft.EnableSmoothing = true;
defaultIMMAircraft.MaxNumSmoothingSteps = size(measPosition,1);

Using the helperGenerateSmoothData function, you run the created IMM filter, obtain the
corrected state estimates, and generate the smoothed state estimates for the first trajectory.

% Only estimate the first trajectory
trajNum = 1;

% Extract measurement data
measPosTraj = measPosition(:,:,trajNum);

% Estimate and smooth the trajectory using the helperGenerateSmoothData function
[correctState, correctStateCovariance, smoothState, smoothStateCovariance] = helperGenerateSmoothData(defaultIMMAircraft,measPosTraj,time);

Visualize the forward estimation and smoothing results using the helperTrajectoryViewer
funciton.

helperTrajectoryViewer(trajNum,time,correctState, smoothState, trueState(:,:,trajNum), measPosTraj);

As seen from the results, the smoothing process performs poorly and becomes unstable near 120
seconds. This is mainly due to insufficient process noise in the IMM filter. Rapid changes in aircraft
acceleration and sharp turns in short intervals requires higher process noise for the constant
acceleration and constant turn motion models of the IMM filter.

 Smooth Trajectory Estimation of trackingIMM Filter

6-855

Adjusting Process Noise for Better Smoothing Performance

In this section, you adjust the process noise of the filter for better estimation and smoothing results.
First, construct a constant velocity, a constant acceleration, and a constant turn-rate model to be used
in the IMM filter.

constVelocityEKF = initcvekf(detection);
constantAccelerationEKF = initcaekf(detection);
constantTurnEKF = initctekf(detection);

To compensate the velocity uncertainty, increase the process noise of the constant velocity model in
all three axes based on the estimates of the change in the velocity values of the maneuvering target.
Similarly, to compensate the acceleration uncertainty, increase the process noise for the constant
acceleration model in all three axes based on the estimate of the change in the acceleration values of
the manuvering target. To compensate the turning rate uncertainty, increase the process noise for the
turn rate of the constant-turn model.

constantVelocityEKF.ProcessNoise = 36*eye(3,3);
constantAccelerationEKF.ProcessNoise = 100*eye(3,3);
constantTurnEKF.ProcessNoise = 36*eye(4,4);

Create an IMM filter using the three defined estimation filters and enable the smoothing capability.

filters = {constVelocityEKF;constantAccelerationEKF;constantTurnEKF};
imm = trackingIMM(filters,'TransitionProbabilities', 0.99);

imm.EnableSmoothing = true;
imm.MaxNumSmoothingSteps = size(measPosition,1);

Use the filter to estimate the trajectories of six aircraft one-by-one and obtain the smoothed
estimates. Visualize the results for each trajectory.

for i = 1:6
 trajNum = i;
 measPosTraj = measPosition(:,:,trajNum);
 [correctState, correctStateCovariance, smoothState, smoothStateCovariance] = helperGenerateSmoothData(clone(imm),measPosTraj,time);

 % Visualize the results for each trajectory
 helperTrajectoryViewer(trajNum, time, correctState, smoothState, trueState(:,:,trajNum), measPosTraj)
end

6 Featured Examples

6-856

 Smooth Trajectory Estimation of trackingIMM Filter

6-857

6 Featured Examples

6-858

 Smooth Trajectory Estimation of trackingIMM Filter

6-859

6 Featured Examples

6-860

 Smooth Trajectory Estimation of trackingIMM Filter

6-861

From the results, the use of the adjusted process noise greatly reduces the estimation errors
compared with the previous smoothing results without adjusting the process noise.

Summary

In this example, you learned how to smooth filter results to obtain better state estimates. You also
learn the importance of adjusting filter noise properly for your specific applications.

Supporting Functions

helperGenerateCarMeasurements

Generate measurement inputs for the trajectory of a turning car

function [measPosition, trueState, time] = helperGenerateCarMeasurements()

% Create a trajectory of a car taking a turn.
carWayPoints = [6 2 0; 18 4 0; 25 7 0; 28 10 0; 31 15 0; 33 22 0];
timeSteps = [0 2 4 6 8 10];

% Scenario Generation.

scene = trackingScenario('UpdateRate',20);

plat = platform(scene);
plat.Trajectory = waypointTrajectory(carWayPoints, timeSteps);

6 Featured Examples

6-862

% Create trajectory using waypoints from the scenario.
numSteps = 0;
truePosition = [];
trueVelocity = [];
trueAcceleration = [];
time = [];
while advance(scene)
 poses = platformPoses(scene);
 t = scene.SimulationTime;
 numSteps = numSteps + 1;
 truePosition(numSteps,1:3) = poses.Position;
 trueVelocity(numSteps,1:3) = poses.Velocity;
 trueAcceleration(numSteps,1:3) = poses.Acceleration;
 time(numSteps) = t;
end

trueState = [truePosition(:,1,:),trueVelocity(:,1,:),truePosition(:,2,:),trueVelocity(:,2,:),truePosition(:,3,:),trueVelocity(:,3,:)];

% Add measurement noise to true position.
measNoise = 1* randn(size(truePosition));
measPosition = truePosition + [measNoise(:,1:2), zeros(numSteps,1)];

end

helperGenerateAircraftTrajMeasurements

Generate measurement inputs for the trajectories of multiple aircraft

function [measPosition, trueState, time] = helperGenerateAircraftTrajMeasurements()

% Load trajectory waypoints and velocities. The file contains tables of waypoints and
% velocities (in units of meters and meters per second) that are used to reconstruct six aircraft trajectories.
load('benchmarkTrajectoryTables.mat', 'trajTable');

% Scenario generation.
scene = trackingScenario('UpdateRate',10);

% Assign each platform with a trajectory
for n=1:6
 plat = platform(scene);
 traj = trajTable{n};
 plat.Trajectory = waypointTrajectory(traj.Waypoints, traj.Time, 'Velocities', traj.Velocities);
end

% Create trajectory using waypoints from the scenario.
numSteps = 0;
truePosition = [];
trueVelocity = [];
trueAcceleration = [];
time = [];
while advance(scene)
 poses = platformPoses(scene);
 t = scene.SimulationTime;
 numSteps = numSteps + 1;
 position = vertcat(poses.Position);
 velocity = vertcat(poses.Velocity);
 acceleration = vertcat(poses.Acceleration);
 truePosition(numSteps,1:3,1:6) = permute(position,[3 2 1]);

 Smooth Trajectory Estimation of trackingIMM Filter

6-863

 trueVelocity(numSteps,1:3,1:6) = permute(velocity,[3 2 1]);
 trueAcceleration(numSteps,1:3,1:6) = permute(acceleration,[3 2 1]);
 time(numSteps) = t;
end
trueState = [truePosition(:,1,:),trueVelocity(:,1,:),truePosition(:,2,:),trueVelocity(:,2,:),truePosition(:,3,:),trueVelocity(:,3,:)];

% Define the measurements to be the position and add normal random noise with a standard deviation of 0.1 to the measurements.
measNoise = 0.1* randn(size(truePosition));
measPosition = truePosition + measNoise;
end

helperGenerateSmoothData

Generate corrected and smoothed states

function [correctState, correctStateCovariance, smoothState, smoothStateCovariance] = helperGenerateSmoothData(imm, measPosTraj, time)

% Output correct and smooth states

numSteps = numel(time);

positionSelector = [1 0 0 0 0 0;0 0 1 0 0 0;0 0 0 0 1 0];
initialState = positionSelector' * measPosTraj(1,:)';
initialCovariance = diag([1,16e4,1,16e4,1,16e4]); % Velocity is not measured
initialize(imm, initialState, initialCovariance);

correctState = zeros(6,numSteps);
correctStateCovariance = zeros(6,6,numSteps);
correctModelProb = zeros(3,numSteps);
correctState(1,1) = measPosTraj(1,1);
correctState(3,1) = measPosTraj(1,2);
correctState(5,1) = measPosTraj(1,3);
correctStateCovariance(:,:,1) = imm.StateCovariance;
correctModelProb(:,1) = imm.ModelProbabilities;

for i = 2:numSteps
 dt = time(i) - time(i-1);
 predict(imm, dt);
 [correctState(:,i), correctStateCovariance(:,:,i)] = correct(imm, measPosTraj(i,:));
 correctModelProb(:,i) = imm.ModelProbabilities;
end

[smoothState, smoothStateCovariance, smoothModelProb] = smooth(imm);

end

helperTrajectoryViewer

Visualize smoothing results and compare RMS error

function helperTrajectoryViewer(n, time, correctState, smoothState, trueStateTraj, measPosTraj)

% Create figure and two panels, first panel for position and second panel
% for error visualization

truePosition = trueStateTraj(:,[1 3 5])';
correctPosition = correctState([1 3 5],:);
smoothPosition = smoothState([1 3 5],:);

6 Featured Examples

6-864

correctPosError = correctState([1,3,5],1:end-1) - trueStateTraj(1:end-1,[1,3,5])';
smoothPosError = smoothState([1,3,5],:) - trueStateTraj(1:end-1,[1,3,5])';

correctVelError = correctState([2,4,6],1:end-1) - trueStateTraj(1:end-1,[2,4,6])';
smoothVelError = smoothState([2,4,6],:) - trueStateTraj(1:end-1,[2,4,6])';

numSteps = numel(time);

correctPosRMS = zeros(1,numSteps-1);
smoothPosRMS = zeros(1,numSteps - 1);

correctVelRMS = zeros(1,numSteps-1);
smoothVelRMS = zeros(1,numSteps - 1);

for i = 1:numSteps -1
 deltaPc = correctPosError(:,i);
 correctPosRMS(:,i) = sqrt((deltaPc')*deltaPc);

 deltaPs = smoothPosError(:,i);
 smoothPosRMS(:,i) = sqrt((deltaPs')*deltaPs);

 deltaVc = correctVelError(:,i);
 correctVelRMS(:,i) = sqrt((deltaVc')*deltaVc);

 deltaVs = smoothVelError(:,i);
 smoothVelRMS(:,i) = sqrt((deltaVs')*deltaVs);
end

hfig = figure('Name',"Trajectory " + n,'NumberTitle','off','Units','normalized','Position',[0.1 0.1 0.8 0.8]);
hLeftPanel = uipanel(hfig,'Position',[0 0 1/2 1]);
hRightPanel = uipanel(hfig,'Position',[1/2 0 1/2 1]);

xMin = 10*floor(min(truePosition(:,1))/10e3)-5;
xMax = 10*ceil(max(truePosition(:,1))/10e3)+5;
yMin = 10*floor(min(truePosition(:,2))/10e3)-5;
yMax = 10*ceil(max(truePosition(:,2))/10e3)+5;
zMin = 10*floor(min(truePosition(:,3))/10e3)-5;
zMax = 10*ceil(max(truePosition(:,3))/10e3)+5;

% Place x-y plot in left panel for plotting true trajectory, corrected
% trajectory, and smoothed trajectory
hAx1 = axes('Parent',hLeftPanel);
axis(hAx1,[xMin xMax yMin yMax zMin zMax]);
plot3(hAx1,truePosition(1,:),truePosition(2,:),truePosition(3,:),'-','lineWidth',2);
hold on
plot3(hAx1,measPosTraj(:,1),measPosTraj(:,2),measPosTraj(:,3),'.','MarkerSize',3,'lineWidth',2);
plot3(hAx1,correctPosition(1,:),correctPosition(2,:),correctPosition(3,:),'-','lineWidth',.05);
plot3(hAx1,smoothPosition(1,:),smoothPosition(2,:),smoothPosition(3,:),'-','lineWidth',2);

title("Trajectory " + n);
xlabel('X (m)');
ylabel('Y (m)');
zlabel('Z (m)');
lObj = legend('True Position', 'Measured Position', 'Corrected Position', 'smoothed Position','location',"northeast");
axis(hAx1,'square');
grid(hAx1,'minor');

 Smooth Trajectory Estimation of trackingIMM Filter

6-865

% Switch view to X-Y if Z 0
viewSwitch = mean(truePosition(3,:));
if viewSwitch == 0
 view(90,90);
else
 view(60,10);
end
% Set legend position
legendPos = lObj.Position;
set(lObj,'Position',[legendPos(1)*1.1 legendPos(2) legendPos(3) legendPos(4)])
set(gca,'ZDir','reverse');

% Position RMS plot
hAx2 = subplot(2,1,1,'Parent',hRightPanel);
line(hAx2, time(20:end-1),correctPosRMS(20:end),'color','m');
hold on;
line(hAx2, time(20:end-1),smoothPosRMS(20:end),'color','b');
grid(hAx2,'on');
grid(hAx2,'minor');
xlim([1 inf]);
xlabel('time (s)');
ylabel('Position Error');
legend('Correct Error', 'Smooth Error');

% Velocity RMS plot
hAx3 = subplot(2,1,2,'Parent',hRightPanel);
line(hAx3, time(20:end-1),correctVelRMS(20:end),'color','m');
hold on;
line(hAx3, time(20:end-1),smoothVelRMS(20:end),'color','b');
grid(hAx3,'on');
grid(hAx3,'minor');
xlim([1 inf]);
xlabel('time (s)');
ylabel('Velocity Error');
legend('Correct Error', 'Smooth Error');
end

6 Featured Examples

6-866

	Tracking Scenarios
	Tracking Simulation Overview
	Creating a Tracking Scenario
	Create Tracking Scenario with Two Platforms
	Model Platform Motion Using Trajectory Objects
	Introduction
	waypointTrajectory
	geoTrajectory
	kinematicTrajectory
	Summary

	Radar Detections
	Simulate Radar Detections
	Create Radar Sensor
	Detector Input
	Radar Sensor Coordinate Systems
	INS
	Detections

	Introduction to Statistical Radar Models for Object Tracking
	Sensor Overview
	Radar Detection Mode
	Mounting Radar on Platform
	Detection Ability and Quality
	Measurement and Detection Format

	Inertial Sensor and Sensor Fusion
	Choose Inertial Sensor Fusion Filters

	Multi-Object Tracking
	Tracking and Tracking Filters
	Multi-Object Tracking
	Multi-Object Tracker Properties

	Introduction to Estimation Filters
	Background
	Filter Design
	Estimation Filters in Sensor Fusion and Tracking Toolbox
	How to Choose a Tracking Filter

	Introduction to Out-of-Sequence Measurement Handling
	Introduction
	Report an Error for OOSM
	Neglect OOSM
	Process OOSM Using Retrodiction

	Linear Kalman Filters
	State Equations
	Measurement Models
	Linear Kalman Filter Equations
	Filter Loop
	Constant Velocity Model
	Constant Acceleration Model

	Extended Kalman Filters
	State Update Model
	Measurement Model
	Extended Kalman Filter Loop
	Predefined Extended Kalman Filter Functions

	Introduction to Multiple Target Tracking
	Background
	Elements of an MTT System
	Tracking Metrics
	Non-Assignment-Based Trackers

	Introduction to Assignment Methods in Tracking Systems
	Background
	2-D Assignment in Multiple Target Tracking
	S-D Assignment in Multiple Target Tracking

	Introduction to Track-To-Track Fusion
	Track-To-Track Fusion Versus Central-Level Tracking
	Benefits and Challenges of Track-To-Track Fusion
	Track Fuser and Tracking Architecture

	Multiple Extended Object Tracking
	Configure Time Scope MATLAB Object
	Signal Display
	Multiple Signal Names and Colors
	Configure Scope Settings
	Use timescope Measurements and Triggers
	Share or Save the Time Scope
	Scale Axes

	Code Generation
	Generate Code with Strict Single-Precision and Non-Dynamic Memory Allocation from Sensor Fusion and Tracking Toolbox
	Introduction to Strict Single-Precision and Non-Dynamic Memory Allocation
	Supported Trackers and Tracking Filters
	Supported Assignment Functions
	Supported Motion Model Functions
	Supported Filter Initialization Functions

	Featured Examples
	Air Traffic Control
	IMU and GPS Fusion for Inertial Navigation
	Estimate Position and Orientation of a Ground Vehicle
	Rotations, Orientation, and Quaternions
	Lowpass Filter Orientation Using Quaternion SLERP
	Introduction to Simulating IMU Measurements
	Introduction to Using the Global Nearest Neighbor Tracker
	Introduction to Track Logic
	Introduction to Tracking Scenario and Simulating Sensor Detections
	Inertial Sensor Noise Analysis Using Allan Variance
	Estimate Orientation Through Inertial Sensor Fusion
	Estimate Orientation and Height Using IMU, Magnetometer, and Altimeter
	Scanning Radar Mode Configuration
	Extended Object Tracking of Highway Vehicles with Radar and Camera
	Tracking Closely Spaced Targets Under Ambiguity
	Visual-Inertial Odometry Using Synthetic Data
	Tracking Maneuvering Targets
	Multiplatform Radar Detection Fusion
	Multiplatform Radar Detection Generation
	Tracking Using Distributed Synchronous Passive Sensors
	Passive Ranging Using a Single Maneuvering Sensor
	Benchmark Trajectories for Multi-Object Tracking
	Tracking with Range-Only Measurements
	Adaptive Tracking of Maneuvering Targets with Managed Radar
	How to Generate C Code for a Tracker
	How to Efficiently Track Large Numbers of Objects
	Tracking a Flock of Birds
	Tracking Using Bistatic Range Detections
	Pose Estimation From Asynchronous Sensors
	Magnetometer Calibration
	Track Vehicles Using Lidar: From Point Cloud to Track List
	Extended Object Tracking With Radar For Marine Surveillance
	Track Vehicles Using Lidar Data in Simulink
	Track Closely Spaced Targets Under Ambiguity in Simulink
	Design and Simulate Tracking Scenario with Tracking Scenario Designer
	Estimate Orientation with a Complementary Filter and IMU Data
	Logged Sensor Data Alignment for Orientation Estimation
	Remove Bias from Angular Velocity Measurement
	Convert Detections to objectDetection Format
	Estimating Orientation Using Inertial Sensor Fusion and MPU-9250
	Track Simulated Vehicles Using GNN and JPDA Trackers in Simulink
	Track-to-Track Fusion for Automotive Safety Applications in Simulink
	Track Point Targets in Dense Clutter Using GM-PHD Tracker
	Introduction to Tracking Metrics
	Track-Level Fusion of Radar and Lidar Data
	Tuning a Multi-Object Tracker
	Generate Off-Centered IMU Readings
	Detect Multipath GPS Reading Errors Using Residual Filtering in Inertial Sensor Fusion
	IMU Sensor Fusion with Simulink
	Track Space Debris Using a Keplerian Motion Model
	Simulate and Track En-Route Aircraft in Earth-Centered Scenarios
	Simulate, Detect, and Track Anomalies in a Landing Approach
	Generate Code for a Track Fuser with Heterogeneous Source Tracks
	Extended Object Tracking with Lidar for Airport Ground Surveillance
	Track Multiple Lane Boundaries with a Global Nearest Neighbor Tracker
	Grid-Based Tracking in Urban Environments Using Multiple Lidars
	Automatic Tuning of the insfilterAsync Filter
	Detect, Classify, and Track Vehicles Using Lidar
	Use theaterPlot to Visualize Tracking Scenario
	Custom Tuning of Fusion Filters
	Wireless Data Streaming and Sensor Fusion Using BNO055
	Binaural Audio Rendering Using Head Tracking
	Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map
	Track-to-Track Fusion for Automotive Safety Applications
	Detect and Track LEO Satellite Constellation with Ground Radars
	Highway Vehicle Tracking with Multipath Radar Reflections
	Track-Level Fusion of Radar and Lidar Data in Simulink
	Track Point Targets in Dense Clutter Using GM-PHD Tracker in Simulink
	Define and Test Tracking Architectures for System-of-Systems
	Estimate Phone Orientation Using Sensor Fusion
	Handle Out-of-Sequence Measurements in Multisensor Tracking Systems
	Handle Out-of-Sequence Measurements with Filter Retrodiction
	Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink
	Grid-based Tracking in Urban Environments Using Multiple Lidars in Simulink
	Simulate INS Block
	Reconstruct Ground Truth Trajectory from Sampled Data Using Filtering, Smoothing, and Interpolation
	Event-Based Sensor Fusion and Tracking with Retrodiction
	Object Tracking and Motion Planning Using Frenet Reference Path
	Extended Target Tracking with Multipath Radar Reflections in Simulink
	Lidar and Radar Fusion in an Urban Air Mobility Scenario
	Smooth Trajectory Estimation of trackingIMM Filter

